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Fractional Fourier optics
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There exists a fractional Fourier-transform relation between the amplitude distributions of light on two
spherical surfaces of given radii and separation. The propagation of light can be viewed as a process of
continual fractional Fourier transformation. As light propagates, its amplitude distribution evolves through
fractional transforms of increasing order. This result allows us to pose the fractional Fourier transform as a
tool for analyzing and describing optical systems composed of an arbitrary sequence of thin lenses and sections
of free space and to arrive at a general class of fractional Fourier-transforming systems with variable input
and output scale factors.
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1. INTRODUCTION
The ath-order fractional Fourier transform sF aq̂dsud of the
function q̂sud is defined for 0 , jaj , 2 as

sF aq̂dsud ;
Z `

2`

Basu, u0 dq̂su0 ddu0 ,

Basu, u0 d ;
expf2ispf̂y4 2 fy2dg

jsin fj1/2

3 expfipsu2 cot f 2 2uu0 csc f 1 u0 2 cot fdg , (1)

where

f ;
ap

2
(2)

and f̂ ­ sgnssin fd. The kernel is defined separately
for a ­ 0 and a ­ 62 as B0su, u0 d ; dsu 2 u0 d and
B62su, u0 d ; dsu 1 u0 d, respectively.1,2 One may easily
extend the definition outside the interval f22, 2g by not-
ing that F 4j1aq̂ ­ F aq̂ for any integer j. Both u and u0

are interpreted as dimensionless variables.
Some essential properties of the fractional Fourier

transform are as follows: (i) It is linear. (ii) The
first-order transform sa ­ 1d corresponds to the com-
mon Fourier transform. (iii) It is additive in index,
F a1F a2 q̂ ­ F a11a2 q̂. Other properties may be found
in Refs. 1–11.

Optical implementations of the fractional Fourier
transform have already been presented. In Refs. 3–7 we
discussed the fractional Fourier-transforming property of
quadratic graded-index media. Lohmann suggested two
systems consisting of thin lenses separated by free space.9

The fact that the two approaches were equivalent and rep-
resented the fractional Fourier transform as defined in
Refs. 1 and 2 was demonstrated in Ref. 10. Applications
have been suggested in these references and in Refs. 7,
11, and 12. Later research13,14 provided certain exten-
sions and experimental verification of the above results.
0740-3232/95/040743-09$06.00
In this paper we derive a fundamental result stating
that there exists a fractional Fourier-transform relation
between the (appropriately scaled) optical amplitude dis-
tributions on two spherical reference surfaces with given
radii and separation (Fig. 1 below). This result provides
an alternative statement of the law of propagation and
allows us to pose the fractional Fourier transform as a
tool for analyzing and describing a rather general class
of optical system. (Previous research has been primar-
ily concerned with offering optical realization of the frac-
tional Fourier transform. These realizations follow as
special cases or applications of our more general formula-
tion, which allows us to state the necessary and sufficient
conditions for a fractional Fourier transform in full gen-
erality.)

After discussing in some detail the above-mentioned re-
sult, we show how the Fresnel diffraction integral can
be expressed in terms of a fractional Fourier transform.
We discuss how axially centered systems composed of an
arbitrary number of lenses separated by arbitrary dis-
tances can be analyzed by means of fractional Fourier
transforms. As an instructive example, we concentrate
on the classical single-lens imaging configuration. We
also specify the general conditions under which an arbi-
trary system is a fractional Fourier transformer.

Whenever we can express the result of an optical prob-
lem (such as Fraunhofer diffraction) in terms of a Fourier
transform, we tend to think of this result as simple and
elegant. This is justified by the fact that the Fourier
transform has many simple and useful properties that
make working with it attractive. The Fourier transform
and image occur at certain privileged planes in an opti-
cal system. Often all our intuition about what happens
in between these planes is that the amplitude distribu-
tion is given by a complicated integral. In this paper we
show that the distribution of light at intermediate planes
can be expressed in terms of the fractional Fourier trans-
form (which also has several useful properties and opera-
tional formulas). Thus the fractional Fourier transform
1995 Optical Society of America
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completes in a natural way the study of optical systems
often called Fourier optics.

We note in passing that, although one-dimensional
signals are considered throughout this paper for nota-
tional simplicity, straightforward generalization of the
results to two dimensions is possible. Although for one-
dimensional systems it is more correct to speak of circu-
lar (or cylindrical) surfaces, here we customarily speak of
spherical surfaces.

As a final word on terminology, we believe that ulti-
mately the term Fourier transform should mean, in gen-
eral, fractional Fourier transform and that the currently
standard Fourier transform should be referred to as the
first-order Fourier transform. Likewise, DFT should de-
note the discrete (fractional) Fourier transform, etc., and
the invention of new acronyms and abbreviations should
be discouraged. Then, instead of speaking of fractional
Fourier optics, we will be able to speak simply of Fourier
optics.

2. FRACTIONAL FOURIER-
TRANSFORMING PROPERTY OF
PROPAGATION THROUGH FREE SPACE
We refer to Fig. 1. The complex amplitude distribu-
tions with respect to the first and the second spherical
reference surfaces are denoted by q1sx0 d and q2sxd, re-
spectively. The distributions with respect to the planar
surfaces tangent to the spherical surfaces on the optical
axis are likewise denoted by p1sx0 d and p2sxd. If the
radii of the spherical surfaces are denoted by R1 and R2,
we have

p2sxd ­ q2sxdexpsipx2ylR2d , (3)

p1sx0 d ­ q1sx0 dexpsipx0 2ylR1d , (4)

where l is the wavelength. Assuming propagation from
left to right, p2sxd is related to p1sx0 d by a Fresnel integral:

p2sxd ­
expsi2pdyld

p
ild

Z `

2`

expfipsx 2 x0 d2yldgp1sx0 ddx0 .

(5)

Combining Eqs. (3)–(5), we can obtain a relation between
q1sx0d and q2sxd. To permit comparison of this relation
with Eq. (1) we introduce the dimensionless variables u0 ;
x0ys1 and u ; xys2, where s1 and s2 are real-valued scale
parameters with dimensions of length. Also introducing
the hatted functions q̂1su0 d ; q1su0s1d and q̂2sud ; q2sus2d,
we obtain

q̂2sud ­
expsi2pdylds1p

ild

3
Z `

2`

exp

"
ip

ld
sg2s2

2u2 2 2s1s2uu0 1 g1s1
2u0 2d

#
3 q̂1su0 ddu0 , (6)

where we established the definitions

g1 ; 1 1 dyR1 , (7)

g2 ; 1 2 dyR2 . (8)

Now, comparing this result with the definition of the
fractional Fourier transform [Eq. (1)], we conclude that
q̂2sud is proportional to the fractional Fourier transform
of q̂1su0 d, i.e.,

q̂2sud ­

8<:expfi2pdylds1 expfispf̂y4 2 fy2dgjsin fj1/2
p

ild

9=;
3 sF aq̂1dsud , (9)

if and only if

g2
s2

2

ld
­ cot f , (10)

g1
s1

2

ld
­ cot f , (11)

s1s2

ld
­ csc f . (12)

These three equations are the necessary and sufficient
conditions for Eq. (9) to hold.

We now discuss the consequences of these equations
from three perspectives.

A. Analysis

1. Problem
Given R1, R2, and d, find s1, s2, and a (or, equivalently,
f ; apy2). That is, we are given the reference surfaces
and wish to find the order and the scale parameters of
the resulting transform.

Equations (10) and (11) imply that

g1s1
2 ­ g2s2

2 . (13)

Now, using the identity cot2 f 1 1 ­ csc2 f and
Eqs. (10)–(13), we obtain

s2
4 ­ sldd2s g2yg1 2 g2

2d21 , (14)

s1
4 ­ sldd2s g1yg2 2 g1

2d21 . (15)

Note that Eq. (13) implies that g1g2 $ 0 and that
Eqs. (14) and (15) imply that s g2yg1 2 g2

2d $ 0 and
s g1yg2 2 g1

2d $ 0. These conditions can be summarized
in the form

0 # g1g2 # 1 . (16)

If a fractional transform relation is to hold, R1, R2, and
d must be specified such that this condition holds. (It

Fig. 1. Two spherical surfaces. This figure is drawn such that
R1 , 0 and R2 . 0. The distance d is always taken to be
positive.
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is interesting that if Fig. 1 is interpreted as a spherical
mirror resonator, this equation is the stability or the
confinement condition of the resonator.15)

We can see that, given R1, R2, and d, js2j and js1j

are uniquely determined by Eqs. (14) and (15). Then
Eq. (10) or (11) enables us to determine f according to

tan f ­ 6fs1yg1g2d 2 1g1/2 , (17)

where the 6 is determined according to the common
sign of g1 and g2. The ambiguity in the inverse tan-
gent function is resolved by examination of the sign of
csc f. Equation (12) tells us that, if we choose the signs
of s1 and s2 such that s1s2 $ 0, then csc f $ 0, so that f

lies in f0, pg. In contrast, if s1s2 # 0, then csc f # 0, so
that f lies in f2p, 0g. These results are consistent with
inversion and parity properties of the fractional Fourier
transform.

2. Result
A fractional Fourier-transform relation exists between
two spherical surfaces of radii R1, R2 and separation d
if and only if 0 # g1g2 # 1. If this condition is satisfied,
js1j and js2j are determined by Eqs. (14) and (15), and f

is determined within 6p by Eq. (17). The quadrant of
f is determined by our choice of the signs of s1 and s2,
or vice versa.

B. Synthesis

1. Problem
Given s1, s2, and a (or, equivalently, f ; apy2), find
R1, R2, and d. That is, we wish to design a fractional
Fourier-transform system with specific order and scale
factors.

Notice that Eq. (12) implies that the sign of s1s2 must
be the same as the sign of csc f, which is the same as the
sign of f. If s1, s2, and f have been specified consistent
with this requirement, Eq. (12) determines d:

d ­ ss1s2yldsin f . (18)

Then Eqs. (10) and (11) give g1 and g2, which in turn
give R1 and R2:

1 1 dyR1 ; g1 ­ ss2ys1dcos f , (19)

1 2 dyR2 ; g2 ­ ss1ys2dcos f . (20)

Note that g1 and g2, as given by these equations, will
always satisfy g1g2 ­ cos2 f, and thus 0 # g1g2 # 1.

2. Result
A fractional Fourier-transform relation of order a be-
tween two spherical surfaces with the input and the out-
put scaled by s1 and s2, respectively, can be obtained
if and only if sgnss1s2d ­ sgnssin fd. If this condition
is satisfied, we must choose R1, R2, and d according to
Eqs. (18)–(20).

C. Propagation

1. Problem
Given s1, R1, and d, find a (or f), s2, and R2. That is,
given the radius of the spherical reference surface and
the scale parameter on the input side, find them at a
distance d to the right, as well as the order of the resulting
transform at that distance.

Because R1 and d are given, g1 is also known. Using
Eqs. (10)–(12), we can obtain

tan f ­
ld

g1s1
2

, (21)

s2
2 ­ g1

2s1
2 1

sldd2

s1
2

, (22)

1 2 dyR2 ; g2 ­
g1s1

4

g1
2s1

4 1 sldd2
. (23)

We are free to choose the sign of s2, which together with
the specified sign of s1 determines the sign of csc f. This
sign determines the quadrant of f in Eq. (21). If we as-
sume that s1, s2 are both positive, f lies in the inter-
val f0, pg. Now f, as given by Eq. (21), is a continuous
monotonic increasing function of d. Let us assume that
the location of the first surface is fixed at the origin z ­ 0
of the optical axis and that we examine the distribution of
light after it has propagated a distance z ­ d in the posi-
tive z direction. For larger values of d, we observe frac-
tional transforms of the initial distribution of larger-order
f; the amplitude distribution of light is continuously frac-
tional Fourier transformed as it propagates.

2. Result
Given the distribution of light on a spherical reference
surface of radius R1 and scale parameter s1, we can ob-
serve its fractional Fourier transform on another spheri-
cal reference surface a distance d to the right. The radius
R2 and scale parameter s2 for this surface and the order
of the fractional transform are given by Eqs. (21)–(23),
where the quadrant of f is determined by our choice of
the sign of s2.

3. ILLUSTRATIVE APPLICATIONS
We now consider some applications of the above results.
For convenience we restrict s1 and s2 to positive values.
This implies csc f . 0, so that f lies in the interval
f0, pg. Using Eq. (12) we can now write Eq. (9) in the
more meaningful form

q̂2sud ­ fexpsi2pdyldexps2iapy4d
q

s1ys2g sF aq̂1dsud .

(24)

The phase factor expsi2pdyld is associated with propaga-
tion over the distance d. The phase factor exps2ify2d is
the Gouy phase shift.15 The factor

p
s1ys2 ensures power

conservation.

A. Fresnel Diffraction as a Fractional
Fourier Transform
Let us assume that a plane wave of unit amplitude illumi-
nates a planar screen with complex amplitude transmit-
tance tsxd. We can handle this case by letting R1 ! `,
as given in Fig. 1. We then have q1sx0 d ­ p1sx0 d ­ tsx0 d.
Because g1 ­ 1 in this case, Eq. (11) implies that cot f $

0, so that f lies in the interval f0, py2g.
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We also assume that the scale parameter s1 associated
with the planar reference plane is specified freely. Then
Eq. (11) gives us the order of the fractional transform
observed at a distance d from the screen. The scale s2

of the transform at this distance can then be found from
Eq. (12). Then Eq. (10) yields g2 and hence R2. Thus
the observed field p2sxd at a distance d . 0 is given by

p2sxd ­ fexpsi2pdyldexps2iapy4d
p

s1ys2gexpfsipx2ylR2dg

3 sF at̂dsxys2d , (25)

with

ap

2
; f ­ arctan

√
ld
s1

2

!
, (26)

s2 ­ s1

"
1 1

sldd2

s1
4

#1/2

, (27)

R2 ­ d

"
1 1

s1
4

sldd2

#
, (28)

where t̂su0 d ; tsu0s1d. We can eliminate the spherical
phase factor expsipx2ylR2d by choosing a spherical ref-
erence surface with radius R2, i.e., if we observe g2sxd
instead of p2sxd. (The various phase factors would have
no effect if we were observing only the intensity.)

Thus we conclude that the Fresnel diffraction integral
can be formulated as a fractional Fourier transform. As
d is increased from 0 to `, the order a of the fractional
transform increases according to Eq. (26) from 0 to 1.
Letting d ! `, we obtain the intuitively appealing a ­ 1,
s2 ­ ldys1, and R2 ­ d, which we readily associate with
the Fraunhofer diffraction pattern, which is nothing but
the Fourier transform of the diffracting screen.

B. Symmetric Case
Referring to Fig. 1, let us consider the special case in
which 2R1 ­ R2 ; R and g1 ­ g2 ; g ; 1 2 dyR.
Equations (10) and (11) then imply that s1 ­ s2, which
we denote by s. The condition 0 # g1g2 # 1 becomes
0 # g2 # 1 or, more simply, jgj # 1. This result implies
that 0 # dyR # 2 and hence that R $ dy2.

Equations (10) and (12) now become

gss2yldd ­ cot f , (29)

s2yld ­ csc f , (30)

from which it also follows that

g ­ cos f . (31)

Given R and d such that jgj # 1, Eq. (31) immediately
determines f. Then either Eq. (29) or (30) yields s. Al-
ternatively, given f and s, we can use the same equations
to find d and g and hence R.

C. Fractional Fourier Transform
between Planar Surfaces
We have seen that there exists a fractional Fourier-
transform relation between two spherical surfaces, as
depicted in Fig. 1. By using a lens to compensate the
spherical phase factors at both surfaces, we can obtain a
fractional Fourier transform between two planar surfaces.
We simply choose lenses with focal lengths f1 ­ 2R1 and
f2 ­ R2. Thus, with our synthesis result, it is possible
to design a fractional Fourier transformer of given order
a and of desired input and output scale parameters s1

and s2.
Let us restrict ourselves to the symmetric case for

which R $ dy2 . 0. Then, using two positive lenses of
focal length f ­ R . 0, we obtain Lohmann’s Type II frac-
tional Fourier-transforming system (Fig. 2).9 If the or-
der of the fractional transform apy2 ; f and the scale s
are specified, then the separation of the lenses d and their
focal length f must be chosen as

d ­ ss2yldsin f , (32)

f ­ ss2yldcotsfy2d . (33)

Alternatively, let us consider an asymmetric pair of
spherical surfaces with R1 ! ` and R2 ­ R. Let us place
immediately to the right of the second surface a thin lens
of focal length f ­ Ry2, whose effect will be to map the
amplitude distribution on the spherical surface of radius
R onto a spherical surface of radius 2R. Now let us
place after the lens a second asymmetric pair of spherical
surfaces with R1 ­ 2R and R2 ! `. The overall sys-
tem consists of a stretch of free space followed by a lens
followed by another stretch of free space, which is noth-
ing but Lohmann’s Type I fractional Fourier-transforming
system (Fig. 3). Its analysis is similar to what has been
presented above and is thus not repeated.

We refer to such realizations of the fractional Fourier
transform as canonical realizations Type II and Type I.

Fig. 2. Canonical realization Type II.

Fig. 3. Canonical realization Type I.
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They are summarized below within the framework of this
paper. An alternative discussion of these systems is to
be found in Lohmann’s paper.9

Canonical fractional Fourier-transforming configura-
tions have planar input and output reference surfaces
separated by a distance l and with scale parameter s.
The focal lengths of the lenses are denoted by f. The
output pout of such a system is related to the input pin

by the relation

p̂outsud ­ expsi2plyldexps2iapy4dsF ap̂indsud , (34)

where u ; xys2, u0 ; x0ys1 and p̂outsud ; poutsus2d,
p̂insu0 d ; pinsu0s1d. We can see that the output is es-
sentially the ath-order fractional Fourier transform of
the input.

1. Type II
A Type II system consists of a lens of focal length f fol-
lowed by a section of free space of length d followed by
a second lens of focal length f (Fig. 2). Thus its total
length is l ­ d. We can obtain d and f in terms of s and
f (or a) by using

d ­ ss2yldsin f , (35)

f ­ ss2yldcotsfy2d . (36)

Alternatively, provided that f $ dy2, we can find f (or a)
and s in terms of d and f by using

f ­ arccoss1 2 dyf d , (37)

s4 ­
l2df

2 2 dyf
. (38)

2. Type I
A Type I system consists of a section of free space of length
d followed by a lens of focal length f followed by a second
section of free space of length d (Fig. 3). Thus its total
length is l ­ 2d. We can obtain d and f in terms of s and
f (or a) by using

d ­ ss2yldtansfy2d , (39)

f ­ ss2yldcsc f . (40)

Alternatively, we can find f (or a) and s in terms of d
and f by using

f ­ arccoss1 2 dyf d , (41)

s4 ­ l2df s2 2 dyf d . (42)

D. Classical Single-Lens Imaging
Consider the classical single-lens imaging configuration
in which the object is located a distance d0 . 0 to the left
of the lens and the image is located a distance di . 0 to
the right of the lens, which has focal length f . 0 (Fig. 4).
We can view this system as performing two consecutive
fractional Fourier-transform operations (from the object to
the lens and from the lens to the image), provided that the
radius R2 of the spherical reference surface just before the
lens and the radius R1 of the spherical reference surface
just after the lens are related by
1yR1 ­ s1yR2d 2 s1yf d . (43)

This equation states that the amplitude distribution of
light on the reference surface with radius R2 is mapped
by the lens onto a reference surface with radius R1. If we
are to look into the combined effect of the two consecutive
fractional transforms, we should choose the scale factors
s2 and s1 immediately before and immediately after the
lens such that

s1 ­ s2 . (44)

Letting fo ; aopy2 and fi ; aipy2 denote the order of
transformation occurring from the object to the lens and
from the lens to the image, respectively, we can write the
imaging condition (for an inverted image) as ao 1 ai ­ 62
or, equivalently,

fo 1 fi ­ 6p . (45)

This condition follows from the fact that F 62fq̂sudg ­
q̂s2ud for any q̂sud.

Now, with the definitions g2 ; 1 2 doyR2, g1 ; 1 1

diyR1, we have [see Eqs. (10) and (11)]

cot fo ­ g2ss2
2yldod , (46)

cot fi ­ g1ss1
2yldid . (47)

It is now possible to show that Eq. (45) implies the well-
known imaging condition

1yf ­ s1ydod 1 s1ydid . (48)

Furthermore, if we let so and si denote the scale factors
associated with the object and the image, Eq. (12) lets us
write

sos2yldo ­ csc fo , (49)

s1siyldi ­ csc fi . (50)

Now, because Eq. (45) implies that csc fo ­ csc fi, we
obtain the magnification M of the scale factors

M ; siyso ­ diydo , (51)

again a familiar result.

Fig. 4. Single-lens imaging.
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E. General Lens Systems Analyzed as Consecutive
Fractional Fourier Transforms
More-complicated systems involving several lenses sepa-
rated by arbitrary distances can be analyzed in a similar
manner. For simplicity let us restrict ourselves to posi-
tive lenses. Let the distance separating the input (or the
object) from the first lens be d0; the distance separating
the first and the second lens, d1; and the distance sepa-
rating the ith and the si 1 1dth lens, di. The focal length
of the ith lens is denoted by fi. In general, the subscripts
i2 and i1 are used to denote quantities immediately to
the left and the right of the ith lens, respectively. fi de-
notes the order of the fractional transform associated with
propagation from lens i to lens i 1 1.

Assume that the input is specified with respect to a
particular spherical reference surface of radius R01 and
that the input scale parameter is denoted by s01. Just
before the first lens in the system we observe the frac-
tional Fourier transform of the input of order f0, where
f0 can be calculated from cot f0 ­ g01s01

2yld0 [Eq. (11)],
with g01 ; 1 1 d0yR01. The scale of this transform is
s12 ­ sld0ys01dcsc f0 [Eq. (12)], and the transform is ob-
served on a spherical reference surface of radius R12,
which we can calculate from g12 ; 1 2 d0yR12 and g12 ­
sld0ys12

2dcot f0 [Eq. (10)].
Now we can make our way through the lens, using

s11 ­ s12 and 1yR11 ­ 1yR12 2 1yf1 [Eqs. (43) and (44)].
Then, just before the second lens, on a spherical reference
surface of radius R22, we observe the fractional Fourier
transform of the input of order f0 1 f1, and so on.

Let us assume that all d0, d1, . . . , f1, f2, . . ., as well
as s01 and R01, are specified. Then we can work our
way through the system iteratively, using the following
equations for i ­ 0, 1, 2, . . . :

gi1 ­ 1 1 diyRi1 , (52)

cot fi ­ gi1si1
2yldi , (53)

ssi11d2 ­ sldiysi1dcsc fi , (54)

ssi11d1 ­ ssi11d2 , (55)

gsi11d2 ­ fldiyssi11d2
2gcot fi , (56)

Rsi11d2 ­
di

1 2 gsi11d2

, (57)

Rsi11d1 ­
fi11Rsi11d2

fi11 2 Rsi11d2

. (58)

Here si1 and Ri1 may be considered to be the state vari-
ables of the iteration. The cumulative order of the trans-
form just before the ith lens is fcumi ­ f0 1 f1 1 · · · 1

fi21. This procedure allows us to find the orders of the
transforms at the lenses, but of course it is also possible
to calculate the order of the transform observed at any
intermediate location (the propagation result).

Thus we can see that, in an optical system involving
many lenses separated by arbitrary distances, the ampli-
tude distribution is continuously fractional Fourier trans-
formed as it propagates through the system. The order
fszd of the fractional transform observed at the distance
z along the optical axis is a monotonically increasing
function. The transforms are observed on spherical ref-
erence surfaces. Wherever the order of the transform
fszd is equal to s4j 1 1dpy2 for any integer j, we observe
the Fourier transform of the input. Wherever the order
is equal to s4j 1 2dpy2, we observe an inverted image, etc.

The results of this subsection can be generalized for
systems composed of an arbitrary sequence of spherical
refracting surfaces.

F. Interpretation of Quadratic Graded-Index Media as
a Continuum of Infinitesimal Thin Lenses Interspersed
with Infinitesimal Sections of Free Space
The fractional Fourier-transforming property of quadratic
graded-index media was discussed in Refs. 4–7 and 10.
The refractive index in such a medium has the following
dependence on x:

n2sxd ­ n0
2f1 2 sxyjd2g , (59)

where n0 . 0 and j . 0 are the medium parameters.
In considering such a medium of length l, the output is
related to the input by Eq. (34) just as well, provided that
we replace l ! lyn0. Now f ; apy2 and s . 0 are given
in terms of n0, j, and l by

f ­ lyj , (60)

s2 ­ ljyn0 . (61)

Now we discuss the relation between such fractional
Fourier transformers and the canonical systems discussed
in Subsection 3.C. Let us consider Type I (the discussion
is similar for Type II). Assume that we cascade N Type I
systems, each of length 2d, so that the overall length
of the system is l ­ N2d. Now, keeping this overall
length and the scale parameter s fixed, we let N ! ` and
2d ! 0. Physically, what we obtain is a large number
of closely spaced weak-focal-power lenses.16 In the limit
the average refractive-index distribution of this assembly
will have a quadratic dependence on x, similar to Eq. (59).

To see that this is true, let us consider optical paths
parallel to the optical axis. Using small f approxima-
tions of Eqs. (39) and (40), we can show that the phase
collected along such a path through the infinite cascade
of infinitesimal Type I systems is

.2pfsxysd2 , (62)

where we have dropped the constant term 2pN2dyl.
Turning our attention to quadratic index media,
Eqs. (59)–(61) allow us to write the collected phase
in exactly the same form as above. This means that
if we assume functional equivalence of the two sys-
tems (identical values of f and s) we can deduce their
physical equivalence (identical collected phase, which is
proportional to optical density).

From the same sets of equations we can derive another
relation that is valid for both cases:

f ­ slys2d, , (63)

where l ! lyn0 for the quadratic index case.
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4. GENERAL CONDITIONS FOR
THE OPTICAL FRACTIONAL
FOURIER TRANSFORM
The class of quadratic-phase systems17–21 is characterized
by linear transformations of the form

poutsxd ­
Z `

2`

hsx, x0 dpinsx0 ddx0 ,

hsx, x0 d ­ C expfipsax2 2 2bxx0 1 gx0 2dg , (64)

where C is a complex constant, and a, b, and g are real
constants independent of x and x0. Optical systems in-
volving an arbitrary sequence of thin lenses and sections
of free space (in the Fresnel approximation) belong to this
class. (We can easily show this by first proving that the
kernel for a section of free space followed by a lens and a
lens followed by a section of free space both assume the
above form and by then noting that an arbitrary system
can be composed of these units.)

For this class of systems it is sufficient to specify the pa-
rameters C, a, b, and g to characterize the system com-
pletely. The condition for a fractional Fourier transform
can be stated in terms of these parameters as follows.
There should exist scale parameters s1, s2 such that

as2
2 ­ cot f ­ gs1

2 , (65)

bs1s2 ­ csc f (66)

for some f. It can be shown that such scale parameters
can be found if and only if 0 # ag # b2. If this condition
is satisfied, the necessary scale parameters and the order
of the resulting transform are given by

s1
4 ­ s b2gya 2 g2d21 , (67)

s2
4 ­ s b2ayg 2 a2d21 , (68)

tan f ­ 6s b2yag 2 1d1/2 , (69)

where the sign of tan f is the same as the identical signs
of a and g and where f lies in the interval f2p, 0g or
f0, pg according to whether bs1s2 # 0 or bs1s2 $ 0. For
example, if s1s2 $ 0, a $ 0, and b $ 0, f lies in the
interval f0, py2g.

If the condition 0 # ag # b2 is not satisfied, it is still
possible to observe a fractional Fourier transform between
spherical (rather than planar) reference surfaces at the
input and the output. (That is, it is possible to take any
system and make a fractional Fourier transformer out
of it by appending lenses to the input and the output.)
To show this, we note that the kernel h0sx, x0 d between
the new spherical reference surfaces will be modified ac-
cording to a0 ­ a 2 1ylR2, b0 ­ b, and g0 ­ g 1 1ylR1,
where R1 and R2 are the radii of the new input and out-
put reference surfaces. Now we can always ensure that
0 # a0g0 # b0 2 by an appropriate choice of R1 and R2.

It is possible to arrive at the same results through a
different formalism. Let us define the transformation
matrix characterizing the optical system as"

A
C

B
D

#
;

"
gyb

2b 1 agyb

1yb

ayb

#

­

"
ayb

b 2 agyb

21yb

gyb

#
21

, (70)
with determinant AD 2 BC ­ 1. There are many rea-
sons for defining such a matrix. First, if several systems,
each characterized by such a matrix, are cascaded, one can
find the matrix characterizing the overall system by mul-
tiplying the matrices of the several systems. Second, the
effect of the optical system on the Wigner distribution17,18

of the input is easily expressed in terms of this matrix.
Third, this matrix can be made the basis of a geometrical-
optics description of a quadratic-phase system; it is es-
sentially the well-known ray matrix.15 These issues are
discussed extensively in the research of Bastiaans,17–21 so
they are not considered further here. (Bastiaans actu-
ally deals with the inverse of the above matrix.)

Introducing the variables u ; xys2 and u0 ; x0ys1 in
Eqs. (64), one can write the kernel as / expfipsau2 2

2buu0 1 gu0 2dg, with a ­ as2
2, b ­ bs1s2, and g ­ gs1

2.
It is now possible to show that the elements of the new
transformation matrix associated with the dimensionless
variables are related to the elements of the original trans-
formation matrix given in Eq. (70):24 A

C
B
D

35 ­

"
gyb

2b 1 a gyb

1yb

ayb

#

­

"
As1ys2

Cs1s2

Bys1s2

Ds2ys1

#
. (71)

The transformation matrix associated with the frac-
tional Fourier transform of order f is the rotation
matrix4,9,10 "

cos f

2sin f

sin f

cos f

#
. (72)

Thus the condition for a fractional Fourier transform is
that there exist scale parameters s1 and s2 such that the
matrices given in expressions (71) and (72) are equal for
some f. The necessary and sufficient condition for such
scale parameters to exist can be expressed as 0 # AD # 1
(or, equivalently, 21 # BC # 0). If this condition is satis-
fied, the necessary scale parameters and the order of the
resulting transform are given by

s1
4 ­ B2sAyD 2 A2d21 , (73)

s2
4 ­ B2sDyA 2 D2d21 , (74)

cos f ­ 6sADd1/2 , (75)

where sgnscos fd ­ sgnsAs1ys2d and f lies in the inter-
val f2p, 0g or f0, pg according to whether Bys1s2 # 0 or
Bys1s2 $ 0. For example, if s1s2 $ 0, A $ 0, and B $ 0,
f lies in the interval f0, py2g.

If the condition 0 # AD # 1 is not satisfied, we can
still make a fractional Fourier transformer out of this sys-
tem by appending lenses at its input and output surfaces.
(That is, for any system, it is possible to find spherical in-
put and output reference surfaces between which a frac-
tional Fourier-transform relation exists.) To show this,
we multiply the transformation matrix from the left and
the right by the transformation matrix of a thin lens15:"

A0

C 0

B 0

D 0

#
­

"
1

2K2

0
1

#"
A
C

B
D

#"
1

2K1

0
1

#
, (76)
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where K1, K2 are measures of the powers of the lenses.
Multiplying the matrices, we find that A0 ­ A 2 K1B
and D 0 ­ D 2 K2B. It is clearly possible to satisfy the
condition 0 # A0D 0 # 1 by an appropriate choice of K1

and K2.

5. CONCLUSIONS
There exists a fractional Fourier-transform relation be-
tween two spherical reference surfaces of given radii and
separation. It is possible to determine the order and the
scale parameters associated with this fractional trans-
form, given the radii and the separation of the surfaces.
Alternatively, given the desired order and scale parame-
ters, it is possible to determine the necessary radii and
separation.

The propagation of light along the 1z direction can be
viewed as a process of continual fractional Fourier trans-
formation. As light propagates, its distribution evolves
through fractional transforms of increasing orders. The
order fszd of the fractional transform observed at z is
a continuous monotonic increasing function of z. (The
fractional transform at z is observed on a spherical refer-
ence surface intersecting the optical axis at that location.)
One of the central results of diffraction theory is that the
far-field diffraction pattern is the Fourier transform of the
diffracting object. Thus we have shown that the field at
a closer distance is the fractional Fourier transform of
the diffracting object.

The effect of a thin lens on such a propagating wave-
form is merely to bend the spherical reference surface into
another reference surface with a different radius. Thus
we can continue tracking the evolution of the wave in
terms of fractional Fourier transforms, starting from this
new reference surface.

It has been shown by Onural22 that the propagation
of light in the Fresnel approximation can be viewed as
a wavelet transform. The relation between fractional
Fourier transforms and wavelet transforms is discussed
in Ref. 7, so that Onural’s result can be tied to ours.

We have discussed rather carefully what we have
termed canonical fractional Fourier-transforming sys-
tems, which are the simplest symmetric configurations
yielding a fractional Fourier transform between pla-
nar reference surfaces. We also showed that quadratic
graded-index media can be viewed as the limit of a larger
and larger number of weaker and weaker lenses.

We derived the (well-known) single-lens imaging equa-
tions, starting from an imaging condition stated in terms
of fractional Fourier transforms. Generalizing, we saw
that fractional Fourier transforms provide a new way of
analyzing optical systems involving several lenses sepa-
rated by arbitrary distances. Such systems can be an-
alyzed by means of geometrical optics, Fresnel integrals
(spherical-wave expansions), plane-wave expansions,
Hermite–Gaussian beam expansions, and, as we showed,
fractional Fourier transforms. The various approaches
prove useful in different situations and provide differ-
ent viewpoints that complement each other. The frac-
tional Fourier-transform approach is appealing in that
it describes the continuous evolution of the wave as it
propagates through the system.

Finally, we considered a rather general class of optical
systems and stated the general conditions that a member
of this class must satisfy for its output to be viewed as the
fractional Fourier transform of its input. We also showed
that one can make a fractional Fourier transformer out
of any system by appending lenses of appropriate focal
length at the input and the output faces.

It is also of interest to formulate our results in the
framework and the conventions of Hermite–Gaussian
beams. This approach is suitable for studying beam
propagation and spherical mirror resonators.14

We have avoided discussing complex-order transforms
so as to avoid dealing with complex-valued scale param-
eters s1 and s2. Such systems do not satisfy 0 # g1g2 #

1. Thus, if Fig. 1 is interpreted as a spherical mirror
resonator, we are dealing with an unstable resonator.14

This case might be worth investigating.
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