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The fractional Fourier transform and its applications
in optics and signal processing

The fractional Fourier transform (fractional FT)
is a generalization of the common Fourier trans-
form with an order parameter a. Mathematically,
the ath order fractional FT is the ath power of the
fractional FT operator. The a=/st order frac-
tional transform is the common Fourier trans-
form. The a=0th transform is the function itself.
With the development of the fractional FT and
related concepts, we see that the common fre-
quency domain is merely a special case of a
continuum of fractional domains. and arrive at a
richer and more general theory of alternate sig-
nal representations, all of which are elegantly
related to the notion of space-frequency distribu-
tions.

Every property and application of the com-
mon Fourier transform becomes a special case of
that for the fractional transform. In every area in
which Fourier transforms and frequency domain
concepts are used there exists the potential for
generalization and improvement by using the
fractional transform. For instance, the theory of
optimal Wiener filtering in the common Fourier
domain can be generalized to optimal filtering in
fractional domains, resulting in smaller mean
square errors at practically no additional cost.
The well-known result stating that the far-field
diffraction pattern of an aperture is in the form of
the FT of the aperture can be generalized to state
that, at closer distances, one observes the frac-
tional FT of the aperture.

Applications

The fractional FT has been found to have several
applications in the area known as analog optical
information processing or Fourier optics. This
transform allows a reformulation of this area in
a much more general way than the standard
formulation. It has also allowed a generalization
of the Fourier transform and the notion of the

frequency domain: very central concepts in sig-
nal processing. Itis therefore expected to have an
impact in the form of deeper understanding or
new applications in every area in which the
Fourier transform plays a significant role.

More specifically. some applications which
have already been investigated or suggested in-
clude Fresnel diffraction, optical beam propaga-
tion and spherical mirror resonators (lasers).
propagation in graded index media. optical sys-
tems design, quantum optics (squeezed states),
phase retrieval, signal detection, pattern recog-
nition, radar, tomography. noise representation,
time-variant filtering and multiplexing. datacom-
pression. study of space/time-frequency distri-
butions. and solution of differential equations.
We believe that these are only a fraction of the
possible applications.

Optical implementation of the fractional FT

The fractional Fourier transform can be optically
implemented in a manner similar to that of the
common Fourier transform (Mendlovic and
Ozaktas, Lohmann). The fact that the fractional
FT can be realized optically means that the many
applications of the transform in signal process-
ing can also be carried over to optical signal
processing.

The fractional FT as a tool
for analyzing opfical systems

It has been shown that there exists a fractional FT
relation between the (appropriately scaled) opti-
cal amplitude distributions on two spherical ref-
erence surfaces with given radii and separation
(Ozaktas and Mendlovic, Pellat-Finet and Bon-
net). This result provides an alternative state-
ment of the law of propagation and allows us to
pose the fractional FT as a tool for analyzing and

WDM multiple-plane optical interconnections

describing a rather general class of optical sys-
tems. One of the central results of diffraction
theory is that the far-field diffraction pattern is
the FT of the diffracting object. It is possible to
generalize this result by showing that the field
patterns at closer distances are the fractional FTs
of the diffracting object.

More generally. in an optical system involv-
ing many lenses separated by arbitrary distances.
itis possible to show that the amplitude distribu-
tion is continuously fractional Fourier trans-
formed as it propagates through the system. The
order a(z) of the fractional transform observed at
the distance 7 along the optical axis is a continu-
ous monotonic increasing function. As light
propagates. its distribution evolves through frac-
tional transforms of increasing orders. Wherever
the order of the transform a(z) is equal to 4j+/
for any integer j, we observe the Fourier trans-
form of the input. Wherever the order is equal 1o
4j+2. we observe an inverted image. etc.
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