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The fractional Fourier transform is a mathematical operation that generalizes the well-known Fourier trans-
form. This operation has been shown to have physical and optical fundamental meanings, and it has been
experimentally implemented by relatively simple optical setups. Based on the fractional Fourier-transform
operation, a new space-frequency chart definition is introduced. By the application of various geometric op-
erations on this new chart, such as radial and angular shearing and rotation, optical systems may be designed
or analyzed. The field distribution, as well as full information about the spectrum and the space–bandwidth
product, can be easily obtained in all the stages of the optical system.  1995 Optical Society of America
1. INTRODUCTION
The name of this paper was originally “Linear phase-
space representation based on the fractional Fourier
transform”; however, we changed the title because the
term phase space means different things to different
people. We did not want to create wrong expectations,
yet we feel that the main concept is still best explained
if we use the loosely defined term “phase space,” taking
into account that, in the text below, phase-space repre-
sentation means space-frequency representation.

Phase-space representations are useful tools for dual
time-frequency analysis, image compression, data pro-
cessing, and also designing and analyzing optical systems.
For optical implementations, the well-known Yv repre-
sentation considers light as a bunch of rays, although
each ray has a spatial location and direction (see Fig. 1).
These two parameters are represented as a coordinate in
the Yv plane. Thus the Yv chart has two axes, one for
presenting the spatial coordinate y and the other for the
angle of the ray’s propagation v, i.e., the derivation of
the first coordinate. Note that two-dimensional rays are
translated to a four-dimensional Yv chart. One of the
greatest disadvantages of such a representation is that
the ray model does not take into account the diffraction
effects; thus the output result is only a ray approxima-
tion of the light propagation.

Another type of phase-space representation is the
Wigner transform.1 The Wigner transform is a mathe-
matical operation applied to the input field distribution
f sxd:
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This transform represents the spatial and the spec-
tral properties of the function simultaneously, taking into
account diffraction phenomena as well. However, this
transform suffers from the fact that it is not linear (but
bilinear). Thus sometimes it is not convenient to use this
transform with linear systems.

Reconstruction of a function from its Wigner chart can
be done with
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However, there is an uncertainty factor of a phase co-
efficient when the inverse Wigner transformation is
performed.

For analyzing and synthesizing optical systems, the Yv

and the Wigner representations provide various promis-
ing properties. The elementary optical operators, free-
space propagation and multiplication with a lens, are
expressed as X-shearing and Y -shearing transforma-
tions (see Fig. 2), respectively, applied on the input field
displayed in one of these phase-space representations.
Thus these tools may overcome the intensive use of com-
plicated chirp integrals in the optical design process,
and both the field distribution and its spectrum can be
obtained immediately from the phase-space presentation.

Below we present a novel phase-space representation
that may be advantageous in various cases. We call this
representation the sr, pd chart. This representation can
be used for designing optical systems and provides prop-
erties similar to those of the Yv and Wigner representa-
tions. Also the field and its spectrum at different planes
can be easily extracted, and elementary optical systems,
such as free-space propagation or a lens, cause simple op-
erations that we call radial shearing or angular shearing
1995 Optical Society of America



Mendlovic et al. Vol. 12, No. 11 /November 1995 /J. Opt. Soc. Am. A 2425
Fig. 1. Schematic illustration of the Yv representation.

Fig. 2. Schematic illustration of X- and Y -shearing.

of the new representation. Because it is a linear repre-
sentation, it is easily reversible and it takes into account
diffraction effects. As is shown in Section 2, this repre-
sentation involves the fractional Fourier transform (FRT),
a linear transformation that generalizes the conventional
Fourier transform and that was recently introduced to
the optics community.

Section 2 gives the relevant details about the FRT.
Section 3 introduces the exact definition of the new rep-
resentation, and Section 4 gives some of its mathematical
properties, including the definition of the radial- and the
angular-shearing operations.

An important note that is related to digital image pro-
cessing and tomography applications of the FRT is the fol-
lowing. Recently, a new time-frequency analyzing tool,
the Radon–Wigner transform, was suggested2,3 and used
for the time-frequency representation of signals.4,5 With-
out being named, this approach led exactly to a chart
that contains a continuous representation of the FRT of
a signal as a function of the fractional Fourier order. As
we mention below, we call this representation the sx, pd
chart, and it may also be useful in optics because it ex-
plicitly shows the propagation of a signal inside a graded-
index (GRIN) medium.

2. FRACTIONAL FOURIER TRANSFORM
The FRT is a new mathematical tool to be used, for ex-
ample, in spatial filtering operations. The Fourier trans-
form of fractional order p is defined in such a manner that
the common Fourier transform is a special case with order
p ­ 1. An optical implementation of the FRT is provided
in terms of quadratic GRIN media or in a setup that in-
volves free-space propagation–lens–free-space propaga-
tion or lens–free-space propagation–lens.

There are two common definitions for the FRT. Both
definitions were proven to be identical, as shown in Ref. 6.
The first optical FRT definition7 – 9 is modeled as the vari-
ation of the field during propagation along a quadratic
GRIN medium by a length proportional to p, where p is
the FRT order.

The second definition is based on the Wigner distribu-
tion function.10 This is a complete signal description
that displays time and frequency information simul-
taneously.1,11

Both definitions were generalized through a transfor-
mation kernel, as illustrated in Ref. 12:

hF pfusxdgjsxd ­
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where Bpsx, x0 d is the kernel of the transformation, and
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Bpsx, x0 d ­
p

2 expf2psx2 1 x02dg
X̀
n­0

i2pn

2nn!

3 Hns
p

2p xdHns
p

2p x0 d , (4)

where Hn is a Hermite polynomial of order n, or, according
to the second definition,
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3. DEFINITION
The Fourier transform of fractional order p is defined in
a manner such that the classical Fourier transform is a
special case with order p ­ 1. An optical implementa-
tion of the FRT is possible with quadratic GRIN media
and bulk optics implementation (see Section 2 for further
details). The integral definition of the FRT is
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Fig. 3. Illustration of the sx, pd chart.

where p is the fractional order and C1 is a normalizing
constant that is given by
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One approach for presenting the different FRT orders
with respect to the GRIN definition is a graphical chart
that we call an sx, pd chart. For a one-dimensional ob-
ject this plot contains two axes. The vertical axis x is
the spatial one-dimensional light distribution upsxd of the
FRT order p of the original function u0sxd [as given in
Eqs. (6)]. The horizontal axis is the FRT order p (see
Fig. 3 for a graphical illustration). More explicitly, one
can write

F sx, pd ­ upsxd . (8)

As a result, in this plot all the fractional Fourier orders
of the original function u0sxd are calculated and displayed
in one chart. Another point of view is that the sx, pd
chart explicitly shows the propagated light distribution
within a GRIN piece.7 – 9 Note that the sx, pd chart pro-
vides several interesting applications that will be de-
scribed in a sequel to this paper.

The next step for obtaining what we call an sr, pd chart
is to perform a Cartesian-to-polar-coordinate transform of
the sx, pd chart. Here, all the fractional Fourier orders
of the function are drawn as angular vectors. Each FRT
order is drawn along the r axis in specific angular ori-
entation of f ­ pspy2d, where p is the fractional order.
Implicitly, one can write the sr, pd representation as

F sr, pd ­ upsrd . (9)

Figure 4 gives a graphical illustration of the sr, pd chart
representation. It is important to note that r may get
negative values. The r coordinate negative values are a
by-product of the sr, pd chart definition. However, dis-
cussing negative values for r does not conflict with the
polar-coordinate definition because

up12srd ­ ups2rd . (10)
Another note is connected with r ­ 0. This singu-
lar point contains no relevant information and should be
avoided when the chart is used. As a polar representa-
tion, the required spatial resolution for a lower r value
is higher. Thus, practically, a certain area of jrj , r0 is
not able to carry the necessary information (because of
the limited spatial resolution of every plot) and must be
avoided too. Figure 5 shows a schematic sketch of the in-
teresting area of the sr, pd chart. In this figure, Rmax is
the radius that confines the information of the fractional
plane of the input object. The sr, pd chart is our candi-
date for serving as a phase-space representation. It con-
tains full information about the object (along f ­ 0) and
about its spectrum [along f ­ spy2d]. Additional infor-
mation regarding the mixture space-frequency informa-
tion is given along with other values of f. The inverse
transformation is trivial:

upsrd ­ F sr, pd , (11)

and, for the object itself,

u0srd ­ F sr, 0d . (12)

In Section 4 several properties of the sr, pd chart are
analyzed and demonstrated.

Fig. 4. Illustration of the sr, pd chart.

Fig. 5. Sketch of the interesting area in the sr, pd chart.
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4. MATHEMATICAL PROPERTIES

A. Motivation
Let us recall from Lohmann10 that the FRT can be
achieved by the following two algorithms:

Algorithm 1:

usx0d ) W fusx0dg ­ W sx, nd ) RotfW sx, ndg

) Inverse Wigner ­ upsxd . (13)

Algorithm 2:

usx0d ) W sx, nd ) XshearfW sx, ndg ) YshearfW sx, ndg

) XshearfW sx, ndg ) Inverse Wigner ­ upsxd , (14)

where Rot is the rotation operation in the plane. The
shearing operations are defined as

Xshearf f sx, ydg ­ f sx 1 ay, yd ,

Yshearf f sx, ydg ­ f sx, y 1 axd . (15)

Because the lens operation in the Wigner plane is a Yshear

and a free-space propagation is an Xshear, the procedure
described in Eq. (14) is in fact a FRT operation.

Note that similar properties are relevant also for the
Yv diagram. The fact that the common optical opera-
tions (free-space propagation, lens, Fourier transform,
and FRT) affect the Wigner and the Yv in relatively
simple geometric transformations increased the use
of these charts for analyzing and synthesizing optical
systems.

Our motivation is to show that the sr, pd chart has
similar properties and might be more suitable than the
Wigner and the Yv charts for some applications.

B. Full Mathematical Definition
The explicit mathematical definition of the sr, pd chart is
based on Eqs. (6) and (10) as follows:

F sr, pd ­ upsrd ­ C1
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For obtaining the conventional Fourier transform
s p ­ 1d, one should examine the distribution on the
axis of f ­ spy2d on the sr, pd chart. More generally, to
obtain any other FRT order p, one should examine the
chart angular distribution at an angle of sppdy2.

Note that because the FRT definition is general enough
to deal with all types of signal (complex as well), the
information contained in the sr, pd chart is not restricted
to the type of signal.

C. Fractional Fourier Transform Operation
Assume a function usx0d and its sr, pd chart F sr, pd. The
sr, pd chart of uqsx0d [FRT of order q of usx0d] is

F qsr, pd ­ suqdpsrd ­ uq1psrd ­ F sr, p 1 qd . (17)

One can note that F qsr, pd is a spqdy2 angular rotation
of F sr, pd.
Thus one can conclude that performing a FRT means
rotating the sr, pd chart. Algorithm (13), based on the
sr, pd representation, is thus

usx0d ) F sr, pd ) RotfF sr, pdg

) Inverse sr, pd chart ) upsxd . (18)

D. Lens Operation
One of the most common optical operators is a multipli-
cation with a chirp function that represents a field dis-
tribution of u0sx0d that passes through a lens. It can be
written as u0sx0dexpsia0px0

2d when a0 is related to the
lens focal length f as

a0 ­
21
l f

, (19)

where a0 is a physical parameter given in units of inverse
square meters. Because the mathematical formulation
has no unit, in order to use the parameter a0 there we
define a ­ na0, where n ­ 1 sm2d.

Our interest is to find the effect on the sr, pd chart with
respect to the original chart F sr, pd. Let us denote the
new sr, pd chart as F lenssr, pd. From Eqs. (6) one can
note that
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For simplicity, let us denote
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From well-known trigonometric equations, one obtains
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Eq. (20) becomes
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where c is the quadratic phase factor outside the integral,
and uusrsd is the s2udyp FRT order of the input function
with a scale factor of s. As a result, one can note that
the effect of a lens on the sr, pd chart is a coordinate
transformation. Each point inside the original chart is
angularly rotated and radially scaled. The rotation u –f
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Fig. 6. Schematic illustration of the shear operation in polar
coordinates.

and the scale s are
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We call this coordinate transformation a radial-shearing
transformation. The motivation for this nickname is as
follows. Let us examine what a conventional X-shearing
is. Graphically, according to Eqs. (15), Fig. 6 represents
an X-shearing operation example. After transformation
to polar coordinates, Eqs. (15) become

u ­ tan21
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!
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A division of the first equation of Eqs. (26) by r cos f and
the second by r leads to
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By inspection one can note that Eqs. (25) and (27)
are exactly the same except that Eq. (25) relates to the
scaled radius of rs [Eq. (24)], and Eqs. (27) relate to rys
(Fig. 6). Those rotation and scale factors are called the
radial-shearing operation. Figures 7 and 8 are com-
puter simulations that illustrate this new transforma-
tion operated on a square and on a circle, respectively.
The radial-shearing transform was applied on two
simple sr, pd charts, a square and a circle. In Fig. 7(a)
the original square is shown. Figures 7(b) and 7(c) show
the transformed square according to regular X-shearing
and radial-shearing operations, respectively. Figure 8(a)
is a circled F sr, pd. Figures 8(b) and 8(c) show again the
regular X-shearing and the radial-shearing operations
applied over this chart.

The regular X-shearing operation applied over a square
turns the square into a parallelogram. When applied
over a circle, the X-shearing operation turns the circle
into an ellipse.

E. Free-Space Propagation
Another important optical operation is free-space propa-
gation. According to the Fresnel integral, a signal u0sx0d
that propagates through the free space along a distance
z is

uisx, zd ­

exp

√
i
2p

l
z

!
ilz

Z `

2`

u0sx0dexp

"
ip

lz
sx0 2 xd2

#
dx0 .
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One can note that the propagation integral is fully
equivalent to a multiplication of the spectrum of u0sx0d
by exps2iplzn2d, where n is the frequency coordinate.
Thus the free-space propagation is visualized as a rotation
by 90± of the sr, pd chart, then a lens operation with a ­
2mlz [where m ­ 1 s1ym2d because in our mathematical
formulations we want a to be without units] is obtained,
and then the sr, pd chart is rotated back by 290±. As
a result, because we have already proved that the lens
operation is analogous to an X-shearing operation and
is called radial shearing, the 90± rotation will force the
free-space propagation to be analogous to the Y -shearing
operation of the sr, pd chart. This operation is called an
angular-shearing operation.

F. Space–Bandwidth Product Calculation
So far we have investigated the effect of various optical op-
erations on the sr, pd chart. In this subsection we show
another piece of information that can be extracted from
the sr, pd chart: the space–bandwidth product (SW) of
the signal. In many cases, the knowledge of the SW is
critical for the analysis and the design of optical systems.
In general, obtaining the SW is relatively complicated and
contains space and frequency calculations. Using the ef-
fect of a lens and free-space propagation on the sr, pd
chart, one can obtain the field distribution and the SW
in every plane in the optical system. This ability gives
the engineer a powerful tool for designing and analyzing
optical systems.

The SW may be defined as

SW ­ sDF0dsDF1d , (29)

where DFp is the second moment of the function F sr, pd
at a specific value pspy2d, which is defined as

DFp ­

Z `

2`

r2jF sr, pdj2drZ `

2`

jF sr, pdj2dr

. (30)

Hence, after each optical element, the F sr, pd is recalcu-
lated (by the application of the radial- and the angular-
shearing and rotation operations), and with Eq. (29) the
SW can be easily estimated, that is, the SW can be cal-
culated at every plane of the optical system. The above
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(a)

(b)

(c)
Fig. 7. (a) sr, pd chart of a square, (b) its X-shearing transfor-
mation, (c) its radial-shearing transformation.

definition is for the SW of the signal itself. For finding
the SW of other FRT orders, one can use the following
equation:

SW s pd ­ sDFpdsDFp11d . (31)

In several optical systems it is not necessary that
SW s pd ­ SW s0d.

G. Linearity
The F sr, pd chart is linear, which means that for two (or
more) different signals u0sx0d and v0sx0d, the associated
F sr, pd charts may be added:

Ftotalsr, pd ­ aFusr, pd 1 bFvsr, pd , (32)

where Ftotalsr, pd refers to the chart of au0sx0d 1 bv0sx0d.
This property does not exist in the Wigner transformation
chart.
H. Mathematical Validity
In this subsection, several simple optical systems are
tested with the sr, pd chart in order to test the validity of
the representation. We intend to show that elementary
optical systems applied in cascade are equal to the rele-
vant radial- or angular-shearing operation applied several
times.

1. Two Lenses in Cascade
It was proved that a lens operation is a radial-shearing
operation. Thus two lenses in cascade are equal to two
radial-shearing operations applied one after the other.
Let us assume that a lens with coefficient factor of a1

is applied. It has a certain radial-shearing effect on the
sr, pd chart. Then a second lens with another coefficient
factor, a2, is applied, and again another radial shearing of
the sr, pd chart is obtained. Here we prove that applying
one lens with total coefficient factor of a1 1 a2 causes a

(a)

(b)

(c)
Fig. 8. Same as Fig. 7 but with an sr, pd chart of a circle.
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radial shearing that is equal to the overall radial shearing
obtained above in the two-stage operation.

A lens with a chirp factor of a1 1 a2 provides a radial
shearing of

u ­ tan21
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#
,
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#
2

1 1
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On the other hand, applying two lens operations in cas-
cade gives

sr, fd ) ss1r, u1d ,

ss1r, u1d ) ss2s1r, ud , (34)
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After applying simple trigonometric equations such as

sin2 b ­
tan2 b

1 1 tan2 b
, (36)

and after substituting them into Eqs. (35) one obtains
exactly Eqs. (33) from expressions (34) and Eqs. (35) when
s ­ s1s2.

2. Rotation
As was mentioned above, FRT’s may be obtained by
the use of a bulk optics system that contains lens–free-
space–lens operations. We intend to show that applying
the three relevant shearing operations provides exactly a
rotation10 of the sr, pd chart. This may be expected from
Subsection 4.C in which we show that a FRT means a
rotation of the sr, pd chart.

A regular shearing operation applied over x, then over
y, and again over x, with factors of A, B, and C, is
equivalent to

sx0, y0d ) sx0 2 Ay0, y0d ­ sx1, y1d ,

sx1, y1d ) sx1, y1 1 Bx1d ­ sx2, y2d ,

sx2, y2d ) sx2 2 Cy2, y2d ­ sx3, y3d . (37)

For obtaining a rotation by g, the shearing coefficients
should be

A ­ C ­ tan
g

2
, B ­ sin g . (38)

Now let us perform three modified shearing operations
with factors of a, b, and again a, assuming that the same
relation as in Eqs. (38) should be kept between the factors
of the modified shearing, i.e., between a and b.

A modified shearing operation that is performed three
times means that

sr, fd ) ss1r, u1d ,

ss1r, u1d ) ss1r, u2d ,

ss1r, u2d ) ss2s1r, u3d ,

ss2s1r, u3d ) ss2s1r, u4d ,

ss2s1r, u4d ) ss3s2s1r, u5d , (39)

where
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!
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#
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. (40)

Note that one performs the angular-shearing operation by
first rotating the chart by 90±, then applying the radial-
shearing operation, and finally again rotating the chart
by 290±. a is the radial-shearing factor, and b is the
angular-shearing factor. According to Eqs. (38) and to
the trigonometric relation of

tan
g

2
­

sin g

1 1 s1 2 sin2 gd1/2
, (41)

one can obtain that

b ­
2a

a2 1 1
. (42)

Because

1
tan u4

­ 2 tan u3 ,

sin u4 ­ 2 cos u3
,

1
tan u2

­ 2 tan u1 ,

sin u2 ­ cos u1
, (43)

and using the relations of Eqs. (40)–(42) and the trigono-
metric relation
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tansg1 1 g2d ­
tan g1 1 tan g2

1 2 tan g1 tan g2

, (44)

one obtains that

u5 ­ f 2 tan21 2a

1 2 a2
,

s3s2s1r ­ r; (45)

thus the radius r is unchanged, and the angle is changed
by 2 tan21s2ay1 2 a2d, which is exactly the definition of
rotation.

5. CONCLUSIONS
A novel, FRT-based, phase-space representation has been
introduced. It was suggested as a powerful tool for de-
signing and analyzing optical systems. The representa-
tion was coined the sr, pd chart. This stage of drawing
the sr, pd chart involves several heavy calculations, but
after this stage, the design information is complete, and
in order to design or to analyze the optical system, the
calculations that one should perform are negligible, be-
cause the shearing operation can be ultrafast when cal-
culated by the computer (the amount of calculations is
much smaller compared with the amount of calculations
involved in algorithms such as fast Fourier transforms).

The system we design or analyze may consist of ele-
mentary optical elements such as free-space propagation,
lenses, GRIN media, etc. Each such element causes a
simple operation on the sr, pd chart. The operation is a
radial or an angular shearing. The calculation time re-
quired for obtaining such an operation is negligible. Us-
ing the inverse formula [Eq. (12)], one can easily obtain
the field distribution at every stage of the optical system.
Moreover, at each plane, the SW or the total energy of
that plane can be calculated. All this can be done by the
use of only the sr, pd chart.

Because the novel phase chart representation is linear,
is reversible, takes into account the diffraction effects, and
delivers such useful information required for optical sys-
tem design and analysis, we believe it can be a commonly
used tool in electro-optics.
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