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Fast communication
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Abstract

We introduce the fractional Fourier domain decomposition. A procedure called pruning, analogous to truncation of
the singular-value decomposition, underlies a number of potential applications, among which we discuss fast implemen-
tation of space-variant linear systems. ( 1999 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

The singular-value decomposition (SVD) plays
a fundamental role in signal and system analysis,
representation, and processing. The SVD of an
arbitrary N

3
]N

#
complex matrix H is

H
N3CN#

"U
N3CN3

R
N3CN#

Vs
N#CN#

, (1)

where U and V are unitary matrices. The super-
script s denotes Hermitian transpose. R is a diag-
onal matrix whose elements p

j
(the singular values)

are the nonnegative square roots of the eigenvalues
of HHs and HsH. The number of strictly positive
singular values is equal to the rank R of H. The
SVD can also be written in the form of an outer-
product (or spectral) expansion
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R
+
j/1

p
j
u
j
*s
j
, (2)

where u
j
and *

j
are the columns of U and V. It is

common to assume that the p
j
are ordered in de-

creasing value.

In this paper we introduce the fractional Fourier
domain decomposition (FFDD). While the FFDD
may not match the SVD's central importance, we
believe it is of fundamental importance in its own
right as an alternative which may o!er com-
plementary insight and understanding. Although
exploring the full range of properties and applica-
tions of the FFDD is beyond the scope of this
paper, we illustrate its usefulness by showing that it
can be used for fast implementation of space-vari-
ant linear systems. We believe the FFDD has the
potential to become a useful tool in signal and
system analysis, representation, and processing (es-
pecially in time}frequency space), in some cases in
a similar spirit to the SVD.

We refer the reader to [1,11}13] for an intro-
duction to the fractional Fourier transform, here
limiting ourselves to a few essential properties
of the discrete fractional Fourier transform
[2,4,10,15]. The N-dimensional ath-order frac-
tional Fourier transform matrix Fa

N
is unitary. F0

N
is

the N-dimensional identity matrix and F1
N

is the
ordinary N-dimensional discrete Fourier transform
(DFT) matrix. F2

N
is the parity matrix and

Fa`4l
N

"Fa
N

where l is any integer. Furthermore,
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Fig. 1. (a) The ath fractional Fourier domain. The a"0th and
a"1st domains are the ordinary time (t) and frequency ( f )
domains. (b) N equally spaced fractional Fourier domains. (c)
Block diagram of the FFDD.
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N
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N
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N
. The ath-order

fractional Fourier transform f
a
"Faf of a given

time-domain vector f is the representation of f in
the ath fractional Fourier domain [11]. The ath
fractional Fourier domain makes an angle a"ap/2
with the time domain in the time}frequency plane
(Fig. 1(a)) [9,11,12]. The columns of the inverse
transform matrix F~a

N
constitute an orthonormal

basis set for the ath domain, just as the columns of
the identity matrix constitute a basis for the time
domain and the columns of the ordinary inverse
DFT matrix constitute a basis for the frequency
domain.

2. The fractional Fourier domain decomposition

Let H be a complex N
3
]N

#
matrix and

Ma
1
, a

2
,2, a

N
N a set of N"max(N

3
,N

#
) distinct

real numbers such that !1(a
1
(a

2
(2(

a
N
)1. For instance, we may take the a

k
uniformly

spaced in this interval. The corresponding frac-
tional Fourier domains are illustrated in Fig. 1(b).
We de"ne the FFDD of H as
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where K
1
, K

2
,2, K

N
are diagonal matrices

each of whose N@"min(N
3
, N

#
) elements c

kj
,

j"1,2,2,N@, are in general complex numbers. It
will sometimes be convenient to represent these
diagonal elements c

k1
,c
k2

,2,c
kN{

for any k in the
form of a column vector c

k
. When H is Hermitian

(skew-Hermitian), c
k

is real (imaginary). We also
note that (F~ak

N#
)s"Fak

N#
. The FFDD always exists

and is unique, as will be discussed below.
Comparing and contrasting the FFDD with the

SVD will help gain insight into the FFDD. If we
compare one term on the right-hand side of Eq. (3)
with the right-hand side of Eq. (1), we see that they
are similar in that they both consist of three terms
of corresponding dimensionality, the "rst and third
being unitary matrices and the second being a diag-
onal matrix. But whereas the columns of U and
V constitute orthonormal bases speci"c to H, the
columns of F~ak

N3
and F~ak

N#
constitute orthonormal

bases for the a
k
th fractional Fourier domain. Cus-

tomization of the decomposition is achieved
through the coe$cients c

kj
(and perhaps also the

orders a
k
).

Denoting the jth columns of F~ak
N3

and F~ak
N#

as
[F~ak

N3
]
j

and [F~ak
N#

]
j
, respectively, the kth term of

the summation in Eq. (3) can be written as an outer
product +N{

j/1
c
kj
[F~ak

N3
]
j
([F~ak
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]
j
)s so that Eq. (3)

can be rewritten as

H"

N
+
k/1

N{
+
j/1

c
kj
[F~ak

N3
]
j
([F~ak

N#
]
j
)s. (4)

To a certain extent, the inner summation resembles
the outer-product form of the SVD given in Eq. (2).
The N

3
]N

#
matrices [F~ak

Nr
]
j
([F~ak

Nc
]
j
)s are of unit

rank since they are the outer product of vectors. We
will denote these matrices by P

kj
so that

H"

N
+
k/1

N{
+
j/1

c
kj

P
kj
. (5)

This equation is simply an expansion of H in terms
of the basis matrices P

kj
, 1)k)N, 1)j)N@,

where the c
kj

serve as the weighting coe$cients of
the expansion.

When H is a square matrix of dimension N, the
FFDD takes the simpler form

H"

N
+
k/1

F~akK
k
(F~ak)s, (6)
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where all matrices are N]N. (The continuous
counterpart of the FFDD is similar to this equa-
tion, with the summation being replaced by an
integral over a.)

Eq. (5) is a linear relation between the matrices
H and c

kj
with the four-dimensional tensor P

kj
representing the transformation between them.
Let H denote a column ordering of the matrix
H, with dimensions N

#
N

3
]1. Also let C denote

the NN@]1 column vector obtained by stacking
the column vectors c

1
, c

2
, 2, c

N
on top of each

other. Notice that we always have NN@"
max(N

3
, N

#
)min(N

3
, N

#
)"N

3
N

#
. These column or-

derings determine a corresponding ordering which
converts the four-dimensional tensor (or two-di-
mensional array of matrices) P

kj
into a square

matrix P of dimensions N
#
N

3
]N

#
N

3
. (The vector

obtained as the column ordering of the matrix
P
kj

for a speci"c kj, goes into the [(k!1)N@#j]th
column of the matrix P.) Now, we can write Eq. (5)
as the linear square matrix equation H"PC. This
equation will have a unique solution for C and thus
c
kj

if and only if the columns of P are linearly
independent. Since the columns of P are merely
column orderings of the basis matrices P

kj
, this is

the same as linear independence of these basis
matrices. Recalling the de"nition of these matrices
(just before Eq. (5)), their linear independence
follows from the fact that the inner product of any
column of Fa with any column of Fa{ (a@Oa) is
always nonzero. Thus the FFDD always exists and
is unique (for given a

k
).

3. Applications

Let H denote a linear matrix operator. Eq. (3)
represents a decomposition of this operator into
N terms. Each term, taken by itself, corresponds to
"ltering in the a

k
th fractional Fourier domain

[8,12], where an a
k
th-order forward transform is

followed by multiplication with a "lter function
c
k
and concluded with an inverse a

k
th-order trans-

form. If a
k
"1, this corresponds to ordinary

Fourier domain "ltering. If a
k
"0, this corresponds

to multiplication of a signal with a "lter function
directly in the time domain. All terms taken to-

gether, the FFDD can be represented by the block
diagram shown in Fig. 1(c) and interpreted as the
decomposition of an operator into fractional
Fourier domain "lters of di!erent orders. An arbit-
rary linear system H will in general not
correspond to multiplicative "ltering in the time
or frequency domain or in any other single
fractional Fourier domain. However, H can always
be expressed as a combination of "ltering
operations in di!erent fractional domains. A
suzcient number of diwerent-ordered fractional
Fourier domain xltering operations **span++ the
space of all linear operations. The fundamental im-
portance of the FFDD is that it shows how an
arbitrary linear system can be decomposed into this
complete set of domains in the time}frequency
plane.

If H represents a time-invariant system, all "lter
coe$cients except those corresponding to a

k
"1

will be zero. More generally, di!erent domains will
make varying contributions to the decomposition.
By eliminating domains for which the coe$cients
c
k1

, c
k2

,2, c
kN{

are small, signi"cant savings in
storing and implementing H becomes possible. This
procedure, which we refer to as pruning the FFDD,
is the counterpart of truncating the SVD. An alter-
native to this selective elimination procedure will
be referred to as sparsening, in which we simply
work with a more coarsely spaced set of domains.

Remembering that the P
kj

are not orthogonal, we
will in general have DDHDD

2
)+N

k/1
+N{

j/1
Dc
kj
D, where

DDHDD
2

denotes the Frobenious norm of H. Let HK de-
note the approximation to H obtained by pruning
or sparsening certain orders. Then the approxima-
tion error DDH!HK DD

2
will likewise be less than or

equal to the sum of the absolute values of the
coe$cients c

kj
of the terms omitted from the expan-

sion. This bound on the error indicates that we
should eliminate orders whose associated coe$-
cients are small in absolute value. One strategy for
advantageously selecting the orders a

k
would be to

initially calculate the full decomposition for an in-
terpolated version of H with larger N

3
, N

#
. By ex-

amining the decompositions of representative
members of the set of matrices we are dealing with,
we can determine the terms which have stronger
coe$cients and hence the values of a

k
to be used in

the actual decomposition.
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In any event, the resulting smaller number of
domains will be denoted by M(N. The upper
limit of the summation in Eq. (3) is replaced by
M and the equality is replaced by approximate
equality, leading us to H+PC. If we solve this in
the least-squares sense, minimizing EH!PCE, we
can "nd the coe$cients resulting in the best M-
domain approximation to H. This procedure
amounts to projecting H onto the subspace span-
ned by the M basis matrices, which now do not
span the whole space.

Since the fractional Fourier transform can be
computed in O(N log N) time, implementation of
the pruned version of Fig. 1(c) takes O(MN logN)
time. If an acceptable approximation to H can be
found with a relatively small value of M, this can be
much smaller than the time O(N

3
N

#
) associated

with direct implementation of the linear system.
Likewise, optical implementation requires a space-
bandwidth product of O(MN), as opposed to
O(N

3
N

#
) for direct implementation [14]. In passing,

we note that the pruned FFDD is directly related
to the concept of parallel xltering [6,7], which
together with its dual repeated xltering [5] consti-
tute a general framework for synthesizing linear
systems.

As an example, we consider the problem of re-
covering a signal consisting of multiple chirp-like
components, which is buried in white Gaussian
noise such that the signal-to-noise ratio is 0.1. We
assume the signal consists of six chirps with uni-
formly distributed random amplitudes and time
shifts, and that the chirp rates are known with
a $5% accuracy. We "nd that the general linear
optimal Wiener "lter H for this problem can be
approximated with a mean-square error of 5.2% by
using only M"6 domains. H can also be approxi-
mated by truncating Eq. (2) to M terms, leading to
an implementation time of O(MN). For the present
example, M"6 results in an error of 20%, demon-
strating an instance where the FFDD yields better
accuracy than the SVD.

Next, we consider restoration of images blurred
by a space-varying point-spread function whose
diameter increases linearly with position. This time
we use the M-domain expansion as a constraint on
the linear recovery "lter and optimize directly over
the coe$cients c

kj
to minimize the mean-square

estimation error. The error is found to be 7% for
M"5. One may construct a similar constrained
optimization problem by using the truncated SVD.
However, this leads to a much more di$cult non-
linear optimization problem because u

j
and *

j
in

Eq. (2) are also unknowns, whereas the only un-
knowns in Eq. (3) are the K

k
, leading to a linear

optimization problem.
Other potential applications other than fast

implementation of linear systems include data
compression, statistically optimum "ltering, and
regularization of ill-posed inverse problems, all of
which may be based on the same basic idea of
appropriately pruning or weighting the di!erent
domains.

The optimal choice of the transform orders
a
k
and hence the basis matrices is an issue requiring

further exploration. When M"N, the basis
matrices form a complete set and any choice is
acceptable. However, certain choices may o!er bet-
ter numerical stability. When M(N, the choice of
a
k
may re#ect our knowledge about the ensemble of

matrices H we wish to approximate. This prior
knowledge of the structure of the matrices we are
dealing with may be statistical or in the form of
restrictions on the set of matrices possible,
and might allow judicious choice of the orders so
that a better approximation can be obtained by
retaining fewer terms in the decomposition. In
the absence of such knowledge, the natural
strategy would be to choose the transform orders
uniformly. It is in principle also possible to attempt
to optimally choose the orders for each given
matrix. However, "xing the orders beforehand
for a given set of matrices has the advantage of
allowing one to determine the coe$cients easily
by precomputing the set of matrices biorthonormal
to P

kj
.

A natural extension of the FFDD would be the
linear canonical domain decomposition (LCDD)
based on linear canonical transforms [3].
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