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Abstract 

We form optical systems by using only free space portions and cylindrical lenses, and consider these systems as 
anamorphic fractional Fourier transformers. We dynamically adjust the transform order, scale factor and field curvature of 
both orthogonal dimensions of anamorphic fractional Fourier transformation by just changing the focal lengths of cylindrical 
lenses used in the proposed setups. Here, we also consider two approaches for implementing cylindrical lenses with 
dynamically adjustable focal lengths. There may also be some other methods to obtain cylindrical lenses having adjustable 
focal lengths which can successfully be used in these proposed setups. 

1. Introduction 

In this paper, we proposed centered optical systems composed of portions of free space with cylindrical lenses in 
between, under the standard approximations of Fourier optics [l], and considered these systems as anamorphic fractional 
Fourier transformers. We assume that, except for the focal lengths of the lenses, all the other parameters, such as the 
wavelength of input light and the lengths of free space sections, are fixed, so that we are able to dynamically adjust the 
parameters of anamorphic fractional Fourier transformation by changing only the focal lengths of the cylindrical lenses. 

Up to this time, in a given setup which is proposed as fractional Fourier transformer, the desired fraction is obtained by 
playing not only with the focal lengths of lenses but also with the distances of free space portions. In this paper, we assume 
that only the focal lengths of cylindrical lenses are subject to changes. Thus, we are able to adjust the parameters of 
anamorphic fractional Fourier transformation in real time without changing the optical setup configuration. 

Both being dynamically adjustable and anamorphic, dynamically adjustable anamorphic fractional Fourier transformation 
can find its place in most of the applications. Some of these applications include time-variant or space-variant filtering, and 
signal detection [2-51, time-variant or space-variant multiplexing, and data compression [2], correlation, matched filtering, 
and pattern recognition [6,7], study of time-frequency or space-frequency distributions [2,8,9], and phase retrieval [lo,1 I]. 

The notion of introducing another degree of freedom to fractional Fourier transformation by use of anamorphic optics is 
presented in Ref. [ 121. In this paper, we control the tmnsform order, scale factor and the field curvature of both orthogonal 
dimensions (namely x and y) of the anamorphic fractional Fourier transformation by just changing the focal lengths of the 
cylindrical lenses used in a given setup. With this motivation in mind, in Section 2 of this paper we defined anamorphic 
fractional Fourier transformation and related it to quadratic-phase systems. In Section 3, we proposed three optical setups. 
The first one is the simplest one but has limited control on the parameters of the anamorphic fractional Fourier transform. 
However, the third one has all the desired control on the parameters of the transform at the cost of increased complexity. 
Lastly, in Section 4, two approaches for implementing the cylindrical lenses are considered. In both methods, the focal 
length of the lenses is dynamically adjusted using hybrid opto-electronic devices. The first method is based on a liquid 
crystal active lens while the second one uses acoustooptic interaction in crystals. There may also be some other methods to 
obtain cylindrical lenses having adjustable focal lengths and suitable for our optical systems. 
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2. Anamorphic fractional Fourier transformation 

2.1. Definition 

The ath order fractional Fourier transform (FUG)(u) of the function G(u) is defined for 0 < Ial< 2 as 

(s”g)(u) =jrn B,(u,li)g(u’)dl/, 
-CC 

B,(u,u’) = 
exp [ - i( d/4 - W)] 

lsin41”2 
exp[ irr( u2cot+ - 2uJcsc4~ + J2cot+)], (1) 

where 

C$ = a7r/2 (2) 

and 8 = sgn(sin+). The kernel is defined separately for a = 0 and a = + 2 as B,(u,l/) = 6(u - J) and B, 2(~,u’) = 6(u 
+ u’) respectively [ 131. The definition is easily extended outside the interval [ - 2,2] by noting that F’j+“g 2 F’“4 for any 
integer j. Both u and u’ are interpreted as dimensionless variables. 

Some essential properties of the fractional Fourier transform are: (i) It is linear. (ii) The first order transform (a = 1) 
corresponds to the common Fourier transform. (iii) It is additive in index, 9‘TP* 4 = P--nlfaz 8. (iv) The kernel for the 
-nth order transform is the conjugate of the kernel for the ath order transform: B,*(u,u’) = B_,(u,u’). Other properties 
may be found in Refs. [2,8,9,13--171. 

By allowing for the possibility of a residual quadratic-phase term and a scale factor, the transformation kernel of 

fractional Fourier transformation in Eq. (1) can be generalized as 

I 

cot+ - 2% csc 4 + x’* cot+ , 

with +=a~/2. This kernel maps a function p(x/s) into K’exp(i~x*/hR)p,(x/sM), where p,(v) is the ath order 
fractional Fourier transform of p(.>, and K’ is a new constant. In Eq. (3), s is the unit in which n and x’ are measured, 
M > 0 is referred to as the scale factor associated with the transformation and R is the radius of the spherical surface on 
which the scaled fractional Fourier transform is observed. We call $ = arr/2, M and R as the parameters of the fractional 
Fourier transformation. We have determined the differential equations governing 4, M and R, and shown the relationship of 
these parameters to the parameters of a Gaussian beam in Ref. [ 181. We see from Eq. (3) that the pure mathematical form of 
the fractional Fourier transformation in Eq. (1) is obtained when we set s = 1, M = 1 and R = 00. 

We can further generalize the fractional Fourier transformation definition to anamorphic fractional Fourier transformation 
definition by extending the kernel in Eq. (3) to two-dimensional systems, i.e., 

[’ (“’ 
I 

h( x,y,x',y') = K exp( is-x2/hR,) exp ” - COQiX - 2: csc4, + g2 cot+, 
Sf IV,’ x 

, 

cot+Y - 2$ csc4, + y2 cot4, , 
Y 

(4) 

with 4, = a,v/2 and +r = a,rr/2. As we see from this expression, +,, M, and R, are the parameters of anamorphic 
fractional Fourier transformation along one orthogonal dimension (namely x), and +,, M, and R, are the ones along the 
other dimension (namely y). Thus, a total anamorphic fractional Fourier transformation consists of six parameters. 

2.2. Relationship with quadratic-phase systems 

Thin lenses, arbitrary sections of free space (under the Fresnel approximation), quadratic graded-index media and any 
combinations of these belong to the class of quadratic-phase systems. In particular, the proposed centered optical systems 
that we consider in this paper also belong to this class. We characterize the members of quadratic-phase systems through 
linear transformation of the form [ 19-231 

(5) 
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and generalize this transformation to two-dimensional systems as 

where K is a complex constant, and (Ye, p,, yX, CX~, /?, and 7, are real constants. We see from Eq. (6) that K has no effect 
on the resulting spatial distribution, and as far as the spatial distributions of wave fields are concerned, a member of the class 
of two-dimensional quadratic-phase systems is completely specified by the six parameters cy,, /3,, -yX, ay, p, and 7,. 

An alternative way of completely specifying a member of the class of two-dimensional quadratic-phase systems is 
through its transformation matrix [19-231 

A, 0 B, 0 YJP, 0 l/P, 0 

0 
YY/PY 

0 l/P, 

-P, + ff*r,/P, 0 

I 

ax/P, 0 ’ 
(7) 

0 -P, + QYYY/PY 0 “Y/P, 

with A,D., - B,C, = 1 and AyDy - ByCy = 1. If we know the kernel of a system, we can uniquely determine its 
transformation matrix or vice versa. There are some reasons for specifying the systems with their transformation matrices. If 
several systems each characterized by their transformation matrices are cascaded, the transformation matrix of the overall 
system can be found by multiplying the matrices of the cascaded systems [19,21,22]. Then, determination of the complete 
specification of the overall system boils down into elementary matrix multiplication. We can then uniquely determine the 
kernel of the linear transformation in Eq. (5) whenever we are interested in the transformation of wave fields. The 
transformation matrix defined above can also be viewed as the ray matrix employed in ray optical analysis [ 1,201. 

Specifically, the transformation kernel for a free-space propagation of length d is expressed as 

L,(-x¶Y, x’ > Y’ ) = &ce exp[ irr( x - x’)‘/hd] exp[ irr( Y - y')'/Ad] , 

and its corresponding transformation matrix is 

(8) 

(9) 

Similarly, the kernel for a cylindrical lens with focal length f, along the x direction is 

hx,ens(~,~,~‘,~‘) = Kxtens 6(x-x’)exp( -irx’/Af,) 

with its transformation matrix 

Tx,e&,) = [ _ iAfX i ; ;]> 

and the kernel for a cylindrical lens with focal length fy along the y direction is 

(10) 

(11) 

~y,ens(~.~,L~‘) = Ky,ens 6(y-y’)exp(-iPy2/Afy) (12) 
with its transformation matrix 

(13) 

A large number of papers deal with the fractional Fourier transform in an optical context. For instance, see Refs. 
[4,8,15- l&20,23-30] and the references therein. It is shown in Refs. [I 8,201 that any quadratic-phase system can always be 
interpreted as a fractional Fourier transforming system. When we generalize this to two-dimensional systems, we say that 
any two-dimensional quadratic-phase system can always be interpreted as an anamorphic fractional Fourier transforming 
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system. This fact is clearly seen when we compare the anamorphic fractional Fourier transformation kernel in Eq. (4) with 

the transformation kernel of the quadratic-phase systems in Eq. (6). We see from these expressions that the kernel in Eq. (4) 

is another form of the one in Eq. (6) with (Y, = cot+Js:Mz + l/AR,, p, = csc~,/s~lll,, 3;, = cot$Js$, (Ye = 
cot&,/s:Mz + l/AR,, p, = csc&,/s~M, and 7, = cot+,/s;. We can also find the transformation matrix associated with 

the anamorphic fractional Fourier transformation through Eq. (7) as 

where 

and 

0 

1 
M, cosd+ ’ 

0 1 s$M, sint#Y, ’ 
c= 

- sin 4,/s: M, + M, cos 4/R, 0 

0 - sin &,/s;M, + M, cos 4,/R y, 
I 

B= 
cos+,/M, + szMx sin+JhR, 0 

0 
I 

cos~,/M, + s:M, sin&/hR, ’ 

(14) 

(15) 

(16) 

(l-3 

(18) 

3. The proposed optical setups 

The proposed setups are composed of sections of free space with cylindrical lenses in between. In the analysis of optical 
setups, we use the matrices in Eqs. (9), (11) and (131, and obtain the overall transformation matrix representation of the 
setup through ordinary matrix multiplication. After comparing it with the matrix in Eq. (141, we find the parameters of the 
anamorphic fractional Fourier transformation in terms of the optical setup parameters. We are able to obtain anamorphic 
fractional Fourier transformation by just inserting cylindrical lenses in optical setups. We assume that only the focal lengths 
of cylindrical lenses are subject to changes, so that we analyze the functional dependence of the parameters of anamorphic 
fractional Fourier transformation on the focal lengths of cylindrical lenses. 

In these proposed optical setups, our primary objective is to change both a, and aY from -2 to 2. In other words, we 
want to have any transform order we desire along each orthogonal dimensions of the anamorphic fractional Fourier 
transform. To achieve this, we propose the first optical setup which is the simplest one we can think of. In this setup we do 
not have any control on scale factors and field curvatures (i.e., M,, M,, R, and Ry). However, at each orthogonal 
dimension we may want to scale the fractional Fourier transform as we desire, and/or want to observe the fractional 
transform on a predefined curved surface. For this reason, we propose the second setup (which has some control on M,, My, 

R, and R,) and the third setup (which has all the desired control on M,, M,, R, and R,) at the cost of increased 
complexity. 

3.1. Setup I 

We intend to obtain different fractional orders at different principal directions (namely x and y directions). As we can 
control only one direction with a single cylindrical lens, we need at least two cylindrical lenses corresponding to each 
direction. Then, the simplest optical setup that we can think of as an anamorphic fractional Fourier transformer is shown in 
Fig. 1. We get the transformation matrix T, of the system through 

(19) 
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input plane 

Fig. 1. The first proposed optical setup. Cylindrical lenses are denoted by solid arrows, and their focal length directions are indicated above 
them. 

When we compare this matrix with the one in Eq. (14), we find the parameters of the anamorphic fractional Fourier 
transformation in terms of the optical setup parameters as 

(20) 

(21) 

(23) 

We want to assign both to a, and a,, any value between -2 and 2 by changing only the focal lengths J; and f, of the 
lenses. When we reexpress Eqs. (20) and (21) as 

SC tan&,-A(dr +d,) ’ (27) 

we can obtain the corresponding f, and fy values for each +X and 4, values between -s- and v (which corresponds to 
having a, and a., between -2 and 2). As a result, we can assign both to a, and aY any value between -2 and 2 by 
choosing f, and fy values appropriately. However, in this case, we do not have any control on M,, M,, R, and R,. Their 
corresponding values for each a, and ay pair can be found from Eqs. (22)-(25). 

3.2. Setup II 

We may want to have some control on M,, MY, R, and R, while assigning to a, and a,, any value between -2 and 2. 
For this reason, we added two more cylindrical lenses to the setup in Fig. 1, and obtained the one in Fig. 2. We get the 
transformation matrix T2 of this system through 

T2 =LD,)Ty,,n,(f,2) T,,ens(fxZ)Tf,ee(d*)Tylens(fyl) T,,,“,(f,,)T,,,(d!), (29 
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Fig. 2. The second proposed optical setup. Cylindrical lenses are denoted by solid arrows, and their focal length directions are indicated 
above them. 

and compared this matrix with the one in Eq. (14). We find the parameters of the anamorphic fractional Fourier 
transformation in terms of the optical setup parameters as, 

tans = _1.4(’ -4/L*) + (1 - WLl)(d2 + 4 - dzddfxz) 
x 2 (1 - dz/fr,)(l - 4/L,) - 4/f,, ' 

(29) 

(30) 

(3’) 

(32) 

(33) 

1 A mn% (1 - dJf,l)/fy2 + l/f71 -= 
RY 4 M," (1 - 4/fy,)(l -4/f,,) -4/f,, . (34) 

This time, we are allowed to play with four parameters, namely the focal lengths f,,, f,,,, fx2 and fy2 of the cylindrical 
lenses. Then, what we can achieve with the setup in Fig. 2 can be summarized as; 

(i) We can assign to a, and ay any value between -2 and 2, and can fix both M, and MY to a value M which remains 
unchanged for all a, and ay pairs. However, in this case we do not have any control on R, and R,. 

(ii) Similarly, we can assign to a, and a,, any value between -2 and 2, and this time fix both R, and R, to a value R 
which remains unchanged for all a, and a,, pairs, at the cost of having no control on M, and M,. 

(iii) We again can assign to a, and ay any value between - 2 and 2, and this time satisfy both M, = MY = M and 
R, = R, = R, but in this case M and R take different values for different a, and ay pairs. 

3.3. Setup III 

We may want to have all the desired control on M,, M,,, R, and R, while assigning to a, and aY any value between 
- 2 and 2. As the number of the parameters that we have to control is six, by adding two more cylindrical lenses with focal 

lengths f,s and fy3 at the output plane of the setup in Fig. 2 (see Fig. 3), we can satisfy all the requirements on the 
parameters. To see this, let us concentrate on the previous setup. At the first item of the previous setup we said that, by 
playing with four focal lengths we can set a,, ay, M, and MY to any value we like. To be more concrete, for given 

+X = a,rf/Z &, = a,a-/2, M, and IV,,, we find from Eqs. (29)-(32) that we have to choose the focal lengths as 

( s:/h) d, M, sin #X - d, d, M, cos +x 

fx’= (d, +d,)M, COSTS-((sf/A)M, sin+X+dd, ’ (35) 
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input plane OUtpUt plane 

Fig. 3. The third proposed optical setup. Cylindrical lenses are denoted by solid arrows, and their focal length directions are indicated above 
them. 

($/h)d,M, sin& - d,d, M, COST, 

‘I= (d,+d,)M,coscp,-(s:/h)M, sin+,+d,’ 
(36) 

fX2 = 
d,d, 

d,M, COSC$, - (s:/A)M, sin4X + d, + d, ’ (37) 

and 

fy2 = 

d,ds 

dlMy cos&, - ($/A) My sin+, + d, + d, . (38) 

In that case, we do not have any control on R, and R,, and their corresponding values can be found from Eqs. (33) and 
(34). Now, looking at the setup in Fig. 3, with the help of the two lenses added at the end of the previous setup, we have the 
ability to set R, and R, to the desired ones R,, and R,, by choosing the focal lengths fX3 and fY3 as, 

l/f.3 = l/R, - l/R,, (3% 

and 

Vfy3= '/Ry- 1/K,,. (3 
Then, with the setup shown in Fig. 3, we can set all the parameters of anamorphic fractional Fourier transformer to their 
desired values by choosing the focal lengths satisfying the relations in Eqs. (35)-(40). In particular, when we dynamically 
adjust fX3 = R, and fy3 = R,, we observe the anamorphic fractional Fourier transformation (with adjustable fraction and 
scale in both dimensions) of the input function on the planar surface at the output side. 

4. Implementations of a cylindrical lens with dynamically adjustable focal length 

In this section, the implementation aspects of the proposed system are discussed. The problematic device that determines 
the performance of the system is the dynamically adjustable focal length cylindrical lens. 

Reconfigurable optical devices such as dynamically adjustable focal length lenses, are widely in use in various 
applications such as auto-focus and zoom-focus image capturing systems. Variable focus lenses can be implemented 
mechanically [31,32]. Several types of such lenses whose focal length can be controlled electronically have been proposed. 
Electrooptic effects are another option for modulating the refractive index distribution of a crystal [33]. Various types of 
variable focus lenses based on refractive index modulation of liquid crystals by an electric field have also been proposed 
[34-361. 

With respect to the system proposed in this paper, we suggest to use a liquid crystal active lens for implementing the 
dynamically adjustable focal length leans. In this lens, a phase modulator is attached on one side of a conventional lens. The 
phase modulator should be a transmission type liquid crystal panel having a phase modulation capability of 27r rad. The 
addressing of the .panel is done electronically based on an electrode matrix. The number of electrodes in each direction is 
represented by N. When the phase modulator acts as a lens with a focal length f, it should imitate a phase distribution: 

c$(Xi) = 35, (41) 
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when xi is the lateral location of pixel i in the panel and h is the wavelength of the light. The phase difference of adjacent 

pixels is thus [36]: 

(42) 

where a is the pitch of the panel. 
A major problem of these panels is the reconfigurable rate that commonly is around the TV rate (50 Hz). In some cases, a 

much faster solution is needed. For those cases we look at an alternative solution that is faster but works in pulses. Here, we 

considered a method of simulating cylindrical lenses with dynamically adjustable focal lengths using the interaction of 
acoustic and optical waves within a medium. A closer look at acoustooptics shows that as far as the acoustic wave is 
concerned, the diffraction angle of the optical wave is only a function of the frequency of the acoustic wave when we fix 
acoustic wave amplitudes [37-401. Then, at an instant of time, we can adjust the frequency distribution of the acoustic wave 
so that we can obtain the diffraction angle of the optical wave to be changing linearly with location in the optical aperture, 
which is equivalent to a cylindrical lens at that instant. In order to face with the index profile which simulates a cylindrical 
lens, we are forced to use pulse light. Here, we assume that the light wave with a small enough pulse width is much faster 
than the acoustic wave so that the acoustic wave, hence the refractive index profile, is assumed to be frozen during the pulse. 

With this motivation in mind, our primary objective was to obtain a lens with a minimum achievable focal length so that 
we intend to have diffraction angles for the optical wave as large as possible. This necessitates the use of acoustic signals 
having larger bandwidths. This fact implies the use of birefringent devices because it is stated in Refs. [37-401 that one can 
obtain larger bandwidths by birefringent Bragg diffraction (when incident optical wave refractive index ni is different from 
diffracted optical wave refractive index n,) compared to isotropic Bragg diffraction (when incident optical wave refractive 
index ni is identical to diffracted optical wave refractive index nd>. The complete explanation of birefringent Bragg 
diffraction requires consideration of the parametric interaction process [38]. 

We should note that the considerations of this section constitute theoretically motivated suggestions as to how lenses with 
dynamically variable focal lengths can be realized. However, the setups proposed in the previous section remain valid 
regardless of the method used to realize such lenses. 

5. Conclusion 

We know from Ref. [20] that any quadratic-phase system can always be interpreted as a fractional Fourier transforming 
system. As any combinations of thin lenses and arbitrary sections of free space are considered as quadratic phase systems, 
we proposed three optical systems which consisted of portions of free space with cylindrical lenses in between, and 
considered these systems as anamorphic fractional Fourier transformers. In these setups we achieved the transformers to be 
anamorphic by choosing the lenses to be cylindrical. In both of the proposed setups, rather than changing their system 
configurations completely, we were able to dynamically adjust the transform order of both orthogonal dimensions of 
anamorphic fractional Fourier transformation by just changing the focal lengths of the cylindrical lenses. The first setup was 
the simplest one, but other than the transform order, we could not have any control on the scale factor and the field curvature 
of both orthogonal dimensions of the transformation. However in the third setup, at the cost of increased complexity, we 
were able to adjust all the parameters (namely the transform order, scale factor and the field curvature) of both orthogonal 
dimensions by changing the focal lengths of the cylindrical lenses appropriately. 

In the last section of this paper, we considered two methods of simulating a cylindrical lens with dynamically adjustable 
focal length. One of the methods is based on liquid crystal active lens while the other is based on acoustooptic interaction in 
crystals. However, in obtaining cylindrical lenses with variable focal lengths, there may also be some other methods easier to 
implement, yet suitable for our proposed optical systems. 
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