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Abstract—For time-invariant degradation models and sta-
tionary signals and noise, the classical Fourier domain Wiener
filter, which can be implemented inO(N logN) time, gives the
minimum mean-square-error estimate of the original undistorted
signal. For time-varying degradations and nonstationary pro-
cesses, however, the optimal linear estimate requiresO(N2) time
for implementation. We consider filtering in fractional Fourier
domains, which enables significant reduction of the error com-
pared with ordinary Fourier domain filtering for certain types
of degradation and noise (especially of chirped nature), while
requiring only O(N logN) implementation time. Thus, improved
performance is achieved at no additional cost. Expressions for
the optimal filter functions in fractional domains are derived,
and several illustrative examples are given in which significant
reduction of the error (by a factor of 50) is obtained.

I. INTRODUCTION

I N MANY practical applications, desired signals are de-
graded by a known system and/or by a noise term. It

is desirable to apply an estimation operator to the resulting
(observed) signals to minimize the effect of degradation and
noise. The problem is then to find the optimal estimation
operator with respect to some design criteria that removes or
minimizes these degradations. Appropriate solutions to this
problem depend on the observation model and the design
criteria used, the prior knowledge available about the desired
signal, and the degradation process and/or noise. The most
commonly used observation model, which is also easy to
handle mathematically, is

where is a linear system that degrades the desired signal
, and is an additive noise term [1]. A frequently used design

criteria is the mean square error (MSE). We consider a linear
estimation operator of the form

For a time-invariant degradation model with stationary
processes and , the linear operator that minimizes
the error corresponds to the classical optimal Wiener filter
[1]. This operator is time-invariant and can be expressed as
a convolution and implemented with a multiplicative filter in
the conventional Fourier domain. For an arbitrary degradation
model or nonstationary processes, the resulting optimal recov-
ery operator will not, in general, be time-invariant and, thus,
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cannot be expressed as a convolution and cannot be realized
by filtering in the conventional Fourier domain. We can still
seek the optimal Fourier domain filter, but this operation
will not give the most satisfactory result. (When we speak
of “filtering in the conventional Fourier domain,” we simply
mean multiplying the Fourier transform of a function with a
filter function in that domain.)

Recently, we have discussed how various time-variant op-
erations can be performed by multiplying with a filter function
in a fractional Fourier domain [2], [3]. A related concept
(“swept-frequency filters”) has been discussed by Almeida [4].
Filtering in a fractional Fourier domain can be implemented
as efficiently as filtering in the conventional Fourier domain
since the fractional Fourier transformation has a fast digital
algorithm [5], [6], and can also be optically realized much like
the usual Fourier transform [7]–[12]. The problem considered
in this paper is to minimize the MSE for arbitrary degradation
models and nonstationary processes by filtering in fractional
Fourier domains. It will be shown in Section V that for
noise and degradation models of a chirped nature, much
smaller MSE’s are obtained as compared with filtering in the
conventional Fourier domain at about the same computational
cost. We also note, however, that since we present a general
method and since the class of fractional Fourier filters is by
definition a broader class than conventional Fourier domain
filters, we expect that certain problems involving time-varying
degradations and noise other than those given in our examples
should also benefit from this method [46].

As a motivation for the concept of filtering in fractional
Fourier domains, we first note that signals with significant
overlap in both the space and frequency domains may have
little or no overlap in a fractional Fourier domain. To un-
derstand the basic idea, consider the simple example shown
in Fig. 1, where Wigner distributions of a desired signal and
undesired distortion term are superimposed on the single plot.
We observe that they overlap in both the zeroth and first
domains (consider the projections onto theand axes),
but they do not overlap in the 0.5th domain. (The concept
of fractional Fourier domains was developed in [2] and [3]
and will be reviewed in Section III). Thus, we can eliminate
undesired signal components by using a simple unit amplitude
mask in the 0.5th domain.

The remaining sections of the paper are organized as fol-
lows. In Section II, we define the problem and discuss related
work. We introduce the concept of fractional Fourier transform
in Section III. The analysis and solution of the problem posed
will be given in Section IV. Section V includes simulations
that show the applications and performance of the proposed
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Fig. 1. Noise separation in theath domain.

filtering scheme. In Section VI, we address the discrete-time
problem and derive the solution. The remainder of the paper
constitutes concluding sections.

II. PROBLEM DEFINITION AND RELATED WORK

In this section, the mathematical definition of the problem
will be given and our approach to its solution will be for-
mulated. The solution for the case of a linear time-invariant
degradation model with stationary processes is the well-known
optimal Wiener filter,1 which can be implemented efficiently
with the fast Fourier transform. For time-varying degradations
and/or nonstationary signals and noise, the optimal recovery
operator will, in general, be time varying. We will be reviewing
below some time-varying filtering algorithms that are generally
based on mixed time-frequency (TF) signal representations.

A. Problem Statement

Our signal observation model can be written as

(1)

where is the kernel of the degradation model, and
is the additive noise term. We will assume that as a prior
knowledge, we know the correlation functions

of the input signal (desired signal) and the noise. We will
further assume that the noise is independent of the input
and it is zero mean for all time, i.e., and that
we know the degradation model. Under these assumptions, we
can also find the cross correlation function

of the processes and and the correlation function

using (1).
1This term is sometimes extended to refer to the more general case, but we

use it to refer to the time-invariant case only.

First, consider the most general linear estimate of the form

(2)

Our design criteria is the mean square error (MSE), which is
defined as

(3)

where denotes the expectation operator, and denotes
the norm:

(4)

This definition (3) of the MSE is appropriate for nonstationary
signals whose functional representations are square integrable
(that are of finite energy). (For stationary processes, the MSE
may be defined as the expected value of the magnitude squared
of the difference term [1].)

The recovery operator kernel is the solution to the mini-
mization problem

(5)

That is, it is the function that minimizes the MSE. The solution
to this problem, with the linear estimate defined in (2), is
known. It is the solution of the following equation [13]:

The above equation can be solved numerically to obtain
the kernel of the optimal linear recovery operator. However,
application of this estimation operator [cf. (2)] on a given
distorted and noisy signal would require time, where
is the time-bandwidth product of the signals. In this paper, we
restrict our estimate so that it corresponds to a multiplication
with a filter function in the th fractional Fourier domain. This
estimate can be written in operator notation as

(6)

where is the th-order fractional Fourier transformation
operator, and is the multiplicative filter. We note that for

, this estimate corresponds to filtering in the conventional
Fourier domain. With this form of estimation operator, the
minimization problem considered in this paper can be defined
as

arg (7)

where is as defined in (3), and is given by (6).
The class of fractional Fourier domain filters is a subclass

of the class of all linear operators; therefore, the linear filter
we find will not correspond to the global optimum among
all linear operators. However, it is a much broader class than
(time-invariant) Fourier domain filters, and in many problems
involving time-varying degradation models and nonstationary
processes, it is possible to obtain smaller MSE’s when com-
pared with filtering in the conventional Fourier domain. This
reduction in MSE comes at no additional cost because the
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resulting filter can be implemented in time, just
like the ordinary Fourier transform [5], or can be implemented
optically with the same kind of hardware as the ordinary
Fourier transform [7]–[12].

B. Related Work

There are a variety of time-varying digital signal pro-
cessing algorithms based on mixed TF signal representa-
tions [14]–[19]. A conceptually simple time-varying estimation
method consists of masking some regions of the signals’ TF
representations. However, this process is, in general, highly
nonlinear [15], [17], resulting in difficulties especially when
dealing with multicomponent signals. There are linear estima-
tion operators based on linear time-frequency representations,
but their performance generally depends on the window and
wavelet used. Recently, another algorithm based on the Wigner
distribution has been proposed [19]. TF projection and TF
subspaces are the basic ideas behind it. It overcomes the
nonlinearity problem as well as the problems of choosing
wavelet and window. However, no efficient algorithm for its
implementation has yet been proposed. The examples given in
the above works have been limited to noise elimination, and
the performance of the algorithms for time-varying degrada-
tion models have not been exploited.

III. FRACTIONAL FOURIER TRANSFORM

In this section, we review the concept of fractional Fourier
transforms and its relation to TF representations, especially
the Wigner distribution. Its relation to the Wigner distribution
function and its properties form the basis of our approach to
time-varying filtering.

The fractional Fourier transform was defined in [20] and
[21]. Several applications of the fractional Fourier transform
have been suggested or explored to varying degrees. These
include optical diffraction and beam propagation, and optical
signal processing [2], [7]–[12], [22]–[25], quantum optics
[26]–[30], phase retrieval, signal detection, pattern recognition,
noise representation, time-variant filtering and multiplexing,
data compression, study of space/TF distributions, and swept-
frequency filters [2], [4], [31], [32]. The fractional Fourier
transform is also related to a number of recently developed
signal processing tools [33]–[35].

The th-order fractional Fourier transform of a function,
denoted by , is defined for by [2], [21]

sgn

(8)

where The kernel approaches
or when approaches 0 or , respectively. We
will use as the variable of the theth-order transform, and
the th fractional Fourier transform of the function

will be abbreviatedly denoted by

The definition is easily extended outside the interval
since is the identity operation and the transform is additive
in index [21]. Other essential properties
are the following:

i) It is linear.
ii) The first order transform corresponds to the

common Fourier transform.
iii) It is an unitary transform so that it preserves norms.

Other properties may be found in [2], [4], [9], [11], [20], [21].
An important property of fractional Fourier transform is its

relation to the Wigner distribution. The Wigner distribution
of the signal is defined as [36]

(9)

It can be interpreted as the signals TF energy distribution. It
is well known that the projection of onto the axis
gives the magnitude squared of the time domain representation,
and the projection onto theaxis gives the magnitude squared
of the frequency domain representation of the signal

(10)
A generalization of the above involving fractional transforms
is [2], [37]

(11)

where is the Radon transform operator. takes the
integral projection of the two dimensional function
onto an axis making angle with the axis. We will
refer to this axis ( axis) as the th fractional Fourier domain
(Fig. 1). The axis is the usual time domain, and the
axis is the usual frequency domain Notice that (10) is a
special case of (11).

An understanding of the Wigner distribution and its relation
to the fractional Fourier transform is essential for a complete
understanding of some applications of the fractional transform
such as filtering and multiplexing. The reader is encouraged
to consult [2], [3], and the references therein for further
discussion.

We conclude this section with some remarks about the
implementation of fractional Fourier transform. Its optical
implementation is discussed in [9]–[12], and it is much like the
implementation of the usual Fourier transform. Recently, a fast
digital algorithm has been proposed [5]. With this algorithm,
the cost of evaluating a fractional Fourier transform becomes
comparable to evaluating the ordinary Fourier transform.

IV. SOLUTION OF THE ESTIMATION PROBLEM

Based on the concepts developed in the previous sections,
we will solve the minimization problem defined by (7). The
calculus of variations method will be employed to the mini-
mization problem.

We define the cost function to be equal to the mean square
error (MSE) [see (3)] with the estimate given by (6). Since
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fractional Fourier transform is unitary and it preserves norms,
is also equal to the MSE in theth domain

(12)

where from (6)

varies with the choice of since varies. This functional
is to be minimized with respect to Let us substitute

, where

complex scalar parameter,
optimum filter,
arbitrary perturbation term.

Since is a complex parameter, we can express it as
Now, , and varies with for each fixed

(13)

The optimum value of will be obtained from the conditions
[38]

(14)

The above differentials are given by

(15)

where by virtue of (13), we have

(16)

We define two variables and

(17)

so that with the relations in (16), (15) becomes

Re

Im (18)

Based on the last equations, the conditions of optimality
defined in (14) imply

(19)

Evaluating at gives

(20)

where we use the definitions of and Since
is an arbitrary term and (20) is true for all ,

we infer that

(21)

We can solve this last equation for the optimum filter function
by using the definition of and by taking the

complex conjugate of both sides of the above equation

(22)

where the above correlation functions can be obtained from
the correlation functions and by

(23)

Thus, the optimal filter function is

(24)

The last equation provides us the optimal multiplicative
filter function in the th fractional domain. To find the optimal
value of , that is, the domain in which the smallest error is
obtained, we plug the optimum filter function into the MSE
expression

Re

(25)

and then chooseas the minimizer of in the range
This minimizer can be found analytically in certain cases but
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(a) (b)

Fig. 2. [Example 1] (a) Normalized MSE for different values of transform ordera. (b) Optimum filter functiongo(t0:5) in the aopt = 0:5th
domain (absolute value).

not in general. It can also be found by simply calculating
the MSE for sufficiently closely spaced discrete values of
(for example, by step size of 0.1) and choosing the one that
minimizes the MSE. If greater accuracy is needed, we can
refine this process around the neighborhood of the initially
obtained value of Other more sophisticated and efficient
minimization routines with the initial estimate found by coarse
discretization can also be employed [45]. The key point is
that given the noise and signal statistics, the optimum value
of is calculated only once. After this, the filtering process
can be implemented in time for arbitrary many
realizations of that statistics.

Overall, the procedure can be outlined as follows: Given
the autocorrelation functions of the input and noise
processes and the degradation , we can find the correlation
function between the input and output processes and the
autocorrelation function of the output process. Then, using
these, we can find the optimal filter function in theth domain
by using (24). The optimal value of is then chosen as that
which minimizes (25).

V. SIMULATIONS

In this section, computer simulations that illustrate the
applications and performance of fractional Fourier domain
filtering are presented. Notice that the integrals appearing in
(24) are simply fractional Fourier transformations and can be
simulated using the procedure given in [5]. Then, the MSE
can be computed by using (25).

Example 1: As a first example, we consider a degradation
model that corresponds to a time-varying bandpass filter
whose center frequency changes linearly with time

sinc so that the system function [39] is

given by

rect (26)

The input process is a sequence of rectangular pulses whose
amplitudes takes the value of 1 or 0 with equal probability.
There is no noise process.

The normalized MSE is plotted for different values ofin
Fig. 2(a). (The normalization is obtained by dividing the MSE
values by the maximum value of MSE.) The minimum MSE is
obtained in the th domain. The absolute value
of the optimal filter function in the th domain is plotted
in Fig. 2(b).

Fig. 3(a) and (b) show a realization of the input process
and the corresponding output process, respectively. The

input process is totally unrecognizable. The estimates obtained
by filtering the distorted signal realization in the optimum
domain by the filter function plotted in Fig. 2(b)
and in the conventional Fourier domain are plotted
together with the desired signal (input) realization in Fig. 3(c)
and (d). Notice that filtering in the optimal fractional domain is
significantly better than filtering in the conventional frequency
domain.

The Wigner distributions of the above realizations are
plotted in Fig. 4 to show the TF content of the signals and
the optimal filtering domain The optimal domain
is the one that is perpendicular to the one defined by (26)
rect Since the degradation roughly corresponds to

multiplication with a window along the line , the
effect of the degradation can be reduced in the domain where
this window is localized. This is the domain perpendicular to
the line (Consider projections onto the filtering
domain.)
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(a) (b)

(c) (d)

Fig. 3. [Example 1] (a) Realization of the input processxxx. (b) Corresponding output processyyy. (c) Estimatêxxx obtained by filtering in thea = 0:5th domain
(solid) and the desired undistorted signalxxx (dashed). (d) Estimate obtained by filtering in thea = 1st domain (solid) and the desired signal (dashed).

(a) (b)

Fig. 4. [Example 1] (a) Wigner distribution of the input process realization plotted in Fig. 3(a). (b) Wigner distribution of the corresponding output
realization. Tilted solid line shows the optimal fractional domain.

Example 2: In the second example, we consider the same
degradation model; however, in this case, the input process
is a shifted Gaussian function that is deterministic except
for a random amplitude factor and random shift. That is,
the input process is given by ,
where and are random variables uniformly distributed
on interval [1 3]. Again, there is no noise process. Fig. 5(a)
shows the normalized MSE plot for different values of, and
in Fig. 5(b), the optimal filter function for the th
domain can be seen. Again, the minimum MSE is obtained in
the domain with nearly perfect reconstruction.

We have shown a realization of the input process, the
corresponding output process, and the estimates obtained by
filtering the output realization in the optimum domain

and in the conventional Fourier domain in
Fig. 6(a)–(d), respectively. Almost perfect reconstruction is
obtained as a result of filtering in th domain.

Example 3: The third example deals with a noise separation
problem. The input process is the process of the second
example. The noise process is a finite duration bandpass noise
that is modulated with a quadratic exponential (chirp) function

so that its center frequency changes linearly
with time. We assume there is no degradation so we take
the degradation operator as the identity operator. Fig. 7(a)
shows the normalized MSE for different values of, and
the optimal filter function for is plotted in
Fig. 7(b). In this case, the minimum MSE is obtained in the

rd domain. The realizations of the input
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(a) (b)

Fig. 5. [Example 2] (a) Normalized MSE for different values ofa. (b) Optimum filter functiongo(t0:5) in theaopt = 0:5th domain (absolute value).

(a) (b)

(c) (d)

Fig. 6. [Example 2] (a) Realization of the input processxxx. (b) Corresponding output processyyy. (c) Estimate obtained by filtering in thea = 0:5th domain
(solid) and the desired signal (dashed). (d) Estimate obtained by filtering in thea = 1st domain (solid) and the desired signal (dashed).

and output processes together with the estimates obtained
by filtering the output realization in the optimum domain

and in the conventional Fourier domain
are plotted in Fig. 8(a)–(d), respectively.

Fig. 9 shows the Wigner distributions of the realizations.
The optimal filter domain is also shown in Fig. 9(b). It is

intuitively clear from this figure that is the optimal
domain. (Consider the projections onto the filtering domain.)

Up to this point, we have given examples for which only
degradation or only noise is present. For the following exam-
ples, degradation and noise are present together. We consider
two cases: i) The optimum values offor degradation alone
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(a) (b)

Fig. 7. [Example 3] (a) Normalized MSE for different values of transform ordera: (b) Optimum filter functiongo(t0:33) in the aopt = 0:33th
domain (absolute value).

(a) (b)

(c) (d)

Fig. 8. [Example 3] (a) Realization of the input processxxx: (b) Corresponding output processyyy: (c) Estimatex̂xx obtained by filtering in thea = 0:33th
domain (solid) and the desired undistorted signalxxx (dashed). (d) Estimate obtained by filtering in thea = 1st domain (solid) and the desired signal (dashed).

and noise alone are the same or nearly same, and ii) they are
significantly different.

Example 4: As an example for the first case, we assume
the same input process as in the third example. We assume the
noise is finite duration bandpass noise that is modulated with
a quadratic exponential chirp function Degrada-
tion is as given in (26). Figs. 10–12 show this example. The

normalized MSE plot for different values ofand the optimal
filter function for are plotted in parts Fig. 10(a) and
(b), respectively. Significant reduction in the MSE is obtained
in this case since the optimum values offor the degradation
and noise considered separately coincide; therefore, there
is no tradeoff involved in choosing the optimum domain.
Fig. 11 shows the filtering result. Fig. 12 shows the Wigner
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(a) (b)

Fig. 9. [Example 3] (a) Wigner distribution of the input process realization plotted in Fig. 8(a). (b) Wigner distribution of the corresponding output realization.
Tilted solid line shows the optimal fractional domain. Signal can be recovered by a simple mask in this domain (consider projections on to this domain).

(a) (b)

Fig. 10. [Example 4] (a) Normalized MSE for different values of transform ordera: (b) Optimum filter functiongo(t0:5) in the aopt = 0:5th
domain (absolute value).

distributions of the desired signal and distorted signal together
with the domain in which optimal filtering is performed.

Example 5: Now, we consider the case where the optimum
values of for degradation alone and noise alone are different
and thus impose conflicting requirements in choosing the
filtering domain. We combine the second and third examples
so that our input process is the input process of Examples
2 and 3, and the noise is a finite duration bandpass noise
that is modulated with a quadratic exponential chirp function

The degradation is as given in the first
and second examples. The normalized MSE plot for different
values of can be seen in Fig. 13(a). The optimum value of
MSE is obtained for , but this value is much larger
compared with the cases where we consider degradation alone
or noise alone. We also plot a realization of the outputand
the estimate obtained by filtering in the th domain

in Fig. 14(a) and (b), respectively. We see that this estimate
obtained by filtering in a single domain is not satisfactory.

We might try a heuristic two-step filtering procedure to
obtain a smaller MSE. Fig. 14(c) and (d) show the results of
this two-step filtering procedure. We first go to the th
domain and eliminate the degradation by using the optimum
filter function obtained in the second example. We then go
to the th domain and eliminate the noise by using
the optimum filter function obtained in the third example. The
resulting estimate is much better than that obtained by filtering
in a single domain.

Fig. 15 shows this two-step filtering process in the TF plane.
Fig. 15(a) is the Wigner distribution of the output realization of
Fig. 14(a). The domain in which the degradation is eliminated
is also shown. Fig. 15(b) shows the Wigner distribution of
the intermediate estimate in which the degradation has been
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(a) (b)

Fig. 11. [Example 4] (a) Realization of the output processyyy: (b) Estimatex̂xx obtained by filtering in thea = 0:5th domain (solid) and the desired
undistorted signalxxx (dashed).

(a) (b)

Fig. 12. [Example 4] (a) Wigner distribution of the input process realization plotted in Fig. 11(a). (b) Wigner distribution of the corresponding output
realization. Tilted line shows the optimal fractional domain.

eliminated. The second filtering domain in which the noise
will be eliminated is also shown in Fig. 15(b).

The orders in the above procedure have been chosen heuris-
tically by looking at the optimal order resulting from a
consideration of each effect by itself. (In this case, they
correspond to the optimal orders of Examples 2 and 3.) This
procedure does not determine which of the two domains should
be visited first. We have simply tried both ways to determine
the one that results in the smaller MSE.

We should stress that this heuristic procedure does not nec-
essarily yield the smallest possible MSE that can be obtained
by filtering in two domains. An exact solution for the optimal
filtering problem in two or more domains has yet to be found.

The above examples represent situations in which filter-
ing in fractional Fourier domains yield substantially smaller
MSE’s as compared with conventional Fourier domain filter-

ing. Fractional Fourier domain filtering in a single domain is
particularly advantageous when the distortion or noise is of
a chirped nature. Such situations are encountered in several
real-life applications, some of which we will mention briefly.
One application arises in synthetic aperture radar (SAR), which
employs chirps as transmitted pulses so that the measurements
are related to the terrain reflectivity function through a chirp
convolution. This process results in chirp-type disturbances
caused by moving objects in the terrain, which should be
removed if high-resolution imaging is to be achieved [41].
Other applications arise in holography where different chirp
rates involved in in-line holograms can be used for extraction
of 3-D object-location information. The separation of these
chirps, which is similar to Example 3, directly yields location
information [42], [43]. A major problem in the reconstruction
from holograms is the elimination of twin-image noise. Since
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(a) (b)

Fig. 13. [Example 5] (a) Normalized MSE for different values of transform ordera: (b) Optimum filter functiongo(t0:5) in the aopt = 0:5th
domain (absolute value).

(a) (b)

(c) (d)

Fig. 14. [Example 5] (a) Realization of the output processyyy: (b) Estimatex̂xx obtained by filtering in thea = 0:5th domain (solid) and the desired
undistorted signalxxx (dashed). Successive filtering of (a) in different domains. (c) Effect of degradation is removed by filtering in thea = 0:5th domain.
(d) Noise is eliminated by filtering in thea = 0:33th domain.

this noise is essentially a modulated chirp signal [42], it can be
removed with the filtering procedure presented in this paper.
Another application arises in the correction of the effects
of point or line defects found on lenses or filters in optical
systems, which appear at the output plane in the form of chirp

artifacts that are essentially similar to the examples given in
this paper [44].

Furthermore, the class of noise and distortions that can be
treated effectively with filtering in multiple fractional domains
will be much larger; therefore, the extension of the method
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(a) (b)

Fig. 15. [Example 5] (a) Wigner distribution of the output process realization plotted in Fig. 14(a). Tilted line shows the domain where degradation is
removed. (b) Wigner distribution of Fig. 14(c). Tilted line shows the optimal fractional domain where noise is removed.

to multiple domains will provide a powerful and flexible tool
for signal restoration. The method presented here should prove
useful not only in itself but also in providing a foundation for
the multiple domain filtering problem.

VI. DISCRETE TIME FORMULATION

A definition of the discrete fractional Fourier transform is
suggested in [5]. The precise definition is not important for the
purpose of this paper. We only note that the essential property
of the discrete fractional Fourier transform is that it maps the
samples of a function into the samples of its fractional Fourier
transform to some sufficient degree of accuracy.

In this section, the discrete time counterpart of the problem
will be formulated, and its solution based on the discrete
fractional Fourier transform will be presented. At the end,
we show that the solution is analogous to its continuous time
counterpart.

Problem Statement in Discrete Time:The signal observa-
tion model is given by

(27)

where and are column vectors, and is the matrix
characterizing the degradation process. We assume that input
and output processes and noise are finite length random
processes and that we know the correlation matrix of the input
process and noise We will further assume that the noise
is independent of the input process and is zero mean.

We consider an estimate of the form

(28)

where and are discrete fractional Fourier transform
matrices of order and , respectively, and is a diagonal

matrix whose diagonal consists of the elements of the vector
We note that since the fractional Fourier transformation is

a unitary transformation, the fractional Fourier transformation
matrices are related by , where denotes the
conjugate transpose operation. This estimate corresponds to a

multiplicative filter in the th fractional Fourier domain. As
in the continuous-time case, if corresponds to the
DFT matrix, and our estimation corresponds to that obtained
by conventional Fourier domain filtering.

Our filter design criteria is the mean square error (MSE),
which is defined as

(29)

where is the size of the input vector The problem is then
to find the vector , which minimizes

In order to solve this discrete time problem, we first define
the cost function to be equal to the MSE defined in (29),
which is also equal to the error in theth domain:

(30)

where

We can then follow the discrete analogous of the steps in
Section IV and easily find the components of the optimal
vector to be

(31)

The above correlation matrices can be obtained from the input
and noise correlation matrices as

(32)

Equation (31) provides the solution to our minimization prob-
lem in the discrete time setting. We note that this result is fully
analogous to the solution obtained in (24) for the continuous
time case. In fact, we will now show that the discrete time
implementation of (24) yields a result very similar to (31).
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Equation (24) can be written in the form

(33)

The processes inside the expectation operators are simply
the th fractional Fourier transform of the input and output
processes and their complex conjugates. We can find the
samples of the th fractional Fourier transform of the input
and output processes from the following equations [5]:

(34)

where is the number of samples of the input and output
processes, and and Equation (33) can
then be written as

(35)

with

where

is the correlation matrix of the samples of the processes
and , and is similarly defined. Equation (35) is very
similar to (31), which shows that our discrete time formulation
is analogous to the continuous case.

VII. D ISCUSSIONS ANDCONCLUSIONS

In the previous sections, we have shown how the fractional
Fourier transform can be applied to the problem of time-
varying filtering of nonstationary, finite energy processes both
in continuous-time and discrete-time frameworks. We derived
the optimum multiplicative filter function (vector) that min-
imizes the mean square error in theth fractional Fourier
domain.

Our simulation examples show that filtering in fractional
domains will work better for certain kinds of distortions and
signal and noise statistics in comparison with others. The
presence of time-varying distortion and nonstationary statistics
suggests that the fractional transform may be of use but may
not guarantee significant improvements in every case.

The solutions obtained in (24) and (31) are not the most
optimal linear estimators in the sense that we restrict the
general linear form [see (2)] so that it corresponds to a
multiplicative filter in the th domain [cf. (6)]. However,
in many cases, we can expect to reduce significantly the
MSE in comparison with ordinary Fourier domain filtering
[46]. These reductions come essentially for free since filtering
in a fractional domain can be implemented with similar
computational cost as filtering in the ordinary Fourier domain.

In this paper, we have analytically formulated filtering in a
single fractional domain. As discussed in the fifth example of
Section V, the method can sometimes be greatly improved by
filtering in not one, but several consecutive fractional Fourier
domains. This will not only allow one to handle a much wider
variety of signals but may also make possible a fairly good
approximation of the most general optimal linear recovery
operator with a reasonable number of stages [2], [10]. A
rigorous analytical solution of the multistage filtering problem,
or at least a satisfactory numerical algorithm for its solution,
has not yet been found and requires further work.

As a conclusion, filtering in fractional Fourier domains
may enable significant reduction of the MSE compared with
ordinary Fourier domain filtering. This reduction comes at
essentially no additional cost since the fractional Fourier
transform has an algorithm. We have presented
a mathematical formulation and solution of this problem that
is analogous to the formulation and solution of the classical
optimal Wiener filtering problem.
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