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4.1 Preface

Pattern recognition plays a major role in machine vision, robotics, automation, and image
understanding. In particular, because of its high parallel processing capabilities, optics
might be an excellent tool for achieving advantageous pattern recognition systems. During
the recent four decades, intensive activities have been performed in order to demonstrate
attractive optical pattern recognition systems. Nevertheless, final results, although they were
quite impressive, did not succeed in massively introducing optics to the practical optical
pattern recognition field.

One explanation for that phenomenon is the fact that optical pattern recognition is not
flexible enough, especially compared with digital signal processing systems. Moreover,
optical pattern recognition systems are commonly restricted to perform only correlation-
type operations.

A recent approach to introducing more flexibility into optical pattern recognition systems
is the use of the fractional-Fourier-transform operation that leads to so-called fractional
correlation systems.

As a generalization of the conventional correlation, fractional correlation is a much more
flexible tool that handles various types of missions with high efficiency. In this chapter,
after the introduction of the fractional correlation and its optical implementations, a detailed
performance analysis of it is given with respect to standard performance criteria. Then the
space-variance-invariance property of the fractional correlation operation is discussed, and
a real-time control of the space-invariance property is proposed. This resulted in a more
flexible tool that is a fractional correlator with multiple fractional orders (the localized
fractional processor). A particular example of the multiple fractional order processor is the
anamorphic fractional processor that has also been demonstrated experimentally. The final
stage toward higher flexibility is the fractional Joint transform correlator that provides a
real-time ability in a wider sense.

4.2 Introduction

One of the first practical optical approaches for performing correlation is the well-known
VanderLugt 4- f coherent configuration [1], its analogous incoherent system [2] or the
Joint transform correlator (JTC) [3, 4]. Because conventional correlation is a shift-invariant
operation, shifts of the input pattern provide a shifted correlation output plane with no effect

on the field distribution, and pixels located close to the center have exactly the same effect
as pixels located in the outer area.
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90 Applications of the fractional Fourier transform to optical pattern recognition

In several pattern recognition applications, the shift-invariance property within the entire
input plane is not necessary and can even be disturbing. An example is the case in which
the object is to be recognized only when its location is inside a certain area and rejected
otherwise, e.g., a label that has been affixed on the incorrect place during manufacturing.
Several approaches for obtaining such space-variance detection have been suggested. The
first approach is the tandem component processor that trades the shift invariance with high
efficiency and a high peak-to-correlation-energy (PCE) ratio [5]. A different approach is
based on a coded phase processor that multiplexes many filters and yet keeps the space-
bandwidth product of the ordinary single-filter correlator [6]. Recently a space-variant
Fresnel-transform correlator [7], which is closely related to a lensless intensity correlator
[8], was suggested.

A similar approach is the fractional correlator (FC), whose optical implementation is
made with a setup similar to that of the VanderLugt correlator [9, 10]. In contrast to the
solution of using an appropriate input pupil that is open in the desired location, the FC does
not require any additional equipment for its optical implementation. The FC itself selects
the area of interest within the input scene. An additional example of the necessity of the
FC is the case in which the recognition should be based mainly on the central pixels and
less on the outer pixels (for example, in systems whose spatial resolution is improved in
the central pixels and thus the central region of pixels is more reliable for the recognition
process). An important application for the FC might be the detection of localized objects
by use of a single cell detector, eliminating the need for a CCD array detector.

Fractional correlation is a generalization of the conventional correlation operation, and
it is based on the fractional Fourier transform (FRT) [11]. The FRT operation is useful for
various spatial filtering and signal processing applications [12, 13], that is, it is defined
through a transformation kernel, as illustrated in Ref. 13:
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where B, (x, x') is the kernel of the transformation and p is the fractional order:
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This kernel has two optical interpretations: one is propagation through a gradient-index
medium [11] and the second is a rotation operation applied over the Wigner plane |14].
Both definitions were shown to be fully equivalent in Ref. 15.

Based on the conventional correlation definition (performing a Fourier transform of both
objects, taking the complex conjugate of one of the objects, multiplying the results, and
finally performing an inverse Fourier transform), a definition of the FC was formulated:
Performing a fractional Fourier transform of both objects, taking the complex conjugate of
one of the objects, multiplying the results, and finally performing an inverse conventional
Fourier transform. This definition for the FC is not the only definition, but it is one that was
found to have many useful properties and successtul applications [9]. The FC operation al-
lows us to control the amount of the shift-variance property of the correlation. This property
is based on the shift variance of the FRT, and it is more significant for the fractional orders of
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P = 0+2N andless for p 2 1 4+ 2N (N is any integer). Note that because the conventional
Fourier transform is a special case of the FRT (a FRT with a fractional order of | becomes the
conventional Fourier transform), the FC is automatically at least as good as the ordinary cor-
relator because itincludes the other as a special case and adds another additional degree of
freedom. In Section 4.2 the performances of the FC are evaluated according to three main cri-
teria: the signal-to-noise ratio (SNR) [ 16], the PCE ratio [ 17], and the Horner efficiency [ 18].

In the shift-variant correlation approaches, in order (o obtain a correlator with a certain
space variance, the length of the optical setup or the focal lengths of the lenses should
be designed properly (in order to obtain the appropriate fractional orders that correspond
o a certain amount of space variance). The filter placed in the fractional Fourier domain
contains the FRT of a certain fractional order of the reference object. In order to change
the amount of space variance, the fractional orders of the correlator should be changed too.
This is done by changing the distances and the focal lengths of the lenses. Because the filter
contains a different FRT order of the reference object, it must be recalculated. In Section
4.3, this necessity is overcome by the introduction of a different setup for performing a
partial space-variant correlation [ 19]. In this approach, in order to change the amount of the
space variance, one should change only the longitudinal location of the filter. The distances
between the optical elements and the focal lengths of the lenses should not be changed.
Also, the filter should not be recalculated or reencoded. It remains the same filter, and only
its longitudinal location is changed.

Another area for which the FC has a promising potential is noise removal. One can
assume an object that appears with several islands of chirp noise, each one with different
parameters. Thus, a FRT with a varied order (as a function of the localization at the input
plane), is required. This procedure is coined here as the localized ERT (LFRT) [20]. The
LFRT may be also used in problems of pattern recognition in which a different amount of
shift invariance is needed in different areas of the input plane. A common case in which
different space-variant processing is required is related to fingerprint recognition |21]. The
fingerprint is a pattern whose space variance is changed with the spatial location. The central
region of the pattern is more or less constant, whereas the outer region of the fingerprint is
changed from instant to instant because one never presses a finger with equal force. Thus, in
order to recognize or reconstruct those prints, one requires a processor whose spatial shift
variance is changeable. The amount of invariance needed for spatial shifting must be small
in the center, but in the outer regions of the print, increasing shift invariance is required
from the processor. In this practical case, a LFRT processor should be helpful. The LFRT
processor as well as its possible applications are discussed in Section 4.4.

Recently the FRT operation has been also extended to the anamorphic case [22, 23]. This
provides the possibility of independently varying the space variance of the system in two
perpendicular directions. In Section 4.5, a flexible system for obtaining an anamorphic-
based fractional correlation is proposed. It is based on an adjustable-scale anamorphic FRT
transformer, followed in cascade by a second transformer that, depending on the codification
of the filter, can be amorphic or anamorphic [24]. The system is employed for space-variant
processing, which implements multiple targets to be detected in different zones of the image.

As mentioned above, another approach for performing an optical spatial image pro-
cess is the JTC. This scheme does not contain any filter and thus provides some advan-
tages compared with the conventional VanderLugt 4- f configuration, in which the filter
should be generated in a complex process, and must be aligned with high accu-
racy. When the shift invariance of the input plane is not important, a fractional JTC
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configuration may be used [25]. This configuration is analyzed in Section 4.6. The ad-
vantages of such a configuration in the optical pattern recognition field are similar to the
advantages of the conventional JTC approach, but in addition the amount of the shift in-
variance may be controlled.

4.3 Fractional correlator performance analysis

In order to indicate the advantages of the FC configuration, its performance has been
examined. This examination was done according to common performance criteria, which
are described below.

4.3.1 Performance criteria

In this subsection three main performance criteria are presented: the SNR [16], the PCE
ratio [17], and the Horner efficiency [18]. The advantage of using the above criteria over
other common criteria such as the peak-to-maximum-sidelobe ratio [26] is that they may
be easily analyzed mathematically.

The SNR measures the sensitivity of the autocorrelation peak to additive noise at the
input plane. Mathematically,

_ IE[C(I.II+IE(0)]|Z

SNR = )
VAR[Cu|¢¢+rl (0)1

(4.3)

where u is the input signal, n is an additive noise, and C, , is the correlation between u
and v where in Eq. (4.3) v=u + n. E denotes the expected value operator, and VAR is the
variance over the ensemble n(x) [27].

The SNR measure considers only the average and the variance of the correlation peak
but not the shape of the correlation output. The shape is estimated by the PCE criterion that
measures the sharpness of the correlation peak. Its mathematical definition is

Cun(0)?
where E. is the energy of the correlation signal defined by
o0
E. = [ |Cuu ()1 dx. (4.5)

From Egs. (4.5) and (4.4), it is seen that for sharp correlation peaks, the value of the PCE
is large.
The criterion that measures the light efficiency is the Horner efficiency criteria. It describes

the ratio between the total light energy in the output plane and the total light energy in the
input plane:

f—?ooo lCu,v(x)Iz dx
T ol dx (4.6)

However, Horner later recommended another definition for 7 [28]:

1C.i,0(0)

T oy 4.7
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This definition is much more relevant for correlators because the significant output of a

correlator is the energy of the correlation peak itself [|C, v(0)|*] and not the energy of the
entire correlation plane.

4.3.2 Performance optimization in conventional correlators
Various filtering configurations exist in the literature [1,17,29], and each optimizes another
performance criterion.
The matched filter (MF) Hyp optimizes the SNR measure:

U*(v)

Hyi(v) = « o)’

(4.8)

where « is a constant that does not affect the SNR, P, denotes the power spectral density of
the noise n(x), and U is the Fourier transform of the reference object. For the special case
of white noise, P, = Ny (a constant), one obtains

Hyvr(v) = BU™(v), (4.9)

where 8 = («/Ny) (constant).

The filter type that is optimal according to the PCE measure is the inverse filter (IF),
which is defined by
U*(v)

) = TR

(4.10)

Intuitively, when the IF is used and the input is the reference object, the correlation signal is a
delta function (by design); thus the PCE ratio is the highest. However, the main disadvantage
of the IF is that it may contain infinite values.

The phase-only filter (POF) is defined by

U*(v)

Hpop(v) = o)l

4.11)

and is known to optimize the Horner efficiency measure [17]. The intuitive explanation is
that the POF does not attenuate the energy passing through the filter, as |H| = 1.

4.3.3 Performance optimization in Jractional correlators

In order to investigate which filtering configuration is optimal in the FC case, the fractional
power filter (FPF) term [17] has to be introduced. Note that in this term there is no con-
nection with the FRT although the name FPF could be confusing. The FPF definition is a
generalization of the various filters (MF, IF, and POF) presented above:

Hepp(v) = (U(v)I° exp[—i0(v)] = [U]~'U*, (4.12)

where U(v) = |U(v)| expli@(v)]. The value of the s parameter can be any real number. The
MF, POF, and IF are obtained with s = 4| , 0, and —1, respectively.

For the FC case we used the schematic sketch of Fig. | for the configuration of the FC.
We chose the parameters of p, = P, p2=—p,and p3 = —1.
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Fig. 4.1. Schematic sketch of the FRT filtering system.

Note that, for real input objects, choosing p; = —p is equivalent to performing a FRT
with the fractional order of p and applying the complex conjugate over the transformed
function.

The FRT of the reference function u(x) is denoted by FPu(x) = 1, (x,). The resultant
FPF filter is given by

H(xp) = ()~ (x,). (4.13)
The SNR measure can be obtained with Eq. (4.3) as

S Hpu(xp) dy, |

SNR = _
f_DOOU R!(—YPHH(IP)P d_\'!,

(4.14)

While dealing with input white noise n(x), we find that the obtained noise energy den-
sity P,(x,) is also white (see Subsection 4.3.6). Thus assuming P,(x,) = Ny and using
Eq. (4.13) result in

> - 2
[f-—og ]up(xp)lls—i-l dx,,]
oc - .
Np fﬁm I“l’(-tp)lz" (l.i'!,

In order to maximize the SNR expression with respect to s, (dSNR)/ds is set to zero:

> 2y d * s+1 ’
lup(xp)[ dxp'a; |“p(xp)! dxp
—-00 —0c

2
o0 ! d o0 5 .
= [f Iu,)(x,,)l”"'dxp] E;_“[ [t pxp)™ dxy. (4.16)

o0 o0

SNR =

(4.15)

After differentiation with respect to s, the following result is obtained:

STl dx, [ e, In(lu ) dx,

oC . - 00 .
S gt dx, S ! In(u ) dx,,

4.17)
The condition that maximizes the SNR [Eq. (4.17)] is satisfied for s = 1, which is the MF
H = u;.
The light efficiency of the FPF can be obtained from Egs. (4.6) and (4.13) as
[‘f";} IHP(XP)IZ(|+J) d’\-,’

T2l p(xp)2dx,

n= , (4.18)
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where § is a constant that is chosen so that the maximal magnitude of the FPF will be | (the
filter is a passive device). After Eq. (4.18) is rewritten,
S 2o H G )P s Joo TH )P ()12 dx,

n=28— . = -
S oo (xR d, Joo ()2 dx,

, (4.19)

where H is the filter distribution. It is easy lo see thatif H is a passive filter, any filter with
[H] =1 (not just a POF) maximizes the light efficiency of Eq. (4.6). However, when the
second definition of 5 [Eq. (4.7)] is used,

| 22 e o0+ d,

o0
f—ou |“p(-",u)|2 d-\'p

n==a§ , (4.20)

rewriting Eq. (4.20) leads to

| [0 Hxphu(x,) dx, |

ff‘; |t p(x )% dx,,

=5 I /‘_‘T;o IH(-‘;))I EKPE"¢H(—1’p)]lu,n(-l’p” expli¢|n(x]1)] d-rp'z

n=>=,

, (4.21)
ffio faepy(x)12 dx
where ¢y is the phase of H and ¢, is the phase of u,. Under the condition of the passivity
of H, the numerator is maximized if and only if oy = — ¢, and |[H| = 1, ie., H is a
POF.
The PCE of the FPF is obtained when Egs. (4.4) and (4.13) are combined:
o0 . 2
—oo I,
PCE — [./OOOQ I I - l'] . (422)
-[700 I“p(v\-p)lm(‘y-*-” dv\'_,,
After setting the derivative of Eq. (4.22) with respect to s to zero, one obtains
S P dny, %2, P Il ) d,
= - = —= — . (4.23)
f_oo [ty ¥+ du, fﬁoo letp 1+ In(luey|) dx),
The above condition is satisfied fors = — | (the IF) for any |u,(x,)| > 0. This result agrees

with the conventional correlator, for which the IF is designed to generate a delta function
at the correlation plane.

However, one should note that in the fractional case the PCE measure is not significant.
The PCE is a measure for the peak sharpness; however, the FC is shift variant and thus the
shape of the peak is irrelevant. In most cases the FC configuration may work with a single
detector. The FC cannot be used for localization of the input object; it can tell only if the
input object exists in some specific region. The only exception is for p values that are close
to 1. Then the shift variance is very small and the peak sharpness is relevant.

4.3.4 Signal-to-noise ratio comparison between a fractional correlator
and a conventional correlator

Here a comparison of the SNR performances for the FC and the conventional correlator
is performed. In the derivations below, white input noise is assumed. According 1o the
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Cauchy-Schwartz inequality, one may conclude that the correlation’s peak magnitude for

a matched filter H = u; 1s

Cr .(0)=C) (0), (4.24)

where 1 and v are any arbitrary functions. Note that the SNR is a function of the correlation
peak only and not of the whole correlation signal. When Egs. (4.3) and (4.24) are combined
it is easy to show that the SNR remains unchanged when the fractional order of the FC is
varied:

SNR, = SNR;. (4.25)

Equation (4.25) states an important feature: The SNR performance of the FC is exactly the
same as that of the conventional correlator. Thus the shift-variance property of the correlator
is achieved without decreasing the SNR performances.

4.3.5 Fractional correlator performance with additive colored noise

Any colored noise n.(x) can be constructed from white noise ny(x) with a power spectrum
of Sny(v) = Ny convolving it with a linear time-invariant filter #i(x). The obtained power
spectrum is |[27]

Sn(v) = E[IN(WYHW)*] = E[INW)2)|HW)? = NolH(v)P2, (4.26)

where N(v) = F'ny(x) and H) = F'h(x). E[-] denotes averaging over the ensemble of
the noise samples [27]. The relation between the statistical autocorrelation function and the
power spectrum of the colored noise is an inverse Fourier transform:

Rno(x;,x2) = Rn(t = x| — x2) = F“'Srrt.(v). 4.27)

To find the noise spectrum at the filter plane, let n,(xp) denote the FRT of one sample of
n.(x). According to Eq. (4.2) the relation between n, and n. is

o 2 2

X< 4 x5 X

n,(x) = f ne(xp)exp (in% — Zm'%) dxy, (4.28)
=00

where
S =sing T =tang, 4.29)
To find the power spectrum Sn ,(v), one needs to write the autocorrelation function Rn P
Rn,(xy, x) = E[n,,(x,)n;‘,(xz)]. - (4.30)

By using Egs. (4.28) and (4.29), one obtains

2 2

R e 2 2
+x2—x2—
R"p(xl.xz)=f / E[uc(x,)n:(xz)]exp(,',txl *o sz Xy
00 J 00

 X1X0 — X2X

- 2mi S ) dxg dx. (4.31)
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Note that E[n.(x))n}(x2)] = Rn.(x; — x3), and thus

(e8] [o o]
thp(m,xz):f f Rn.(x) — x3)
—00 v —00
2 ”?

2 2 " '
Xitxg—x—xg 9 X1X0 _xzxﬂ)drgdx’

X exp(i:r o (4.32)
T

From Eq. (4.32) it is clear that Rn, cannot be written as Rn,(x; — x2), and thus Rn,,

is a nonstationary random process. Because the usual Fourier-transform relation between

the autocorrelation and the power spectrum does not hold for a nonstationary process, the

following relation should be used instead [27]:

0]
Sn,(v) = f (Rn,(xy, x; + Ax)) exp(—=i2mvAx)dAx, (4.33)
—-00

where (- ) denotes averaging over x;. This relation was used for calculating the noise power
distribution for various fractional orders by means of a computer simulation. The input
colored-noise shape is a low-pass noise with a Gaussian spectral shape. Figure 4.2 illustrates
the power distribution after the FRT (at the filter plane) for various fractional orders.

The result was obtained by the averaging of 100 random colored-noise vectors (because
the vector is finite for p = 1, no fine Gaussian was obtained). The purpose of Fig. 4.2 is to
illustrate that the increment of the fractional order p narrows the spectral width of the noise.

1 5 Ll T T T T T

Power

Xp

Fig. 4.2. Average power distribution for low-pass input noise.
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Fig. 4.3. Colored-noise and object power distribution at the filter plane for p = 0.5.

In Fig. 4.3, colored noise is assumed with a Gaussian shape at the fractional plane of
p = 0.5. This Gaussian distribution is plotted in the middle of the figure. As the reference
object, a bar-code pattern was assumed. The FRT magnitude of the reference object for
p = 0.5 is also plotted in Fig. 4.3. According to the Perseval theorem, the integral over
the overlapping area between the spectrum of the noise and the reference object equals the
noise added to the correlation peak.

Consider a different reference object, for example, the same bar-code pattern but shifted
along the x axis. The FRT magnitude is changed and shifted as shown in Fig. 4.4. Note that
the overlapping area between the noise spectrum and the signal spectrum is reduced.

This example shows that the noise performance for the FC and the non-white-noise
case is object dependent, which means that the correlation peak’s sensitivity to the input
noise is affected strongly by both the reference object and by its position. Note that, in the

above simulations, the Gaussian shape distribution was chosen for the fractional plane of
p=0.5.

4.3.6 Fractional Fourier transform of white noise

The statistical autocorrelation of a zero-mean, stationary white-noise random process nq(x)
is [27]

Rng(xy, x2) = Nyd(x) — xp). (4.34)
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Fig. 4.4. Colored-noise and shifted object power distribution at the filter plane for p =
0.5.

The FRT of the white-noise input is denoted by n,(x). The statistical autocorrelation of
n,(x)is

Rn,(xy,x7) = E[n,.,(.\‘l)n;,(,tz)]. (4.35)

By using the FRT definition |Egs. (4.2) and (4.29)], and changing the order of integration
and expectation, one obtains

Eln,(x)n,(x2)]

00,0 2y 2 22 vy
:f f Rnu(x,x')exp(m" “'Tx aF —217:3?&) dvdx’, (4.36)

When Eq. (4.34) is used, Eq. (4.36) becomes

00 22 1 — Xn
E[ﬂp(X|)n;(.Xl)] = Nu[ exp(in'xl T 2 2i7rxl| 5 )'“) dx, (4.37)

—00

which yields
Rn,(xy, x2) = Nod(x) — x7). (4.38)

With a similar derivation it is easy to show that for a zero-mean input noise, the output
is zero mean as well:

Eln,(x)] = 0. (4.39)

Thus from Eqs. (4.38) and (4.39) it is clear that n,(x) is zero mean, stationary, and white.
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4.4 Fractional correlator with real-time control of the space-invariance property

As mentioned above, the commonly known configurations for obtaining the FC are prelim-
inary designed to obtain a FC with a predefined fractional order and a predefined filtering
function. The distances between the optical elements and the focal lengths of the lenses are
determined accordingly. In order to change the fractional order of the FC, one must change
the distances between the elements of the setup and change the focal lengths of the lenses,
and recompute the filter function. In this section we illustrate a new type of FC with real-time
control of the space-invariance property. Here the amount of the shift variance (fractional
order) is controlled only by the longitudinal position of the filter. In order to change the
fractional order, one should vary the longitudinal position of the filter. The focal lengths of
the lenses, the distances between them, and the filter’s function should not be changed.

4.4.1 Mathematical analysis

The suggested FC with a real-time control of the space-invariance property is illustrated in
Fig. 4.5. In this setup the parameter a (the longitudinal position of the filter) varies from
0 to 1, and it corresponds to the amount of the shift invariance (the fractional order of the
correlator). In order to change the fractional order, one should vary the parameter a. The
filter itself remains unchanged when the fractional order is varied. To prove this, let us
first analyze the first part of the optical system of Fig. 4.5. In this part the input pattern
g(x) is first multiplied by a lens, transparency expl(—imx?)/(Af)], then it is propagated
(with the Fresnel diffraction formula) by a distance af in the free space (f is the focal
length of the lens). Now the field distribution is multiplied by the filter F(u). F(u) is
the conventional Fourier transform of the reference impulse response. The result is again
propagated a distance of (I — a) f in the free space with the Fresnel diffraction formula.
Another multiplication with a lens, exp[(—in v2)/(Af)), is done. The second part of the
system is simply a Fourier transform over the output of the first part.

After the above-mentioned mathematical analysis, the field distribution at the output of
the first part of the system (at the Fourier plane) is

irav? x
D(U) = Cexp[m] j F(M)Z(H)

X ex “_m'i_ exp| —2n L d (4.40)
Ploaa a7 1P 0 —ar)™ :
Filter
plane
alx) f F(u) f] f f
i
af o J-a)fO‘n O
Input f Fourier f “output
plane plane plane
D{v)

Fig. 4.5. Suggested optical filtering system.
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where C is a constant and

% inxz(—l- - 1) i
Z(u):f glx)exp + exp[ 2mﬁ] (4.41)

Note that in Eq. (4.2) a normalized coordinate set x, (that has no physical dimensions) was
used:
Xpl
xr = e L]
VASf
where x, is the normalized coordinate and Xph 18 the physical coordinate. Note that the
normalized setis good for mathematical analysis. However, because here we are dealing with
physical implementation, the physical set must be used. A comparison between Egs. (4.2)

(in physical coordinates) and (4.41) shows thatexp{[iw (1 —a)u?]/[Aa(l —2a—2a%) f1)Z ()
is a scaled FRT of g(x):

[ in(l — a)u?
(4
ra(l —2a —2a®)f

(4.42)

:| Z(u) = FMg(x) =G, (su), (4.43)

the fractional order is notated by p,, and s is the scaling factor. The relation between the
a parameter and the fractional order p; can be easily derived again from the comparison
between Eqs. (4.2) and (4.41);

mm 1 a

t = - , 4.44
an 2 L l—a (444

and the scaling factor s is found to be

. i
s -——
) 1

§ = = . (4.45)
a V1= 2a+ 2a?
Note that the quadratic exponent exp{[in(l — a)u?}/[ra(l — 2a — 2a?) f1} that multi-
plies Z(1) in Eq.(4.43) was determined to fit the quadratic exponent exp{(imx?)/
[Af tan(p,(rr/2))]} appearing in Eq. (4.2) (after the scaling factor x = su was substituted).
Thus Eq. (4.41) may be rewritten as

, imav? * i Lu? . uv
Dv)=C exp[m] /:OO F(u)G,,,(su)exp( v ) exp[—me] du,

(4.46)
where C’ is a constant and
1 1 —a a
= - = . 4.47)
a(l —a) (1 =2a+2a%)a (1 —a)1 —2a + 2a?)
Rewriting Eq. (4.47) leads to
” imav? oo
D) =C exp[m] j:oo F(u)Gp, (su)
iJT(Su)Z—z su-li
x exp| ——— |exp| —27i —5 — d(su), (4.48)

rf )»(1 —a)f
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where C” is a constant. After changine the inte rration variables to ' = su, one obtains
o

D) = C” iTav? f’“ F “’)G ')
= p| —m—— - )
v - Ml —=a)f]J_ o s )

L

. 2
1o -

)LfA

X exp epr:—eri——*—u—-] du’. (4.49)

Av(l —a) f

Another comparison between Egs. (4.2) (in physical coordinates) and (4.48) shows that
Eq. (4.48) is an exact FRT of the order of P2 over the multiplication between the scaled
filter F(u/s) and G, (u) |the FRT of the order of P oover g(x)):

,
P st | —a

L =—=— 4.50
T T T 4.50)
thus
Lo ] ’
lan 5 = _[m:r-*, (451)
= tan
which means that
pr=1-p,. (4.52)

Thus a FRT of the order of p; is applied over the multiplication between Fu/s)and G, (1)
[the FRT of the order of p, of g(x)]. Because Fu/s) = F' f(sx), the setup performs a
fractional correlation between the scaled reference object f(sx) and the input object g(x).
Because the second part of the optical setup performs a conventional Fourier transform,
the flow chart of the system can be illustrated, as was done in Fig. 4.1, choosing p, = 1,
p2=p,and p3 =2 — p.

4.4.2 Interpretations

The most general schematic sketch for the fractional correlator is shown in Fig. 4.1. For this
configuration a condition was derived for the fractional correlator that is optimal according
to the PCE criteria [30):

1 1 |

n T T )

where
Ty = tan ¢y, b = pr(n/2), k=1,2,3. (4.54a)

According to Subsection 4.4.1, which illustrated the equivalence between the suggested
optical setup and the flow chart of Fig. 4.1 (for P1 =1 p2= p,and p3 =2 — p), one can
easily see that the condition of Eq. (4.53) is fulfilled. To examine the applicability of a FC
with parameters py = p, p = |, and py =2 — P, let us first investigate the mathematical
expression of the correlation plane. If the input object is indicated by g(x) and the reference
object by f(x), the mathematical expression for the output of general FC (sce Fig. 4.1) is,
according to [30]:

V)l = f o f [ — - "‘) ' ﬁ—) dx 4.54b
V= g, (sinqb sin ¢ e tan ¢ alg (4.54b)
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Assuming that the input is shifted and illuminated by a converging spherical wave, one
obtains

o (v = xg)?
gx) = u(x — xy)exp g . (4.54¢)
tan ¢
where u is the object we wish to recognize and x; is the relative lateral shift between the
reference object encoded in the filter and the input pattern. Assuming also that the filter is
S(x) = u*(—x sin¢) one easily finds that

fu(,r, — xphu(xy + x)exp (M) d.x.‘ . (4.54d)
tan¢

Observing the last expression reveals that the ideal peak is obtained if xy = 0. The location

of this peak is on x = 0 and it will not depend on the fractional order. However, if x; is not

zero a disturbing phase factor appears in the exponential term that will attenuate the peak

if the shift xq is too big.

Another ability of this configuration is as a noise-removing filter for an additive chirp-
type noise. This time the input should be illuminated by a plane wave (and not a converging
spherical wave) and F (1) should be a notch filter (all pass filter that blocks only the axis cen-
ter coordinate in order to remove the delta obtained in the filter plane due to the transformed
chirp-type noise).

V) =

4.5 Localized fractional processor

The FC discussed so far was based on the FRT with a uniform fractional order applied over
the reference and the input functions. In this section we introduce a localized FRT (LFRT),
i.e., a FRT whose fractional order is space dependent, and thus the amount of shift variance—
invariance is also spatially controlled. Such a transformation may be implemented optically
in FC configurations, that achieving both shift-variant noise removal (for nonstationary
noises whose statistical properties are varied with the spatial position) and image detection
(for many detection applications that could be implemented with better efficiency by shift-
variant or partially shift-variant processors).

4.5.1 Mathematical definitions

The basic assuﬁ]plion of the LFRT is that there is a full spatial separation between the areas
that require different FRT orders. Thus we suggest, as a preliminary action, splitting up
the different areas into different spatial locations. Assuming an input signal f(x, y) and
writing it as a separation of independent areas (as shown in Fig. 4.6) gives

i=N
fOny) =) fxr, »Ax, y). (4.55)

i=
Each spatial area that is supposed to be transformed with a different fractional order is
called a channel. The separation between the channels is achieved by the encoding of every
area A;(x, y) with a different spatial frequency. Thus, after applying the FRT operation, one
obtains
i=N

OUT(u, v) =) [G,-(u, v)f fe, A, ¥)B,, (i, v; x, y)dx dy], (4.56)

i=1
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Fig. 4.6, Writing the signal as a separation of independent areas.

LP1 Lp, Lp,

ﬂ ﬂ ﬂ

fi fi

Fig. 4.7. Optical setup for obtaining a FRT with fixed distances and varying orders,

where B, (4, v; x, y) is the two-dimensional FRT kernel, p; is the space-variant fractional
order, and G;(u, v) is the independent output area in which the LFRT is obtained.

In the proposed processor we use the FRT optical configuration that is presented in
Fig. 4.7. Here, the distances are fixed for all fractional orders and only the focal lengths of
the lenses are varied for changing the FRT order.

The validity of this setup was proved in Ref. 31, in which Wigner terminology was used.

In this reference it was also shown that the focal lengths of the three lenses are related to
the desired fractional order as

Ly = —m—{l : (4.57)
tan3 + |
fi
L 22 = ‘—'_._._' 4-
P sing + 2 (4.58)
LI’J = LF:' . , (459)

where f) is a scaling constant of the FRT that exists in the physical coordinates {x, = [xpn/
(Af1)'/?]} and ¢ is related to the fractional order p as ¢ = [(pr)/2].

Figure 4.8 illustrates the optical setup used to obtain the LFRT. In this setup three filter
plates are drawn. The input plate is divided into areas; in each area a different fractional
order is to be applied. Every area is also multiplied by a quadratic-phase filter (a lens) of
exp[(—inxz)/(AL,,,)]. L, is calculated according to Eq. (4.57), and the ¢ value in the
equation is determined according to the fractional order applied in that specific spatial area
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Fig. 4.8. Optical setup for obtaining the LFRT.

Area
4

Fig. 4.9. Separation of the different areas A, (x, y) to the different channels.

A;i(x, y). Hence the input mask plate is

FILi(x, ) = ) Ai(x, y)R;, (x, y)LENS,(p)), (4.60)

where R; (x, y) is the Ronchi grating and LENS,(p;) is the lens suitable for the specific
spatial area according to Eq. (4.57). Note that the mask is plotted as a single diffractive
optical element. The Ronchi grating R;, (x, y) is added to the mask in order to obtain spatial
separation between the different areas that are about to be processed by the different FRT
orders. A full spatial separation is needed so that information on the different spatial areas
will not be mixed. The Ronchi grating separates the different areas into different channels
by aiming the information of each area to a different spatial region. One controls the amount
of separation between the different channels by changing the direction and the rate of the
lines in the grating R; (x, y). Note that the spatial separation will be obtained after the
free-space propagation.

When the light hits the second mask FIL,(&, 1), the information of the different areas
A;(x, y) is already spatially separated into different channels, as illustrated in Fig. 4.9.

Thus the function of the second mask is

FIL2(&, n) = R, (&, n)LENS,(p;) (4.61)

per each spatial channel.
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Ri, (&, n) is another Ronchi grating that is supposed to correct the undesirable linear-
phase factor introduced by the first Ronchi grating (exactly as was done in the multifacet
method [32]). The term LENS:(p;) indicates the lens that is suitable for a specific channel
and calculated according to Eq. (4.58).

After additional free-space propagation, the last mask FIL3(u, v) is placed. This mask
consists of a lens calculated according to Eq. (4.59) for each spatial channel (each channel
corresponds to a different fractional order). At the output plane, the FRT of each order is
obtained in different spatial locations.

4.5.2 General applications

The applications of the suggested transformation could be significant in deterministic as
well as in statistic signal processing.

A reconstruction of a FRT processor that can deal with several FRT orders simultaneously
expands the application list of the FRT. The FRT by itself is an optimal tool for filtering
chirp noise because in the FRT domain this type of noise becomes a delta function that
can be easily filtered [12]. However, an object with chirp noise that, in different locations,
appears with different densities cannot be handled effectively by a fixed FRT order. Another
important application of a varying FRT's order processor relates to an application in which
different amounts of shift variance are needed in different regions of the object. For example,
an envelope for which one may want to detect the stamp with high shift variance (fractional
order close to 0) and the zip code with low shift variance (fractional order close to 1) needs
a processor with more than one FRT order.

Note that the alternative solution of splitting the input into several channels, while each
channel handles one specific FRT order, is expensive if a space-bandwidth product or
intensity limits exist for the system. Also, if after the processing one wants to compose
back the image, it becomes much more complicated when one is dealing with multichannel
systems. Furthermore, the option of using a cascade filter (which for some applications
might be effective) usually does not have good results. Figure 4.10 illustrates such a case; it
presents a Wigner chart. The signal is plotted as the filled shapes and the noise is represented
by the unfilled shapes. A cascade application of a FRT will cause a rotation of the total chart

Rl 4

ZaN K(
J

Fig. 4.10. Wigner chart of a case in which the LFRT is useful.
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[14]. For any possible rotation, no separation between all parts of the signal and the noise
is possible. However, if a LERT is applied, the separation may be achieved. The optimal
method for this casce is o apply a different-order FRT for the regions v < 0 and x > (. For
the region x < 0 one should rotate the Wigner chart at an angle that is required for separation
between the signal and the noise in this region. For x > 0 a different rotating angle should
be applied in order to perform the separation. After the filtering of the noise, a perfect
reconstruction of the signal will be obtained.

Anadditional possible application of the LERT is to repeat the derivation done in Section 2
for the FC performance optimization. In those derivations it was shown that the optimal filter
for the FC case is object dependent and that the fractional order p can optimize performance
criteria as the SNR or the PCE ratio. Here we have another degree of freedom, which is
the spatial dependence of p:p(x, y). Thus, by the design of an optimal spatially dependent
filter, the performances might be improved, as p is no longer a constant, but a function.

4.5.3 Application for pattern recognition

The most common case in which different spatial shift-variant processing is required relates
to fingerprint recognition [21]. The fingerprint is a pattern whose spatial variance is changed
with the spatial location. Its central region is more or less constant, whereas the outer one is
changed from instant to instant as one never presses his or her finger with equal force. Thus,
in order to recognize or reconstruct those prints, a processor whose spatial shift variance
is changed is required. Because of the physical construction of the filter, a small shift
invariance is needed in the center, but in the outer regions of the print, an increasing shift
invariance is required. In this practical case a LFRT processor should be helpful, because
an efficient recognition of the fingerprints can be applicable, for example, in safety lockers
or in gaining admittance to permission-restricted entrances.

4.5.3.1 Computer simulations

In our computer simulations two fingerprints of 256 x 256 pixels were taken from the same
finger of the same person. Both fingerprints are illustrated in Figs. 4.11 and 4.12.

One of the prints was taken as the reference object while the other was used as the
testing input. As the first stage in our simulated experiment, a conventional Fourier analysis
was done. The input was Fourier transformed, multiplied by the conjugate of the Fourier
transform of the reference object, and finally inverse Fourier transformed. The central line
profile of the obtained correlation peak is shown in Fig. 4.13.

Note that, in order to obtain fair performance comparisons in each simulation, the MF
was normalized by the energy of the reference pattern. As one can note, the quality of the
correlation peak is not very good. For the second stage, a FRT analysis was done. The input
pattern was fractionally Fourier transformed by the order of p, multiplied by the conjugate
of the fractionally Fourier-transformed (also by fractional order of p) reference object.
The multiplication was eventually fractionally Fourier transformed by the order of —1
(an inverse Fourier transform). This is according to the definition of the optimal FC that
is given in Ref. 9. This procedure was done for different fractional orders. The fractional
order that was optimal according to the correlation peak form was found to be p = 0.9.

Figure 4.14 illustrates the central line profile of the output correlation peak obtained for
p =109,
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Fig. 4.12. Fingerprint used as the input object.
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The correlation for p=1

e

Fig. 4.13. Central line profile of the correlation peak when Fourier processing is used.

The correlation for p=0.9
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Fig. 4.14. Central line profile of the output correlation when FRT processing of p = 0.9
is used.

As one can note, the peak is much narrower than that of Fig. 4.13. Thus, for the fingerprint
case, partial space-variant filtering obtains a much better performance than a regular Fourier
analysis. For the third stage, a LFRT was applied. As mentioned above, the inner area of
the print is less space variant than the outer area. Thus the fractional order for the inner area
should be smaller than that for the outer area. The processing filter should be more space
invariant at its outer region than at its inner ones. We divided the processing zone into two
areas: the inner area, which was defined for the pixels 64 < x < 192,64 < y < 192, and
the outer area, which was all the rest. After some computer investigation we found that the
optimal fractional order for the inner area is p = 0.86 and for the outer one is p = 0.94.
Thus the constructed processor performed a FRT of p = 0.86 in the inner area and a FRT
of p = 0.94 in outer one. The processor may be optically implemented as illustrated in
Ref. 20 and in section 4.5.1.

The LERT processor of Ref. 20 is multichannel. The two processing areas are separated
by reference gratings. A suitable correlation peak is obtained in each processing channel.
The processing over the inner area contains the performance of a FRT of p = 0.86 over the
inner area, multiplying it by the inner area of the reference object that is fractionally Fourier
transformed with p = 0.86 and obtaining a FRT of p = —1 over the result. The processing
over the outer area is exactly the same procedure, but is performed with the fractional order
of p = 0.94 instead of 0.86. The profile of the central line in the obtained correlation peak
is shown in Fig. 4.15. Figure 4.16 illustrates the same but for the outer region.
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The correlation of the inner area
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Fig. 4.15. Central line profile of the correlation peak obtained for the inner area of LFRT
processing.
The correlation of the outer area
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Fig. 4.16. Central line profile of the correlation peak obtained for the outer area of LFRT
processing.

As one can note, both peaks are very sharp and narrow. The obtained peaks are ~10%
higher than the peaks of Fig. 4.14 or Fig. 4.13. Thus the performances of the LFRT are
better compared with those of the conventional Fourier processor or the optimal uniform
FRT processor. A complete LFRT would combine the two detected images to gain even
more discrimination.

4.6 Anamorphic fractional Fourier transform for pattern recognition
4.6.1 Anamorphic fractional Fourier transform

The FRT concept can be extended to the anamorphic case [ 22, 23]. This modification permits
the use of different fractional orders for two orthogonal axes of a two-dimensional image.
The main potential of the anamorphic transform is its possibility of achieving different
amounts of shift variance in the two different axes. A clear example for its advantage occurs
when shift-invariant detection of objects along a row is needed. However, in the direction
perpendicular to the row, there is no need to keep the shift-invariance property. Depending
on the characteristics of the object to be detected, the decrease of shift invariance may
result in a gain in the performance of the correlator, mainly in peak sharpness and the SNR
[9, 33]. In addition, in special cases, the shift variance can help in locating the object. The
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detection peak will be produced only when the input object lies along the line where the
shift invariance is kept.
The anamorphic FRT is defined as [34)

oo ou x2 + x:’Z 2 + \,’2
FPePy(x!, y’)ﬂf f S, y)explin +
—00 J —00 T\' T_v

xx! yy'
—2im| — + — dx dy, 4.62
m( 5. + s, )] x dy (4.62)

where

T, = lfh‘ tan ¢, S, = A«fl.l: sin ¢, , d = P;—(JT/Z).
Ty = Afiytang, Sy = Afiysing,, @, = p(m/2) (4.63)

where the subscripts x and y indicate the horizontal and the vertical directions of the system,
respectively. Because here we are dealing with physical implementation as well, we use
the physical coordinate set. The additivity property of the FRT allows us to implement the
anamorphic FRT by cascading an amorphic setup, which performs the FRT with the order
that is the lower between p, and p, and an anamorphic system that obtains a FRT in one
axis and imaging in the other one [23]. Other setups providing a higher compactness or
flexibility have also been proposed 22, 23].

An alternative approach for obtaining the anamorphic FRT is based on the setup described
in Ref. 35. Instead of preparing a full setup containing two lenses and free space propa-
gation, one illuminates the object with a converging beam. The convergence-phase factor,
multiplying the object, may be changed by the displacement of the object along the optical
axis. The matching between the distance object-filter and the convergence beam phase may
produce any desired order and scaling factor for the FRT. This fact makes the last approach
more convenient for the experimenter, as the exact sizes of the transparencies are often not
precisely determined. Note that the FRT obtained in this method is inexact. It does not have
the final quadratic-phase factor, and thus the correlation plane will be displaced along the
optical axis. In the case of an anamorphic FRT the convergence of the beam at the output
of the filter plane will be different in the two main axes. In order to focus the correlation,
an anamorphic system will be needed.

The setup for performing the anamorphic fractional correlation is shown in Fig. 4.17.

The adjustment of distances a, and a, determines the proper order for the FRT. The scale
factor of the FRT is variable, as a parameter independent of the order. For practical reasons
one should try to reduce the number of cylindrical lenses in the constructed optical setup.
In the chosen configuration, only three cylindrical lenses and one spherical lens are used.

fy Iy Input FRT Output

N
Yy v ‘F: E

Fig. 4.17. Experimental setup for obtaining the anamorphic fractional correlation.
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f=f,/tan(P%)

Input Output

Z=f; sin(Pg)_.I

Fig. 4.18. Optical setup for performing a FRT operation.

The price to be paid for this simplification is the aspect ratio of the FRT (quotient between
the x and that y scale ratios), which cannot be adjusted. Inserting an additional anamorphic
image forming system (which provides different magnifications in both axes) stretches the
image of the FRT plane and corrects the problem. The output of this imaging system is then
taken as the input for the inverse-transforming subsystem. This additional complexity can
be avoided in most practical cases. As shown in Figs. 4.17 and 4.18, because the Z distance
is equal for both axes, one may write the following:

e Pyt

Z=27Z,= fi;sin > = Z, = fi, sin 5 (4.64)
Thus the aspect ratio (AR) between the two axes is
Loy
£, sin 5
Sy sin——

4.6.2 Multiple fractional-Fourier-transform filters

One of the motivations of the anamorphic FRT approach is to design a composite filter
that is able to recognize object A or a certain deformation of this object in region .4 and
object B or a certain deformation of it in region B. In order to obtain these capabilities, an
anamorphic FC is used.

To implement the demands, we place object A in region A, which is assumed to be in
the upper part of the input scene. If a FRT of 0.5, for example, is performed over this
input over the y axis, the obtained fractional spectrum will be concentrated mainly in the
upper region of the output plane (region .A). Because the fractional order of 0.5 determines
a transformation that is only partially shift invariant, shifting the input object therefore
causes a shift of the fractional spectrum. This does not occur in the conventional Fourier
transform (p = 1), in which the shift of the input object is expressed by only a linéar-phase
factor in the spectral plane. The same happens if object B is placed in the lower region of
the input scene (region B). This results in a fractional spectrum that is concentrated mainly
in the lower part of the fractional spectrum. Thus a simple summation of the fractional
spectra of A and B will create a joint spectrum basically without overlapping between each
one of the spectra (A and B) individually. The obtained filter is able to recognize only
object A in region A of the input scene (upper part) and only object B in region B (lower
part).
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Assuming that along axis x one wishes to obtain full shift invariance, i.e., when object
A is located in region A, object A can move along the x axis and yet be recognized, and
the same property should be ensured for object B. Thus a FRT with a fractional order of 1
(conventional Fourier transform) over the x-direction should be performed.

We now summarize the procedure for preparing the filter for a certain example. We denote
by p, the fractional order performed in the x axis and by py the fractional order in the y
axis. Object A is shifted to the center of region .4 and an anamorphic FRT is calculated with
the fractional orders of p, = 1 and py = 0.5. The complex conjugate of this distribution is
taken. Now this filter itself will detect the presence of object A at the center of region .4 by
producing a correlation peak located in the center of the output plane. Because it is more
convenient if the peak is produced over the object and not in the center of the output, the
filter is multiplied by a linear-phase factor that deviates the correlation peak to the object’s
location. This linear-phase factor is calculated according to the distance between the center
of the input image and the position where the target has been displaced in the first step
of the filter preparation (the center of region A). The same process is repeated for object
B, with the corresponding displacement to the center of region B. The two distributions
obtained in this way are added to construct the final filter. The resulting filter is placed in
the appropriate fractional Fourier domain in the anamorphic correlator.

If, instead of detecting object A in region A and object B in region B, one prefers to
detect a certain deformation of object A in region A and a different deformation of object B
in region B, the same approach can be applied. Let us assume that a one-dimensional (1-D)
x-direction scaling-invariance property of object A is required to be detected in region A and
a I-D y-direction scaling invariance of object B is required to be detected in region 5. One
way of obtaining a 1-D scale invariance is to use the logarithmic harmonic decomposition
[36]. Thus here object A was decomposed to the proper logarithmic harmonic (x scaling
invariant), and the harmonic was shifted to the center of region A. In the same manner,
object B was decomposed to the proper logarithmic harmonic (y scaling invariant), and the
harmonic was shifted to the center of region B. Then a FRT with the fractional orders of
Py =1, py = 0.5 is performed over the sum, and a complex conjugate of this function is
obtained. The resultant filter is placed in the fractional domain of the anamorphic FC. Note
that, when this approach is used, any invariant property can be detected in region A or B if
the proper harmonic decompositions are used in each region.

4.6.3 Optical implementation

In the FRT processor the scale of a filter’s distribution is crucial for obtaining the desired
results. In a case in which the input object is recorded on photographic film and the filter is
generated by a computer, the scales can be matched duri ng the recording process. However,
this requires high accuracy. Moreover, if instead of a computer-generated hologram, spatial
light modulators are used for either the input transparency or the filter, the scale cannot be
controlled. Special difficulties appear when the sizes of input and output do not match. A
way to overcome this problem is to use an adjustable anamorphic FRT correlator [35]. It
is based on the setup depicted in Fig. 4.18, in which the order can be varied by a change
in the focal length of the lenses and the distance between input and output. Huminating
the input transparency with a nonparallel beam and displacing the object along the optical
axis vary the convergence of the beam that illuminates the input. This is fully equivalent to
changing the focal length of the first lens in the setup of Fig. 4.18. The separation between
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the input and the output must be varied accordingly so that the condition for being a FRT
of the desired order is fulfilled. The second lens is removed from the setup. The resultis a
fractional transform with a variable scale, but with an additional quadratic-phase factor in
the output planc. Because in a FC the anamorphic transformer is only the first stage of the
complete correlator, the quadratic-phase factor will change only the position of the output
correlation plane.

4.6.4 Results
4.6.4.1 Computer simulations

Several computer simulations were performed to demonstrate the performances of the
proposed filter. For those simulations the input image illustrated in Fig. 4.19 was used.

The constructed filter is supposed to recognize an F-18 airplane in the upper part of the
input and a Tornado airplane in the lower part. As mentioned above, for the construction
of the filter, the F-18 airplane was shifted to the center of the upper part of the image
and the Tornado was shifted to the center of the lower part. The above-outlined procedure
was followed to obtain a filter with the fractional orders of p, =1, p, =0.5. The chosen
fractional orders caused the filter to be fully shift invariant in the x direction and also to
allow a small amount of shift invariance in the y axis. In the input scene illustrated in
Fig. 4.19, the y positions of the centers of the F-18 airplanes in the upper part and the y
positions of the Tornado airplanes’ centers in the lower part were separated by few pixels.
Figure 4.20 is the obtained output plane. One can note good correlation peaks that indicate
the existence of the F-18 in the upper part and the Tornado in the lower part.

The possibility of recognizing different deformation properties in different parts of the
image is demonstrated in Fig. 4.21.

In this case the purpose was to obtain an x scale-invariant recognition of F-18 airplanes
in the upper part of the scene and a y scale-invariant recognition of the same target in the
lower part. For the construction of the filter, an x scale-invariant logarithmic harmonic of
the F-18 was calculated and shifted to the center of the upper region of the image. Then a

Fig. 4.19. Input image used for computer simulations and optical experiments.
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Fig. 4.20. Numerical calculation of the correlation that shows detection of the F-18
target in the upper part of the image and the Tornado in the lower part.

Fig. 4.21. Input image used for computer simulations.

¥y scale-invariant logarithmic harmonic of the F-18 was calculated and shifted to the center of
the lower region of the image. The above-outlined procedure was performed to obtain a filter
with p. =1, p, =0.5. Successful recognition is demonstrated by the distinct correlation
peaks of Fig. 4.22.

A threshold of 35% of the maximum intensity value is enough to detect the true larget
peaks from the peaks that correspond to other objects and from the background.
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Fig. 4.22. Numerical calculation of the correlation that shows detection of the F-18
target with invariance to a 1-D scale in two axes.

Fig. 4.23. Experimental results for a multiple anamorphic FRT correlation with the
image in Fig. 4.19.

4.6.4.2 Optical results

In orderto test the performance of the suggested approach experimentally, a binary computer-
generated mask was plotted. Then it was reduced by 20% with a high-resolution camera.
The hologram was a 128 x 128 pixel Lohmann encoding mask [37]. The input scene size
was 4.2 x 4.2 mm, and the filter size was 8.5 x 12 mm. This aspect ratio between the
axes was calculated according to Eq. (4.65) [AR = sin(0.57/2)/sin(mr/2) = 8.5/12]. At
the output plane, a CCD camera connected with a Matrox image LC framegrabber was
used in order to grab the correlator output. The input scene is illustrated in Fig. 4.19. The
experimentally obtained output is shown in Fig. 4.23.

These pictures show the intensity at the output correlation plane. The experimentally
obtained results appearing in the first diffraction order match with the computer simulations
illustrated in Fig. 4.20. In order to adjust the system a special plate was used, as explained
in Refs. 24 and 35.
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4.7 Fractional joint transform correlator

The JTC configuration is based on the simultaneous presentation of two patterns at the input
plane, each laterally shifted from the center of the axis. Thus such an approach does not
require the generation of a complex filter and aligning it with high accuracy in the Fourier
plane. As Fig. 4.24 shows, a schematic configuration of the JTC contains a 4- f setup that
at its Fourier plane includes a square-law converter device (a device that converts field
distribution to amplitude distribution).

The output first diffraction orders of such a method are the correlation between the two
input patterns. Several approaches for implementing the square-law conversion have been
suggested, such as photofilm [3], a spatial light modulator [38], and liquid-crystal light
valves [39]. When the shift invariance of the input plane is not important, a fractional
JTC configuration may be used [25]. This configuration is first analyzed and then optically
implemented in this section. The advantages of such a configuration in the optical pattern
recognition field are similar to the advantages of the conventional JTC approach, but, in
addition, the amount of the shift invariance can be controlled.

Because the mathematical analysis done in this section relies on the Wigner distribution
function (WDF), a brief background is given 25, 40].

4.7.1 Wigner distribution function
The WDF of a signal U(x) is defined as
W(x,v) = f U +x"/2U*(x — x'/2)exp(=2mivy)dy', (4.66)
or alternatively, with U (v), the spectrum of U(x) [U(v) = f Ux)exp(=2mivx)dx]:
W(x,v) = f U +v'/2)T" (v — v'/2) exp(+2miv'x)dv'. (4.67)
U may be reconstructed out of W, apart from a constant phase factor:
f Wi(x/2, v)exp2mivx)dv = U(x)U*(0). (4.68)

The signal intensity |U(x)|? and the power spectrum [U(v)|? can be obtained from W by
two orthogonal projection integrals:

fW(x,v)dv = |U(x)|?, (4.69)
[W(.t, v)dx = |U®)|%. (4.70)
Square-Law

f Converter f

Hix-xg) —* ﬂ m T Vixxy)

L —Z E(
Uﬂ (x) J— — V*(-x+x )
4—~r—+ ---~T?—>— -q—f——- 4—'———- — R

Fig. 4.24. Schematic optical setup for performing the joint transform correlation.
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Shifting of the WDF occurs in the (x, v) domain if the signal U (x) is shifted and is illumi-
nated by a tilted plane wave, exp(2mivy):

U(x) — U(x — X)exp(2miix), .71
Wx,v) — Wk —X; v—0). (4.72)

Note that, as illustrated in Ref. 14, the FRT operation is defined as what occurs to Uy
while the WDF is rotated by an angle ¢ = pr/2:

UH(-‘.) — UP(.I’), (473)
Wilx, v) — Wiylxcosg —vsing,vecose + xsing) = W, (v, v), (4.74)

where U, (x) is a FRT with the fractional order of p applied over Uy(x), Wy is the WDF of
Uy, and W, is the WDF of U,

4.7.2 Concept of the joint fractional correlator

Based on the FRT operation, we generalize the classical JTC (Fig. 4.25). To do so, the
classical Fourier transforms are now replaced by FRT’s (Fig. 4.26).

There is a hidden problem in this low chart. We identity this problem by stepping into
the Wigner domain.

Step I: ~
X £ U(v)
H(x -xg ) o m
U0 5| | |
- V-
f f
Step Il;
v f -X
m T V(x+xy)
|0’ ZI U l = E()
—
~<——-f——> -1*-*?——" I V'(-x+xa)

Fig. 4.25. JTC. Uy, input; H, reference signal; U, complex amplitude in the Fourier
domain; |U|?, transmission of the holographic filter; V, output; E, extraneous term.

Uy (x)
e f e P|

V(x) + E(x)

MOD -
(e

H (x)

P,

Fig. 4.26. Flow diagram of the joint fractional correlator. MOD SQR, modulus-square.
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Fig. 4.27. WDF of the input to Fig. 4.25, step 1, and the projection of that WDF, which

is the input intensity to Fig 4.25, step 1L
v
)
)‘l(v -x, )|1

'Uu(")l2

OCof

—— X

Fig. 4.28. WDF of the output 1o Fig. 4.25, step I, together with the two projections,
intensity () and power spectrum (v).

4.7.3 Removal of the extraneous terns

The need to remove some extrancous terms already occurred in the classical JTC system.
However, in the classical JTC case the solution is simple and obvious. Thus we now identify
that problem explicitly because it prepares us for solving the more general problem in the
Joint fractional correlator (JFC) system,

The WDF shown in Fig. 4.27 is the WDF of the two-part signal U(x) = Uy(x) +
H(x — xp) shown in Fig. 4.25, step I.

The Fourier transform in Fig. 4.25, step 1, corresponds to a 90" rotation in the Wigner
domain (Fig. 4.28). (Note that a space variable x and a frequency variable v are added in
Fig. 4.28 because here we are using the normalized coordinates.)
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The WDF contributions of the object and the reference occupy the same X region. Hence
the contribution Ug(x) from the object and H(x)exp(—2mixxyg) from the reference can
now interact as parts of the observable WDF projection:

f Wx,v)dv = |Ux))? = |0y + Hexp(—2mixxp))? = UoH" expQmixxg) + - --

= V(x)expQmixxg) + V' (x)exp(—=2mixxg) + |To(0)? + [H ),
(4.75)

where \7(.\') is the Fourier transform of V(x) (the correlation expression):
Vx) = f Q(,(lf)ﬁ*(u)exp(%rivx)du. (4.76)

This overlapping between Uy and H is necessary for a successful operation of the JTC.
However, the overlapping condition is not sufficient, and in addition it is also required that
the wanted term with UgH" = V produce an output V(x + xg) that is laterally separated
from the other terms in Eq. (4.75) (Fig. 4.25, step 1, right-hand side). In order to comprehend
the second request, we consider the WDF of | U (x)|?, which is the input for the second step
of the JTC (Fig. 4.25, step II). If the shift xz of the reference H(x — xpg) is large enough,
three separated islands will be created in that WDF. This is illustrated in Fig. 4.29:

Xp = (Axy + Axy/2) = Axy. (4.77)

This condition is well known from holography, in which Axp is usually close to zero. In
our case the assumption was that 0 < Axy < Ax.

Fig. 4.29. WDF of the intensity output of Fig. 4.25, step I, which is the input for Fig.
4.25, step I1.
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The second stage of the JTC (Fig. 4.25, step 11) is again a Fourier transform that cor-
responds to a 90° rotation (anticlockwise) of the WDF (see Fig. 4.29). The desired term
V(x + xg) is clearly separated from the extraneous term E(x) and V*(—x + xg) if the
condition of relation (4.77) is fultilled. Thus the proper shift of xg [relation (4.77)] of the
reference pattern was necessary and sufficient for the proper JTC operation,

A similar consideration for the JFC yields the fact that the reference H(x) has to be
shifted and tilted by proper amounts:

H(x) — H(x — XR)exp2mixvg). (4.78)

In order to explain this point we translate the front part of the JFC flow chart (Fig. 4.26)
into the Wigner domain. The WDF of the centered object Uy(x) is rotated by an angle

The WDF of the reference signal is shifted at first (Fig. 4.31):
Wy(x,v) — Wy(x — xg, v — vg). 4.79)

Then Wy, is subsequently, rotated by an angle of ¢, = p2m /2. This angle must be such
that Wy will end up on the v axis just above the WDF of U, (Fig. 4.32).
Expressing the shift in polar coordinates, we obtain

Xg = Rcos(m/2 — ¢) = Rsing,, (4.80)
Vg = Rsin(w/2 — ¢y) = R cos ¢,. (4.81)

This colocation in the x axis is needed to satisfy the condition for letting Wy, and W/, interact
when the modulus-square operation of Fig. 4.26 is applied.

. | x

v v
* 4 Wi
VR ey
W, R ’ i
- i i _
B X = X- P X
‘2‘ - ¢z

Fig. 4.31. Shift and tilt of the reference signal H cause a shift of the WDF of A . That
shift can be expressed by a radius R and an angle /2 — ¢/2.



Fig. 4.32. FRT with degree p, rotates the WDF of the reference by an angle ¢ =
p2(7r /2), bringing it to the frequency axis on top of the object WDF.

v
A

E(x)

V(x)

Lol
: Pl

P X
Fig. 4.33. WDF of the JTC output, together with the output intensity distribution.

The obtained WDF of the |U(x)|? signal consists of three islands, similar to those in
Fig. 4.29. But the center-to-center distance between the islands is now R instead of xg.
Note that

R* = x} + V. (4.82)

The final step is a rotation of the WDF by an angle ¢3 = p3n /2, as indicated by Fig. 4.26.
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The final WDF is shown in Fig. 4.33. In this figure, the radial shift R was sufficiently large
to create full separation between the terms V() and E(x).

For deriving the condition for R that ensures the separation, one has to calculate the
locations of the rectangular WDF islands. The result will be a generalization of the classical
condition ol separation |relation (4.77)]. However, not only the sizes Axy and Axy will
appear in the inequality but also the bandwidths Ay and Avy,, together with cosine and
sine factors, involving the three angles ¢y, ¢, and ¢5. The shortest R will be needed if
¢y = m /2, whereas a small value of ¢; requires large R. If the angle ¢ is small, the R is
affected mainly by the tilt vg. But with ¢ close to m/2, the R depends mainly on the shift
xg as seen from Fig. (4.32) and Eqs. (4.81) and (4.82)].

4.8 Concluding remarks

In this chapter we have attempted to describe the status of the field of fractional correlation
thatis based on the FRT. The described analysis started by analyzing the performances of the
FC compared with those of conventional correlator configurations. Section 4.3 illustrated
that the performances are object dependent. For white noise, according to the SNR criterion,
the performances of the shift-variant correlator (the FC) are not worse than those of the
conventional correlator. For other types of noise, the performances of the FC may be even
better (for example, when chirp noise is involved). Then a configuration for obtaining a real-
time FC was demonstrated in section 4.4. This configuration is a real-time one because, in
order to change the amount of shift variance (the fractional order), one need change only
the longitudinal distance of the filter. There is no need to change the distances between
the lenses, change their focal length, or recompute the filter. In Section 4.5 the LFRT was
defined. This FRT-based transform performs the FRT with different fractional orders in
different spatial regions. An optical FC-based on this transform may be constructed. The
main advantage of using a FC that is based on the LFRT is when nonstationary noises (with
statistical properties that are varied over the space) or special pattern recognition aspects are
involved. A pattern recognition example for which such a use is essential was demonstrated
for fingerprint recognition. The fingerprint pattern has a spatially varied form. Its central
region is more or less constant, whereas the outer region is changed from instant to instant
because a person never presses a finger with equal force. Thus, in order to recognize or
reconstruct those prints, an LFRT processor whose spatial shift variance is changed with
space is required. In Section 4.6 another extension for the FC was illustrated. This time the
suggested processor was an anamorphic one. A practical example for which object detection
is needed along a row was demonstrated. For cases in which full shift invariance is needed
in the one axis and only a limited amount of variance is needed in the other axis, such a
processor can be very helpful. The demonstrated example included a case in which a certain
first object (or certain deformation property) is needed to be detected in the first region and
rejected in the second spatial region and vice versa for the second object (or deformation
property) and the second spatial region. Section 4.7 dealt with the JTC configuration applied
for the partially shift-variant case. The advantages of the conventional JTC (i.e., it does not
require the generation of a complex filter and aligning it with high accuracy in the Fourier
plane) were combined with the ability to control the amount of the shift-variance property
and implemented optically. In sum, this chapter shows the potential of the FC in various
optical signal processing fields. It indicates that the FC adds a degree of freedom that can
increase the flexibility of the conventional optical covolver/correlator.
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