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Abstract—For time-invariant degradation models and sta- cannot be expressed as a convolution and cannot be realized
tionary signals and noise, the classical Fourier domain Wiener py filtering in the conventional Fourier domain. We can still

filter, which can be implemented in O(X log V) time, gives the - gael the optimal Fourier domain filter, but this operation
minimum mean-square-error estimate of the original undistorted

signal. For time-varying degradations and nonstationary pro- Wi”“ not give the most satisfactory result. (V\{h?n we speak
cesses, however, the optimal linear estimate require3(N?) time  Of “filtering in the conventional Fourier domain,” we simply

for implementation. We consider filtering in fractional Fourier = mean multiplying the Fourier transform of a function with a
domains, which enables significant reduction of the error com- fjjter function in that domain.)

pared with ordinary Fourier domain filtering for certain types . . L ap )
of degradation and noise (especially of chirped nature), while Recently, we have discussed how various time-variant op

requiring only O(N log N') implementation time. Thus, improved  €rations can be performed by multiplying with a filter function
performance is achieved at no additional cost. Expressions for in a fractional Fourier domain [2], [3]. A related concept
the optimal filter functions in fractional domains are derived, (“swept-frequency filters”) has been discussed by Almeida [4].
and several illustrative examples are given in which significant rjirering in a fractional Fourier domain can be implemented
reduction of the error (by a factor of 50) is obtained. L . . . .
as efficiently as filtering in the conventional Fourier domain
since the fractional Fourier transformation has a fast digital
algorithm [5], [6], and can also be optically realized much like
N MANY practical applications, desired signals are dethe usual Fourier transform [7]-[12]. The problem considered
graded by a known system and/or by a noise term. i this paper is to minimize the MSE for arbitrary degradation
is desirable to apply an estimation operator to the resultingodels and nonstationary processes by filtering in fractional
(observed) signals to minimize the effect of degradation a@urier domains. It will be shown in Section V that for
noise. The problem is then to find the optimal estimationoise and degradation models of a chirped nature, much
operator with respect to some design criteria that removesgphaller MSE’s are obtained as compared with filtering in the
minimizes these degradations. Appropriate solutions to thisnventional Fourier domain at about the same computational
problem depend on the observation model and the desighst. We also note, however, that since we present a general
criteria used, the prior knowledge available about the desirgfbthod and since the class of fractional Fourier filters is by
signal, and the degradation process and/or noise. The m@sfinition a broader class than conventional Fourier domain
commonly used observation model, which is also easy fters, we expect that certain problems involving time-varying
handle mathematically, is degradations and noise other than those given in our examples
y="Hz)+n should also-ber.]efit from this method [4.6]. o .

As a motivation for the concept of filtering in fractional
where(-) is a linear system that degrades the desired sigri@urier domains, we first note that signals with significant
x, andn is an additive noise term [1]. A frequently used desigoverlap in both the space and frequency domains may have
criteria is the mean square error (MSE). We consider a lindittle or no overlap in a fractional Fourier domain. To un-
estimation operatog of the form derstand the basic idea, consider the simple example shown

= Gy). in Fig._ 1, wr_\ere Wigner distribution_s of a desired signal and
undesired distortion term are superimposed on the single plot.
For a time-invariant degradation mod&l with stationary \We observe that they overlap in both the zeroth and first
processes and n, the linear operatoG,,; that minimizes domains (consider the projections onto theand f axes),
the error corresponds to the classical optimal Wiener filtéuit they do not overlap in the 0.5th domain. (The concept
[1]. This operator is time-invariant and can be expressed @kfractional Fourier domains was developed in [2] and [3]
a convolution and implemented with a multiplicative filter irend will be reviewed in Section Ill). Thus, we can eliminate
the conventional Fourier domain. For an arbitrary degradationdesired signal components by using a simple unit amplitude
model or nonstationary processes, the resulting optimal recowask in the 0.5th domain.
ery operator will not, in general, be time-invariant and, thus, The remaining sections of the paper are organized as fol-
Manuscript received February 24, 1995; revised October 24, 1996. ﬂ%""s- In Sgctlon I, we define the prOb'?m and dI§CUSS related
associate editor coordinating the review of this paper and approving it fatork. We introduce the concept of fractional Fourier transform
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t,=f First, consider the most general linear estimate of the form
t ly P _ =~ ! ! !
ast )= [ g(t.t)yt')dt. )

JEAERN Our design criteria is the mean square error (MSE), which is
? . defined as
. N NOISE ) o
‘ o; = El||lz — 2] ©)

N tp =t where E[-] denotes the expectation operator, dn(l denotes
N SIGNAL the L, norm:

ol = [ atta*(t) at. @
This definition (3) of the MSE is appropriate for nonstationary
signals whose functional representations are square integrable
(that are of finite energy). (For stationary processes, the MSE
may be defined as the expected value of the magnitude squared

filtering scheme. In Section VI, we address the discrete-tingé the difference term [1].) _ _ o
problem and derive the solution. The remainder of the paperTh€ recovery operator kernel is the solution to the mini-
constitutes concluding sections. mization problem

Fig. 1. Noise separation in theth domain.

AN - 2
Il. PROBLEM DEFINITION AND RELATED WORK Gopr(t, 1) = arg IO (5)
In this section, the mathematical definition of the problemnat is, it is the function that minimizes the MSE. The solution
will be given and our approach to its solution will be foryg this problem, with the linear estimate defined in (2), is

mulated. The solution for the case of a linear time-invariaghown. It is the solution of the following equation [13]:
degradation model with stationary processes is the well-known

optimal Wiener filter! which can be implemented efficienty 5 (t,¢) = /~—|—oog Ry (B 1) dE .
with the fast Fourier transform. For time-varying degradations ~ 7"’ o RN ’

and/or nonstationary signals and noise, the optimal recovefN. pove equation can be solved numerically to obtain

operator will, _in genergl, b? “”’.‘e varying. i reviewin%he kernel of the optimal linear recovery operator. However
below some time-varying filtering algorithms that are generalgpplication of this estimation operator [cf. (2)] on a given

based on mixed time-frequency (TF) signal representanons(jlistorted and noisy signal would requié N'2) time, whereN

is the time-bandwidth product of the signals. In this paper, we

A. Problem Statement restrict our estimate so that it corresponds to a multiplication

Our signal observation model can be written as with a filter function in thesth fractional Fourier domain. This
o0 o estimate can be written in operator notation as
o) = [ e tate) d e ® o
—c0 T=F"%g -F*y)) (6)

N :
whereh(t, ) is the kernel of the degradation model, ard) where F¢ is the ath-order fractional Fourier transformation

is the additive noise term. We W'” assume that as a prl%rperator, andy is the multiplicative filter. We note that for
knowledge, we know the correlation functions

a = 1, this estimate corresponds to filtering in the conventional
R..(t,t) = E[z()z* (t)], Fourier domain. With this form of estimation operator, the
Ryn(t,t) = E[n(t)n* ()] minimization problem considered in this paper can be defined

of the input signal (desired signat) and the noise. We wiill as

further assume that the noise is independent of the iaput Gopt = Y min o2 @)
and it is zero mean for all time, i.e£[n(¢)] = 0 V¢ and that 7

we know the degradation model. Under these assumptions, wigere o2 is as defined in (3), and is given by (6).

can also find the cross correlation function The class of fractional Fourier domain filters is a subclass
of the class of all linear operators; therefore, the linear filter
Ry (t,t) = Elz(t)y* ()] € clas P )
we find will not correspond to the global optimum among
of the processes andy and the correlation function all linear operators. However, it is a much broader class than
time-invariant) Fourier domain filters, and in many problems
Ry, (1.8) = Ely(thy ()] (time-invariant) FoL . Yy prot
involving time-varying degradation models and nonstationary
using (1). processes, it is possible to obtain smaller MSE’s when com-

1This term is sometimes extended to refer to the more general case, but%ed _W'th. f”te”ng in the Convem'onal_ Fourier domain. This
use it to refer to the time-invariant case only. reduction in MSE comes at no additional cost because the
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resulting filter can be implemented @(N log N) time, just The definition is easily extended outside the intefvat, 2]
like the ordinary Fourier transform [5], or can be implementesince F* is the identity operation and the transform is additive
optically with the same kind of hardware as the ordinary index Fe1 Fe2 f = Faitaz £ [21]. Other essential properties

Fourier transform [7]-[12]. are the following:
i) Itis linear.
B. Related Work ii) The first order transforn{a = 1) corresponds to the

There are a variety of time-varying digital signal pro- .. common l_:ouner transform. .
cessing algorithms based on mixed TF signal represental”) Itis an_unltary transform_so that it preserves norms.
tions [14]-[19]. A conceptually simple time-varying estimatiofther properties may be found in [2], [4], [9], [11], [20], [21].
method consists of masking some regions of the signals’ TFAN important property of fractional Fourier transform is its
representations. However, this process is, in general, highgfation to the Wigner distribution. The Wigner distribution
nonlinear [15], [17], resulting in difficulties especially when'V=(t, f) of the signalz is defined as [36]

dealing with multicomponent signals. There are linear estima- 00 . . '
tion operators based on linear time-frequency representations, W..(¢, f) = / a:(t + 5)3:* (t - 5)(3_]27”“7 dr. (9)
but their performance generally depends on the window and —oo

wavelet used. Recently, another algorithm based on the Wigieg,, pe interpreted as the signals TF energy distribution. It
distribution has been proposed [19]. TF projection and TE \vell known that the projection oV, (, f) onto thet axis

subspaces are the basic ideas behind it. It overcomes Jag.s ihe magnitude squared of the time domain representation,
nonlinearity problem as well as the problems of choosi

; L X Nehd the projection onto thg axis gives the magnitude squared
wavelet and window. However, no efficient algorithm for it the frequency domain representation of the signal
implementation has yet been proposed. The examples given In

the above works have been limited to noise elimination, and [~ e
the performance of the algorithms for time-varying degrada- /_Oo Walt, f)df = |x(t)|2,/_oo Wa(t, f)dt = |ar ().
tion models have not been exploited. (10)
A generalization of the above involving fractional transforms
[ll. FRACTIONAL FOURIER TRANSFORM 's [2], [37]
In this section, we review the concept of fractional Fourier {RW(t, O]} ta) = |7a(ta)? (11)
transforms and its relation to TF representations, especially
the Wigner distribution. Its relation to the Wigner distributiotwhere R, is the Radon transform operatoR, takes the
function and its properties form the basis of our approach i@egral projection of the two dimensional functié#, (¢, f)
time-varying filtering. onto an axis making anglke = ar /2 with the ¢ axis. We will
The fractional Fourier transform was defined in [20] antefer to this axis{, axis) as thesth fractional Fourier domain
[21]. Several applications of the fractional Fourier transfordfig. 1). Theto axis is the usual time domaif) and thet,
have been suggested or explored to varying degrees. Thasi is the usual frequency domajin Notice that (10) is a
include optical diffraction and beam propagation, and opticapecial case of (11).
signal processing [2], [7]-[12], [22]-[25], quantum optics An understanding of the Wigner distribution and its relation
[26]-[30], phase retrieval, signal detection, pattern recognitiot®, the fractional Fourier transform is essential for a complete
noise representation, time-variant filtering and multiplexinginderstanding of some applications of the fractional transform
data compression, study of space/TF distributions, and swepch as filtering and multiplexing. The reader is encouraged
frequency filters [2], [4], [31], [32]. The fractional Fourierto consult [2], [3], and the references therein for further
transform is also related to a number of recently developgiscussion.
signal processing tools [33]-[35]. We conclude this section with some remarks about the
The ath-order fractional Fourier transform of a functionjmplementation of fractional Fourier transform. Its optical
denoted by{ Foz}(t,), is defined fora € [-2,2] by [2], [21] implementation is discussed in [9]-[12], and it is much like the
implementation of the usual Fourier transform. Recently, a fast
a _ PN g digital algorithm has been proposed [5]. With this algorithm,
{Fra}ta) = /_Oo Balta, t)z(t') dt’, the cost of evaluating a fractional Fourier transform becomes
Ba(ta,t') = Ay exp[jm(t2 cot ¢ — 2ot csc d + 2 cot §)], comparable to evaluating the ordinary Fourier transform.

Ay =(|sin¢|) "2 exp[—jm sgr(sin ¢)/4 + j¢/2]
(8) IV. SOLUTION OF THE ESTIMATION PROBLEM

oo

Based on the concepts developed in the previous sections,
where¢ = an /2. The kernelB,(¢,,t') approache$(t, —t’) we will solve the minimization problem defined by (7). The
or 6(t, + t') when a approaches 0 ott2, respectively. We calculus of variations method will be employed to the mini-
will use ¢, as the variable of the theth-order transform, and mization problem.
theath fractional Fourier transforflF*z}(t,,) of the function ~ We define the cost functiosi to be equal to the mean square
x(t) will be abbreviatedly denoted hy,(¢,). error (MSE) [see (3)] with the estimate given by (6). Since
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fractional Fourier transform is unitary and it preserves normsg that with the relations in (16), (15) becomes

J is also equal to the MSE in theth domain

J = 0? = Ell|lz — 3|°] = E[|za — zal’]
where from (6)

ZTa = 9Yq-

J varies with the choice qf sincezq varies. This functional
J is to be minimized with respect tg. Let us substitute

g = go + adg,, Where
Q@ complex scalar parameter,
go optimum filter,
69, arbitrary perturbation term.

Since « is a complex parameter, we can express inas
Ore + Jim. NOW, Zg, and.J varies witha for each fixedg,,

Zo(ta, )

sy =E| [ (anlt)

— o0

- -’f:a(taa a))

: (xa(ta) - -/fja(taa Oé))* dta:| .

=(go(ta) + (are + Jatim)6go(ta))ya(ta)

dJ(a)

aare
%{Y(:l) =2F U_Z Im(w* (t,, @)v(te, @) dta} (18)

Based on the last equations, the conditions of optimality
defined in (14) imply

ol
Evaluating atoe = 0 gives

Bl [ (a(t) = 200 S0ututs) | =0

(20)
where we use the definitions af(t,«) and v(¢, «). Since
8g,(te) is anarbitrary term and (20) is true for abg,(t,),
we infer that

E[(xa(ta) - ia(taao))*ya(ta)] =0.

(13) We can solve this last equation for the optimum filter function
Jo(-) by using the definition oft*(¢,,0) and by taking the

(12 = 25 [ Rl s pltese)) i

U (ta, )V (ta, &) dta} =0. (19)

a=0

(21)

The optimum value of/ will be obtained from the condmons complex conjugate of both sides of the above equation

(38]
dJ ()

Ope

dJ ()

aainl

=0.
a=0

7

a=0
The above differentials are given by

T = (][
(2 (te) = Zalta, @) di,

N /°° 95(ar ) (1 (1) — a(tar )" dtaD

—00 aare

20(e) __(p /°° 022 (ta, )
Im o oo O,
(2 (te) = Zalta, @) di,

o e

where by virtue of (13), we have

%t:a) :6go(ta)ya(ta)

0T} (ta, ) [ Oa(ta, @) *
Otre _< Otre ) ’

a-%a(t(M Oé) _ a.’i'a(t(u Oé)
A, Ocye

03t (ta,0) [ 0%a(ta,a)\"
8aim - _J< (9047,6 ) ’

We define two variables(t,, &) and v(t,, &)

w(te, ) = 2(ty) — To(ta, ), v(te, ) =

Ope

(tar )" dtaD

0% q(te, )

Rwaya (tU«?ta)
Ryaya (tlﬂ ta)
where the above correlation functions can be obtained from
the correlation functiond?,., (¢,¢') and R, (¢,t') by

9o (ta) = (22)

(14)

Ropy,(ta,ta) / / o(tas ) B-g(ta,t)
Ry (t,t) dt’' dt
yaya tavt / / tavt (tavt/)

- Ryy(t,t') dt’ dt. (23)

Thus, the optimal filter function is

A
UL

The last equation provides us the optimal multiplicative
filter function in theath fractional domain. To find the optimal
value of @, that is, the domain in which the smallest error is
obtained, we plug the optimum filter function into the MSE
expression

0'370 :E|:/ (xa(ta) - -%a,o(ta))(xa(ta) - -%a,o(ta))* dta

— o0

16 g
( ) - /— (Rxaa}a (taa ta) -2 Re(g:)k (ta)RWaya (ta’ ta))
+ 9o (ta) *(ta)Ryaya (ta? ta)) dta

(17) and then choose as the minimizer o&2 , in the rangg—1, 1].
This minimizer can be found analytlcally in certain cases but

o (tar ) B (ta,t' ) Ruy(t,t) dt’ dt

—alta, )Ry, (£, ) dt! dt
(24)

(15) o(ta,t)B

(25)



KUTAY et al: OPTIMAL FILTERING IN FRACTIONAL FOURIER DOMAINS 1133

1 9 T
0.9 8t B
0.8F o ]
0.7
S— 6 - -
0 0.6
= L5t 4
3 =
N 0.5 =
© 1S
£ <4f 1
2 0.4f
a3l 4
0.3
2
0.2
o1} 1r
O 1 1 L O
—1 -0.5 (0] 0.5 1 -5 (0] 5
transform order,a tos
(@ (b)
Fig. 2. [Example 1 (a) Normalized MSE for different values of transform order (b) Optimum filter functiong,(#0.5) in the aope = 0.5th

domain (absolute value).

not in general. It can also be found by simply calculatingiven by

the MSE for sufficiently closely spaced discrete values:of 00

(for example, by step size of 0.1) and choosing the one the(f,t) = / h(t, t’)e‘ﬂ”f(t_t') dt' =rec{f+1t). (26)
minimizes the MSE. If greater accuracy is needed, we can —o0

refine this process around the neighborhood of the initialiphe input process is a sequence of rectangular pulses whose
obtained value ofz. Other more sophisticated and efficientmplitudes takes the value of 1 or 0 with equal probability.
minimization routines with the initial estimate found by coarsghere is no noise process.

discretization can also be employed [45]. The key point is The normalized MSE is plotted for different values®fn
that given the noise and signal statistics, the optimum valggy. 2(a). (The normalization is obtained by dividing the MSE
of a is calculated only once. After this, the filtering procesgalues by the maximum value of MSE.) The minimum MSE is
can be implemented i(:V log V) time for arbitrary many obtained in the: = a,,; = 0.5th domain. The absolute value

realizations of that statistics. of the optimal filter function in thes,;th domain is plotted
Overall, the procedure can be outlined as follows: GiveR Fig. 2(b).
the autocorrelation functions of the inpGt) and noise(n) Fig. 3(a) and (b) show a realization of the input process

processes and the degradat{@t), we can find the correlation & and the corresponding output procegsrespectively. The
function between the input and outp#}) processes and theinput process is totally unrecognizable. The estimates obtained
autocorrelation function of the output process. Then, using filtering the distorted signal realization in the optimum
these, we can find the optimal filter function in thih domain  domain (« = 0.5) by the filter function plotted in Fig. 2(b)

by using (24). The optimal value af is then chosen as thatand in the conventional Fourier domain = 1) are plotted
which minimizes (25). together with the desired signal (input) realization in Fig. 3(c)
and (d). Notice that filtering in the optimal fractional domain is
significantly better than filtering in the conventional frequency
domain.

In this section, computer simulations that illustrate the The Wigner distributions of the above realizations are
applications and performance of fractional Fourier domajlotted in Fig. 4 to show the TF content of the signals and
filtering are presented. Notice that the integrals appearingthe optimal filtering domair(e = 0.5). The optimal domain
(24) are simply fractional Fourier transformations and can lie the one that is perpendicular to the one defined by (26)
simulated using the procedure given in [5]. Then, the MSEect f + t)). Since the degradation roughly corresponds to
can be computed by using (25). multiplication with a window along the ling + ¢ = 0, the

Example 1: As a first example, we consider a degradatioeffect of the degradation can be reduced in the domain where
model that corresponds to a time-varying bandpass filtiis window is localized. This is the domain perpendicular to
whose center frequency changes linearly with tilfe ') = the line f + ¢ = 0. (Consider projections onto the filtering
e~i27t(t=t") singt — #') so that the system function [39] isdomain.)

V. SIMULATIONS
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Fig. 3. [Example 1] (a) Realization of the input process (b) Corresponding output procegs(c) Estimater obtained by filtering in the. = 0.5th domain
(solid) and the desired undistorted sigma(dashed). (d) Estimate obtained by filtering in the= 1st domain (solid) and the desired signal (dashed).

4 4
filttering domain (a=0.5)
\

2 2 -

o) EEEEEA0 o
) -2
-4 -4p
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(@) (b)

Fig. 4. [Example 1] (a) Wigner distribution of the input process realization plotted in Fig. 3(a). (b) Wigner distribution of the corresponding output
realization. Tilted solid line shows the optimal fractional domain.

Example 2:In the second example, we consider the sanfe5) and in the conventional Fourier domaija = 1) in
degradation model; however, in this case, the input procdsg. 6(a)—(d), respectively. Almost perfect reconstruction is
is a shifted Gaussian function that is deterministic excepbtained as a result of filtering i = 0.5th domain.
for a random amplitude factor and random shift. That is, Example 3: The third example deals with a noise separation
the input process is given by(t) = Aexp(—n(t — s)?), problem. The input process is the process of the second
where A and s are random variables uniformly distributedexample. The noise process is a finite duration bandpass noise
on interval [1 3]. Again, there is no noise process. Fig. 5(#)at is modulated with a quadratic exponential (chirp) function
shows the normalized MSE plot for different valuesapfand (exp(—;1.737t?)) so that its center frequency changes linearly
in Fig. 5(b), the optimal filter function for the.,. = 0.5th with time. We assume there is no degradation so we take
domain can be seen. Again, the minimum MSE is obtained ihe degradation operator as the identity operator. Fig. 7(a)
thea = a.p = 0.5 domain with nearly perfect reconstructionshows the normalized MSE for different values @f and

We have shown a realization of the input procassthe the optimal filter function fora.,, = 0.33 is plotted in
corresponding output process, and the estimates obtainedFiry. 7(b). In this case, the minimum MSE is obtained in the
filtering the output realization in the optimum domdim = a = aop, = 0.33rd domain. The realizations of the input
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Fig. 5. [Example 2 (a) Normalized MSE for different values ef. (b) Optimum filter functiong, (¢0.5) in the ao,« = 0.5th domain (absolute value).
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Fig. 6. [Example 2 (a) Realization of the input proceas (b) Corresponding output procegs(c) Estimate obtained by filtering in the= 0.5th domain
(solid) and the desired signal (dashed). (d) Estimate obtained by filtering i thel st domain (solid) and the desired signal (dashed).

and output processes together with the estimates obtaimetitively clear from this figure that = 0.33 is the optimal

by filtering the output realization in the optimum domaimomain. (Consider the projections onto the filtering domain.)

(e = 0.33) and in the conventional Fourier domajn = 1) Up to this point, we have given examples for which only

are plotted in Fig. 8(a)—(d), respectively. degradation or only noise is present. For the following exam-
Fig. 9 shows the Wigner distributions of the realizationgles, degradation and noise are present together. We consider

The optimal filter domain is also shown in Fig. 9(b). It igwo cases: i) The optimum values affor degradation alone
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Fig. 7. [Example 3 (a) Normalized MSE for different values of transform order (b) Optimum filter functiong,(to.33) in the aopt = 0.33th
domain (absolute value).
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Fig. 8. [Example 3 (a) Realization of the input proceas (b) Corresponding output procegs (c) Estimatez obtained by filtering in the: = 0.33th
domain (solid) and the desired undistorted signgtashed). (d) Estimate obtained by filtering in the= 1st domain (solid) and the desired signal (dashed).

and noise alone are the same or nearly same, and ii) they moemalized MSE plot for different values afand the optimal
filter function fora.,, = 0.5 are plotted in parts Fig. 10(a) and

significantly different.

Example 4: As an example for the first case, we assum@), respectively. Significant reduction in the MSE is obtained
the same input process as in the third example. We assumeiththis case since the optimum valuescofor the degradation
noise is finite duration bandpass noise that is modulated wiahd noise considered separately coincide; therefore, there
a quadratic exponential chirp functi¢exp(—j=t?). Degrada- is no tradeoff involved in choosing the optimum domain.
tion is as given in (26). Figs. 10-12 show this example. THeg. 11 shows the filtering result. Fig. 12 shows the Wigner
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Fig. 9. [Example 3 (a) Wigner distribution of the input process realization plotted in Fig. 8(a). (b) Wigner distribution of the corresponding output realization.
Tilted solid line shows the optimal fractional domain. Signal can be recovered by a simple mask in this domain (consider projections on to this domain)
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Fig. 10. [Example 4 (a) Normalized MSE for different values of transform order (b) Optimum filter functiong,(tyg.5) in the aope = 0.5th

domain (absolute value).

distributions of the desired signal and distorted signal togetharFig. 14(a) and (b), respectively. We see that this estimate
with the domain in which optimal filtering is performed. obtained by filtering in a single domain is not satisfactory.
Example 5: Now, we consider the case where the optimum We might try a heuristic two-step filtering procedure to
values ofa for degradation alone and noise alone are differenbtain a smaller MSE. Fig. 14(c) and (d) show the results of
and thus impose conflicting requirements in choosing tltkis two-step filtering procedure. We first go to the= 0.5th
filtering domain. We combine the second and third exampldsmain and eliminate the degradation by using the optimum
so that our input process is the input process of Examplesfilter function obtained in the second example. We then go
2 and 3, and the noise is a finite duration bandpass notsethe ¢ = 0.33th domain and eliminate the noise by using
that is modulated with a quadratic exponential chirp functiaime optimum filter function obtained in the third example. The
(exp(—j1.737t%)). The degradation is as given in the firstesulting estimate is much better than that obtained by filtering
and second examples. The normalized MSE plot for differeint a single domain.
values ofa can be seen in Fig. 13(a). The optimum value of Fig. 15 shows this two-step filtering process in the TF plane.
MSE is obtained fora = 0.5, but this value is much larger Fig. 15(a) is the Wigner distribution of the output realization of
compared with the cases where we consider degradation al&ige 14(a). The domain in which the degradation is eliminated
or noise alone. We also plot a realization of the outpaind is also shown. Fig. 15(b) shows the Wigner distribution of
the estimate obtained by filtering in the = 0.5th domain the intermediate estimate in which the degradation has been
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Fig. 12. [Example 4 (a) Wigner distribution of the input process realization plotted in Fig. 11(a). (b) Wigner distribution of the corresponding output
realization. Tilted line shows the optimal fractional domain.

eliminated. The second filtering domain in which the noisiag. Fractional Fourier domain filtering in a single domain is
will be eliminated is also shown in Fig. 15(b). particularly advantageous when the distortion or noise is of
The orders in the above procedure have been chosen hewighirped nature. Such situations are encountered in several
tically by looking at the optimal order resulting from areal-life applications, some of which we will mention briefly.
consideration of each effect by itself. (In this case, the®ne application arises in synthetic aperture radar (SAR), which
correspond to the optimal orders of Examples 2 and 3.) Themploys chirps as transmitted pulses so that the measurements
procedure does not determine which of the two domains shoualck related to the terrain reflectivity function through a chirp
be visited first. We have simply tried both ways to determineonvolution. This process results in chirp-type disturbances
the one that results in the smaller MSE. caused by moving objects in the terrain, which should be
We should stress that this heuristic procedure does not neemoved if high-resolution imaging is to be achieved [41].
essarily yield the smallest possible MSE that can be obtain®ther applications arise in holography where different chirp
by filtering in two domains. An exact solution for the optimatates involved in in-line holograms can be used for extraction
filtering problem in two or more domains has yet to be founaf 3-D object-location information. The separation of these
The above examples represent situations in which filteshirps, which is similar to Example 3, directly yields location
ing in fractional Fourier domains yield substantially smalleinformation [42], [43]. A major problem in the reconstruction
MSE’s as compared with conventional Fourier domain filtefrom holograms is the elimination of twin-image noise. Since
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Fig. 14. [Example 9 (a) Realization of the output procegs (b) Estimatez obtained by filtering in thex = 0.5th domain (solid) and the desired
undistorted signak (dashed). Successive filtering of (a) in different domains. (c) Effect of degradation is removed by filteringain=tHe5th domain.

(d) Noise is eliminated by filtering in the = 0.33th domain.

this noise is essentially a modulated chirp signal [42], it can lagtifacts that are essentially similar to the examples given in
removed with the filtering procedure presented in this papehis paper [44].

Another application arises in the correction of the effects Furthermore, the class of noise and distortions that can be
of point or line defects found on lenses or filters in opticateated effectively with filtering in multiple fractional domains
systems, which appear at the output plane in the form of chigll be much larger; therefore, the extension of the method
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Fig. 15. [Example § (a) Wigner distribution of the output process realization plotted in Fig. 14(a). Tilted line shows the domain where degradation is
removed. (b) Wigner distribution of Fig. 14(c). Tilted line shows the optimal fractional domain where noise is removed.

to multiple domains will provide a powerful and flexible toolmultiplicative filter in theath fractional Fourier domain. As
for signal restoration. The method presented here should prawehe continuous-time case, if = 1, F'* corresponds to the
useful not only in itself but also in providing a foundation foDFT matrix, and our estimation corresponds to that obtained

the multiple domain filtering problem. by conventional Fourier domain filtering.
Our filter design criteria is the mean square error (MSE),
VI. DISCRETE TIME FORMULATION which is defined as
A definition of the discrete fractional Fourier transform is o2 = “E[(z — ) (z - #)] (29)

suggested in [5]. The precise definition is not important for the

purpose of this paper. We only note that the essential Prop&ii¥ere N is the size of the input vectar. The problem is then
of the discrete fractional Fourier transform is that it maps ”{8 find the vectorg, which minimizeso2

samples of a function into the samples of its fractional Fourier In order to solve this discrete time problem, we first define

transform to some sufficient degree of accuracy. the cost function/; to be equal to the MSE defined in (29),

In this section, the discrete time counterpart of the problef .1 i< also equal to the error in thgh domain:

will be formulated, and its solution based on the discrete

fractional Fourier transform will be presented. At the end, 1 N N
P Jo=El(z - 1) (z - 2)]

we show that the solution is analogous to its continuous time N
counterpart. 1 N .
N i . =—F - - . 30
Problem Statement in Discrete Tim&he signal observa- N (2o = 24)" (20 — 2,)] (30)
tion model is given by where
y=Hz+n (27) z, =Lz, and &, =A F'y=Ay .

wherey, z, and n are column vectors, andl is the matrix We can then follow the discrete analogous of the steps in
characterizing the degradation process. We assume that inp@€tion IV and easily find the components of the optimal
and output processes and noise are finite length rand¥gftor to be

processes and that we know the correlation matrix of the input R 3.9

. . . =, F )
processr and noisen. We will further assume that the noise Goptj = e —— j=1,---,N. (31)
is independent of the input process and is zero mean. ﬁyaya )

We consider an estimate of the form . . . .
The above correlation matrices can be obtained from the input

and noise correlation matrices as

i=F""A F'y (28)
R =I'R H'F™"
where £7“ and £ are discrete fractional Fourier transform R =F'(HR HY +R )F. (32)
matrices of orderq« anda, respectively, an(zég is a diagonal Seye = =Tt Snn'=

matrix whose diagonal consists of the elements of the vectquation (31) provides the solution to our minimization prob-
g. We note that since the fractional Fourier transformation Ism in the discrete time setting. We note that this result is fully
a unitary transformation, the fractional Fourier transformaticanalogous to the solution obtained in (24) for the continuous
matrices are related ky~* = (£*)H, where(-) denotes the time case. In fact, we will now show that the discrete time
conjugate transpose operation. This estimate corresponds tmplementation of (24) yields a result very similar to (31).
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Equation (24) can be written in the form VIl. DISCUSSIONS AND CONCLUSIONS
, In the previous sections, we have shown how the fractional
90(t) - - Fourier transform can be applied to the problem of time-
E [ / Bo(t,t)a(t) dt / B ¢)y* (") d //} varying filtering of nonstationary, finite energy processes both
a . . . . . .
—oo ’ oo in continuous-time and discrete-time frameworks. We derived

= . . e " the optimum multiplicative filter function (vector) that min-
E[/_Oo By (¥, ")y () dt” /_Oo Ba(t’,a:”)y(a:”)dx”} imizes the mean square error in thth fractional Fourier
(33) domain.
Our simulation examples show that filtering in fractional

The processes inside the expectation operators are Sim(a,q&mains will work better for certain kinds of distortions and

the ath fractional Fourier transform of the input and outpu¢idnal and noise statistics in comparison with others. The
processes and their complex conjugates. We can find fH@Sence of time-varying distortion and nonstationary statistics
samples of theth fractional Fourier transform of the inputSUggests that the fractional transform may be of use but may

and output processes from the following equations [5]: ~ NOt guarantee significant improvements in every case.
The solutions obtained in (24) and (31) are not the most

N m Ay ) m \2 optimal linear estimators in the sense that we restrict the
{7 x}(m) =5AR P {J”(O‘_ﬁ)(m) } general linear form [see (2)] so that it corresponds to a
N 9 multiplicative filter in the ath domain [cf. (6)]. However,
. Z exp jw[}(m_n> in many cases, we can expect to reduce significantly the
2AR MSE in comparison with ordinary Fourier domain filtering

n=—N

n [46]. These reductions come essentially for free since filtering

- exp [ﬁf(a - B) (m) } in a fractional domain can be implemented with similar

n computational cost as filtering in the ordinary Fourier domain.

x(—), In this paper, we have analytically formulated filtering in a

2AR : . . . ) .

i m Ay . R 9 smgl_e fractional domain. As d|scu_ssed in the fifth .example of
{F*y} (m) TN |:J7T(Oé - /)(m) } Section V, the method can sometimes be greatly improved by

filtering in not one, but several consecutive fractional Fourier
domains. This will not only allow one to handle a much wider
variety of signals but may also make possible a fairly good

N 2
. Z exp [ﬁrﬁ(ﬂ;T;)

n==N ) approximation of the most general optimal linear recovery
- exp {jﬂ(a_ﬁ)(L) } operator with a reasonable number of stages [2], [10]. A

2AR rigorous analytical solution of the multistage filtering problem,
. (L) (34) orat least a satisfactory numerical algorithm for its solution,
Y\2AR

has not yet been found and requires further work.

where2N is the number of samples of the input and output As a %?”C'_“Sif;_”’ filterigg i_n fra}ctir(])na'\ilsFEourier don:jainsh
processes, and = cot ¢ and 3 = csc . Equation (33) can may enable significant reduction of the compared wit

then be written as ordinary Fourier domain filtering. This reduction comes at
essentially no additional cost since the fractional Fourier

E[{]_—ax}( m ){]_—ay}*( m )} transform has am (N logN) algorithm. We have presented
go( m ) - 2AR 2AR a mathematical formulation and solution of this problem that
2AR E[(]—“a[y])(ﬂ)(]:a[y])* (ﬂ)} is analogous to the formulation and solution of the classical
( )QAR 2AR optimal Wiener filtering problem.
a0 m,m
_ —%a¥a (35)
R (m,m)
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