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Wigner-related phase spaces for signal processing
and their optical implementation
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Phase spaces are different ways to represent signals. Owing to their properties, they are often used for signal
compression and recognition with high discrimination abilities. We present several recently introduced
Wigner-related sets of representations that have improved signal processing performance, and we introduce an
optical implementation. This study deals with the generalized Wigner spaces, the fractional Fourier trans-
form, and the x –p and the r –p representations. The optical implementations are demonstrated and dis-
cussed. © 2000 Optical Society of America [S0740-3232(00)02312-7]
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1. BACKGROUND
A. Wigner Representation
One of the most commonly implemented phase-space rep-
resentations is the Wigner distribution function1 (WDF).
The WDF may be considered as a wave generalization of
the Delano diagram, which is also known as the Yv rep-
resentation. The Yv diagram is a ray model in which the
Y axis represents the spatial location and the v axis rep-
resents the direction of the ray (the derivative of the first
coordinate).

The WDF is useful in many fields, such as dual time
frequency processing2 and data compression.3 The WDF
is especially important to optics because it is a powerful
tool for designing and analyzing optical systems.4 A nice
example for an introduction to the WDF comes from the
area of music. Neither the representation of music as a
function of time nor its representation as a function of fre-
quency is suitable for a musician. Music is displayed as
a function of time and frequency (logarithmic). The mu-
sician knows at every moment what kind of sound must
be produced. An extensive investigation of both the
WDF and its basic properties is presented in Ref. 5.

B. Definition
In its one-dimensional (1D) version the WDF is a math-
ematical operation applied on the input field distribution
u(x):

W $u~x !% 5 WX~x, fx!

5 E
2`

`

uS x 1
x8

2 Du* S x 2
x8

2 D
3 exp~22pifxx8!dx8. (1)

Here W denotes the WDF operator and WX(x, fx) is the
Wigner chart.
0740-3232/2000/122339-16$15.00 ©
Since this transform simultaneously represents spatial
and spectral information of the function, it takes into ac-
count diffraction phenomena as well. For a 1D input sig-
nal, the WDF results in a two-dimensional (2D) chart pre-
senting the spatial and the spatial spectrum information
of the input (called the spatial Wigner distribution func-
tion (SWDF)].

The Wigner representation is not linear but bilinear;
i.e.,

W $a1u1~x ! 1 a2u2~x !%

5 ua1u2W $u1~x !%1ua2u2W $u2~x !%

1 2E
2`

`

REFa1a2* u1S x 1
x8

2 Du2* S x 2
x8

2 D G
3 exp~22pifxx8!dx8

Þ a1W $u1~x !%1a2W $u2~x !%, (2)

where RE is the real-part-taking operation. The recon-
struction of a function from its Wigner chart can be done
based on the equation

u~x ! 5
1

u* ~0 !
E

2`

`

WS x

2
, fxD exp~2pifxx !d fx . (3)

Note that there is an uncertainty constant coefficient
when performing the inverse WDF.

The WDF is also useful for handling optical temporal
signals. Based on similar considerations, the temporal
Wigner distribution function (TWDF) is defined as

WT~t, ft! 5 E
2`

`

uS t 1
t8

2 Du* S t 2
t8

2 D exp~22piftt8!dt8,

(4)
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where u(t) is the temporal input signal and ft is the tem-
poral spectrum coordinate. The inverse TWDF is defined
as

u~t ! 5
1

u* ~0 !
E

2`

`

WS t

2
, ftD exp~2piftt !d ft . (5)

Present-day technology offers many possibilities for tem-
poral optical signal processing, especially in communica-
tions applications. Several examples are demultiplexing
of incoming data,6 the femtosecond pulse shaper,7 and im-
age compression.8 Recently, space–time devices such as
grating pairs, time lenses, and dispersive media were em-
ployed to design temporal signal processing systems.9–11

The TWDF may be an attractive tool for handling such
systems.

2. GENERALIZED TEMPORAL–SPATIAL
WIGNER DISTRIBUTION FUNCTION
An important family of devices and systems deals with
composite spatial–temporal phenomena, for example,
short pulses with a spatial distribution. Moreover, the
influences of devices such as a rotated grating, which af-
fects both the spatial and the temporal information of the
signal, are impossible to represent with only the temporal
or the spatial Wigner distribution chart. Owing to the
increasing importance of spatial–temporal systems,12–14 a
new representation that combines the temporal and the
spatial information of the signal is needed.15 This new
tool allows the handling of a general spatial–temporal
system.

In this section we intend to present simultaneously the
spatial and the temporal information of a signal, using
the so-called generalized Wigner transform.15 The cases
described have one spatial and one temporal dimension
@u(x, t)# with their Fourier conjugates ( fx , ft).

The definition of the generalized temporal–spatial
Wigner distribution function (TSWDF) chart that con-
tains four dimensions is

WXT~x, fx , t, ft!

5 E
2`

` E
2`

`

uS x 1
x8

2
, t 1

t8

2 Du* S x 2
x8

2
, t 2

t8

2 D
3 exp~22pifxx8!exp~22piftt8!dx8dt8. (6)

A. Properties
Below we derive some important properties of the gener-
alized TSWDF definition.

1. Fourier Representation
One can represent the signal by using its spatial–
temporal Fourier representation:

u~x, t !

5 E
2`

` E
2`

`

ũ̂~ fx , ft!exp~2pifxx !exp~2piftt !d fxd ft ,

(7)

which leads, according to Eq. (7), to the Fourier represen-
tation of the TSWDF:
WXT~x, fx , t, ft!

5 E
2`

` E
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`

ũ̂S fx 1
fx8

2
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ft8

2
D ũ̂* S fx 2

fx8

2
, ft 2

ft8

2
D

3 exp~2pixfx8!exp~2pitft8!d fx8d ft8 . (8)

Here ũ̂( fx , ft) represents the spatial–temporal spectrum.
One can write similar relations, but with the spatial

spectrum and the temporal representation of the signal
@ ũ( fx , t)#:

WXT~x, fx , t, ft!
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, t 2

t8

2
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3 exp~2pixfx8!exp~22piftt8!d fx8dt8, (9)

or with the spatial and the temporal spectrum represen-
tation @ û(x, ft)#:

WXT~x, fx , t, ft!

5 E
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x8

2
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2
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2. Projections
The projection properties of the TSWDF chart are

E
2`

`

WXT~x, fx , t, ft!d fx
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exp~22pifxx8!d fx ,

(11)

since

E
2`

`

exp~22pifxx8!d fx 5 d ~x8!. (12)

Thus

E
2`

`

WXT~x, fx , t, ft!d fx

5 E
2`

`

uS x, t 1
t8

2 Du* S x, t 2
t8

2 D exp~22piftt8!dt8

5 WT~t, ft ; x !, (13)

where WT(t, ft ; x) is the TWDF of u(x, t), i.e., the TWDF
at each location x. Similarly,
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E
2`

`

WXT~x, fx , t, ft!d ft

5 E
2`

`

uS x 1
x8

2
, t Du* S x 2

x8

2
, t D exp~22pifxx8!dx8

5 WX~x, fx; t !, (14)

which represents the SWDF of u(x, t) in a specific time t.
In the same manner it is easy to show that

E
2`

` E
2`

`

WXT~x, fx , t, ft!d fxd ft 5 uu~x, t !u2. (15)

Now, for projections that provide spectral information,

E
2`

`

WXT~x, fx , t, ft!dx 5 WT~t, ft ; fx!, (16)

which is the TWDF of u(x, t) for a specific spatial fre-
quency fx . Similarly,

E
2`

`

WXT~x, fx , t, ft!dt 5 WX~x, fx ; ft! (17)

gives the SWDF for a specific temporal frequency. Now

E
2`

` E
2`

`

WXT~x, fx , t, ft!dxdt 5 u ũ̂~ fx , ft!u2. (18)

Additional projection properties of the TSWDF chart
are

E
2`
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2`

`

WXT~x, fx , t, ft!d fxdx 5 WT~t, ft!,

E
2`

` E
2`

`

WXT~x, fx , t, ft!d ftdt 5 WX~x, fx!,

E
2`

` E
2`

`

WXT~x, fx , t, ft!d ftdx 5 uũ~ fx , t !u2,

E
2`

` E
2`

`

WXT~x, fx , t, ft!d fxdt 5 uû~x, ft!u2. (19)

3. Energy
Using Eq. (15) or (18), one can easily see that

E
2`

` E
2`

` E
2`

` E
2`

`

WXT~x, fx , t, ft!d fxd ftdxdt 5 ETOTAL ,

(20)

where ETOTAL is the total energy of a signal.

4. Spatial Lens
If one denotes by ûSL(x, ft) the temporal spectrum distri-
bution just after a lens of focal length f, then

ûSL~x, ft! 5 û~x, ft!expS 2ipx2

lf D
5 û~x, ft!expS 2ipftx

2

cf D , (21)

where c is light velocity and l is the wavelength (lft
5 c). Substituting this equation into the WXT defini-
tion, one obtains
WXT
SL ~x, fx , t, ft!

5 E
2`

` E
2`

`

ûS x 1
x8

2
, ft 1

ft8

2
D û* S x 2

x8

2
, ft 2

ft8

2
D

3 expH 2ip@ ft 1 ~ ft8/2!#@x 1 ~x8/2!#2

cf J
3 expH 2ip@ ft 2 ~ ft8/2!#@x 2 ~x8/2!#2

cf J
3 exp~22pifxx8!exp~2pitft8!dx8d ft8 , (22)

where WXT
SL is the TSWDF obtained after the effect of the

spatial lens operation. Using Eq. (17), one can easily see
that the t-coordinate projection of the generalized
STWDF, WXT

SL , is equal to

E
2`

`

WXT
SL ~x, fx , t, ft!dt 5 WXS x, fx 1

xft

cf
; ftD , (23)

which is an fx-direction shearing in the (x, fx) plane in
which the amount of the shearing depends on the location
in the ft( 5 c/l) axis.

5. Spatial Zone Plate
Denoting by ûZP(x, ft) the temporal spectrum distribution
just after a spatial zone plate of focal length f, one obtains

ûZP~x, ft! 5 û~x, ft!expS 2ipft0
x2

cf
D , (24)

where ft0
is the temporal frequency for which the zone

plate is designed. Substituting this equation into the
WXT definition and using Eq. (17) yields

E
2`

`

WXT
ZP ~x, fx , t, ft!dt 5 WXS x, fx 1

xft0

cf
; ftD , (25)

which is an fx-direction shearing in the (x, fx) plane in
which, contrary to the case of the spatial lens, the amount
of the shearing does not depend on the location in the ft
axis.

Note that the case of the spatial zone plate is different
from that of the spatial lens. In the latter the fx shearing
depends on a variable ft , the temporal frequency of the
information. In the former the fx shearing depends on a
constant ft0

, which is the temporal frequency for which
the zone plate was designed.

6. Free-Space Propagation
A free-space propagation (FSP) module can be expressed
as a multiplication of the spatial–temporal spectrum of
u(x, t) by a chirp:

ũ̂FSP~ fx , ft! 5 ũ̂~ fx , ft!exp~2iplzfx
2!

5 ũ̂~ fx , ft!exp@2ipcz~ fx
2/ft!#, (26)

where ũ̂FSP is the spatial–temporal spectrum of u after
the effect of the FSP. z is the FSP distance. Using Eq.
(17), one can easily see that
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E
2`

`

WXT
FSP~x, fx , t, ft!dt 5 WXS x 2

czfx

ft
, fx ; ftD . (27)

Thus the t-coordinate projection of WXT
FSP is an x-direction

shearing in the (x, fx) plane. Again, the amount of the
shearing depends on the ft(5c/l) value.

7. Time Lens
The time lens16 operation can be expressed as a multipli-
cation of the input signal by a temporal chirp:

uTL~x, t ! 5 u~x, t !expF2pi~t 2 t0!2

t 2 G , (28)

where t is the temporal focusing time and t0 is the delay.
Using the same mathematical manipulations, one can
easily show that the time lens is expressed as an
ft-direction shearing in the (t, ft) plane:

WXT
TL ~x, fx , t, ft! 5 WXTS x, fx , t, ft 1

t 2 t0

t 2 D , (29)

and the x-coordinate projection yields

E
2`

`

WXT
TL ~x, fx , t, ft!dx 5 WTS t, ft 1

t 2 t0

t 2 ; fxD . (30)

Note that the device that is analogous to the time lens is
the zone plate and not the spatial lens, since the shearing
operation seen in Eq. (30), resembles that of Eq. (25) and
not that of Eq. (23).

8. Dispersive Medium
A dispersion is a multiplication of the temporal spectrum
by a chirp, so

ûD~x, ft! 5 û~x, ft!exp~2ipbf t
2!, (31)

where ûD is the temporal spectrum after the effect of the
dispersion and b is the quadratic dispersion coefficient.
Equation (31) yields a shearing operation along the t di-
rection in the (t, ft) plane:

WXT
D ~x, fx , t, ft! 5 WXT~x, fx , t 2 bft , ft!. (32)

9. Grating Effect
The multiplication of the input signal by a grating func-
tion of exp(2pif0 x), where f0 is the grating’s frequency,
provides a shift of the generalized Wigner function along
the fx axis:

WXT
G ~x, fx , t, ft! 5 WXT~x, fx 2 f0 , t, ft!. (33)

B. Analysis of a Temporal–Spatial Processor by use of
the TSWDF
In this subsection we demonstrate both the necessity and
the capabilities of this new TSWDF operation. We shall
analyze a temporal–spatial processor such as that illus-
trated in Fig. 1.17 Since the temporal input information
is 1D, it is converted into 1D spatial information. In the
second spatial axis an imaging procedure is performed.

The suggested setup converts the temporal information
of the signal into spatial information that is subsequently
filtered by a spatial filter. With appropriate parameters
the effect of such a filter might be temporal filtering. In
this subsection we shall prove that, indeed, the first part
(from the input up to the filter plane) of the setup illus-
trated in Fig. 1 converts the temporal information into
spatial information. We use the t-coordinate projection
of the TSWDF.

The system starts with a collimated beam (containing
temporal information) that hits a grating. From Eq. (33)
the t-coordinate projection of the TSWDF that is obtained
after the grating effect is WX(x, fx 2 f0 ; ft). According
to Eq. (27), beyond the FSP distance of F (the focal length
of the lens) the t-coordinate projection becomes

E
2`

`

WXT~x, fx , t, ft!dt

5 WXFx 2
cF~ fx 2 f0!

ft
, fx 2 f0 ; ftG . (34)

After the spatial lens operation [Eq. (23)] the t-coordinate
projection is

WXFx 2
cF~ fx 2 f0!

ft
, fx 2 f0

1
ft

cF Fx 2
cF

ft
~ fx 2 f0!G ; ftG . (35)

Additional FSP distance of F gives

WxFx 2
cF

ft
~ fx 2 f0! 2

cF

ft
F fx 2 f0 1

ft

cF Fx 2
cF

ft
~ fx

2 f0!G G , fx 2 f0 1
ft

cF Fx 2
cF

ft
~ fx 2 f0!G ; ftG . (36)

Equation (36) may be simplified to

WxFlF~ f0 2 fx!,
x

lF
; ftG . (37)

Let us recall that the input signal is a plane wave; thus it
has no spatial information, and its spatial spectrum may
be represented as d ( fx). Therefore the Wigner function
is sampled at fx 5 0 and becomes

E
2`

`

WXT
fin ~x, fx , t, ft!dt 5 WxS lFf0 ,

x

lF
; ftD , (38)

where *2`
` WXT

fin (x, fx , t, ft)dt is the t-coordinate projection
of the TSWDF after passage through the entire first part
of the setup shown in Fig. 1 (from the input up to the fil-
ter plane). From Eq. (38) it can be seen that the spatial
coordinate of the Wigner function (now denoted by ux) is
equal to

Fig. 1. Temporal–spatial processor setup.
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ux 5 lFf0 . (39)

Thus one can see that, indeed, the spatial coordinate is
proportional to the wavelength l. Note that, if the grat-
ing is removed ( f0 5 0), then ux 5 0, which is a logical
result inasmuch as a plane wave is focused as a spot at
the origin of the focal plane of a lens. Assumption of an
input wave that is not a pure plane wave will provide
some distortion to the elegant expression of Eq. (38).

3. FRACTIONAL FOURIER TRANSFORM
The fractional Fourier transform (FRT) operation was
shown to be useful for various spatial filtering and signal
processing applications.18–27 The FRT is a particular
case of the ABCD matrix. When the ABCD matrix takes
the form

FA B

C DG 5 F cos f 2sin f

sin f cos f
G , (40)

the ABCD transform becomes the FRT.
In this transform one may control the amount of shift

variance by choosing the proper fractional order p for the
transformation while f 5 ( pp)/2. When the fractional
order is 1, the FRT becomes the conventional Fourier
transform, which is totally shift invariant. For a frac-
tional order of zero, the FRT gives the input function; i.e.,
the transform is totally shift variant. For any other frac-
tional orders in between, the transform has a partial
amount of shift variance.

A. Definitions
There are two common interpretations of the FRT. Both
definitions were proved to be identical, as shown in Ref.
24.

1. Definition Based on Propagation in Graded-Index
Media
The first FRT definition28–30 is based on the field propa-
gating along a quadratic graded-index (GRIN) medium
having a length proportional to p ( p being the FRT order).
The eigenmodes of quadratic GRIN media are the
Hermite–Gaussian functions, which form an orthogonal
and complete basis set. The mth member of this set is
expressed as

Cm~x ! 5 HmS A2x

v
D expS 2

x2

v2D , (41)

where Hm is a Hermite polynomial of order m and v is a
constant associated with the GRIN medium parameters.
An extension to two lateral coordinates x and y is
straightforward, with Cm(x)Cn( y) being elementary
functions.

The propagation constant for each Hermite–Gaussian
mode is given by

bm 5 kF1 2
2

k
An2

n1
S m 1

1

2 D G 1/2

' k 2 An2

n1
S m 1

1

2 D , (42)
with k 5 2p/l. The Hermite–Gaussian set is used to
decompose any arbitrary distribution u(x),

u~x ! 5 (
m

AmCm~x !, (43)

where the coefficient Am of each mode Cm(x) is given by

Am 5 E
2`

`

u~x !Cm~x !/hmdx, (44)

with hm 5 2mm!Apv/A2.
Using the above decomposition, we define the FRT of

order p as

F p@u#~x ! 5 (
m

AmCm~x !exp~ibmpL !, (45)

where L 5 (p/2)An1 /n2 is the GRIN length that realizes
the conventional Fourier transform. That this definition
agrees well with the classical Fourier transform definition
when p 5 1 was shown in Ref. 29.

2. Definition Based on Wigner Distribution Function
In Ref. 31, Lohmann defines the FRT operation by follow-
ing the signal u(x) while its WDF is rotated by an angle
f 5 pp/2. Obtaining the absolute value of the signal
from its Wigner distribution may be achieved by projec-
tion of the WDF onto its spectral axis. Since the Radon
transform is defined as a function’s projections in various
angles, one may, instead of rotating the Wigner function
and then projecting it onto the spectral axis, simply per-
form a Radon transform over the WDF in an angle corre-
sponding to minus the desired rotation angle. Such an
operation is called the Radon–Wigner transform:

uF p@u#~x !u2 5 R2f$W~x, n!%, (46)

where f 5 pp/2 and R2f$W(x, n)% is the Radon trans-
form at an angle 2f of the WDF W(x, n).

Note that the WDF of a 1D function is a 2D function
and that the rotation interpretation is easily displayed.
In Ref. 31 the same rotation strategy was generalized to
2D signals, i.e., images, whose WDF’s are 4D distribu-
tions. The WDF of a function can be rotated with bulk
optics. It was suggested in Ref. 31 that the optical sys-
tem shown in Fig. 2 be used for implementation of the
FRT operator.

This optical setup represents in the WDF space three
shearing operations consisting of two types: (x, n, x)
shearing and (n, x, n) shearing, with n being the spectral
and x the spatial coordinates, respectively. The x shear-
ing is performed by FSP, then a lens performs the n
shearing, and then an x shearing is again performed by
additional FSP. Lohmann31 characterized this optical
system by using two parameters, Q and R:

f 5 f1 /Q, z 5 f1R, (47)

where f1 is an arbitrary length, f is the focal length of the
lens, and z is the distance between the lens and the input
(or output) plane. As known from Ref. 31, for a FRT of
order p, Q and R should be chosen as

R 5 tan~ f/2!, Q 5 sin~ f! (48)

for the type I configuration and as
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R 5 sin~ f!, Q 5 tan~ f/2! (49)

for the type II configuration. Note that f 5 p(p/2).
By analyzing the optical configuration given in Fig. 2,

Lohmann31 obtained

up~x ! 5 F p@u~x0!#

5 C1E
2`

`

u~x0!expS ip
x0

2 1 x2

lf1 tan f
D

3 expS 2i2p
xx0

lf1 sin f
D dx0 , (50)

with

C1 5

expH 2iFp sgn~sin f!

4
2

f

2 G J
ulf1 sin fu1/2 . (51)

Equation (51) defines the FRT for 1D functions with l as
a wavelength. Generalization to 2D functions is
straightforward. Note that lf1 is also called the scaling
factor.

B. One Formulation for Both Definitions
The two interpretations of the FRT operation have been
united into one formulation through a transformation
kernel, as illustrated in Ref. 25:

up~x ! 5 $F p@u~x8!#%~x ! 5 E
2`

`

Bp~x, x8!u~x8!dx8, (52)

where Bp(x, x8) is the kernel of the transformation and p
is the fractional order. The kernel has two optical inter-
pretations, one as a propagation through a GRIN
medium29:

Fig. 2. The two possible optical setups for obtaining the FRT:
(a) type I configuration, (b) type II configuration.
Bp~x, x8! 5 A2 expF2
1

w
~x2 1 x82!G

3 (
n50

` i2pn

2nn!
HnS A2

w
x D HnS A2

w
x8D , (53)

and the second as a rotation operation applied over the
Wigner plane31:

Bp~x, x8! 5 C1 expF ipS x2 1 x82

lf1 tan f
D 2 2ipS xx8

lf1 sin f
D G .

(54)
Note that w is the coefficient that connects the two inter-
pretations:

w 5 Alf1

p
. (55)

4. RADON–WIGNER-BASED PHASE
SPACES
A. (x, p) Chart
Recently, in the digital processing and the computerized
tomography fields, a new tool for time frequency analysis,
the Radon–Wigner transform, was suggested32,33 and was
used for the time frequency representation of digital
signals.2,34 This approach led to the development of a
chart that contains a continuous representation of the
FRT of a signal as a function of its fractional order.35

This representation may also be useful in optics, since it
explicitly shows the propagation of a signal inside a GRIN
medium. The approach given for producing this display
starts with a 1D input signal, while the output signal con-
tains two dimensions. The optical setup for obtaining
the FRT was adapted to include only fixed FSP distances
and variable lenses. With a set of two multifaceted com-
posite holograms, the Radon–Wigner display has been ex-
perimentally demonstrated.

1. Implementation
We shall use the phrase (x, p) display to describe a dis-
play that contains a continuous representation of a FRT
of a signal as a function of the FRT order. This display
may be useful both for digital signal processing (see Ref.
2) and for optics (e.g., it shows explicitly the propagation
of a signal through a GRIN medium). For a 1D object,
this plot contains two axes: The vertical axis is the space
coordinate x, and the horizontal axis is the FRT order p.
The 1D light distribution up(x) [a p-order FRT of the
original signal u0(x)] is placed as a strip in the proper
horizontal location in the chart according to its fractional
order p. More explicitly, we can write

F~x, p ! 5 up~x !. (56)

As a result, all the FRT orders of the original function
u0(x) are calculated and displayed in one plot. Figure 3
is an illustration of Eq. (56). Here the (x, p) chart of the
function u(x) 5 rect@x/(Dx)# is plotted. In the simula-
tion we choose Dx 5 32 pixels. One can see that, for the
cross section corresponding to p 5 1 (the Fourier trans-
form), a sinc(Dxn) distribution is obtained.
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In this subsection we suggest an optical setup that op-
tically implements the calculations of the (x, p) display
by a multichannel approach. The input 1D object is con-
verted to a 2D object by use of cylindrical lenses. Then a
setup that consists of a sandwich of three phase masks
separated by two FSP’s is constructed. The masks con-
sist of many strips; each strip is a different channel that
performs a FRT with a different order over the input sig-
nal. Each strip is a Fresnel zone plate with a different
focal length that is selected for obtaining the different

Fig. 3. Illustration of the (x, p) chart.

Fig. 4. Suggested optical setup for obtaining the (x, p) display.
fractional order p, and eventually the 2D output will be
exactly the (x, p) display of the 1D input function. Thus
the first step is to prove that the setup illustrated in Fig.
4 indeed provides the FRT with different fractional or-
ders.

Note that in this setup, whereas we are allowed to
change the focal lengths (the different strips of the mask),
the FSP distances are constant and remain fixed for all
the fractional orders. According to Ref. 36, the optical
structure given in Fig. 5(a) is totally analogous to that of
Fig. 5(b) for

f8 5
f1

R
5

f1

sin f
. (57)

The proof is done with some of the Wigner optics tools.36

The tools needed are

• An inversion. This is expressed at the Wigner
space as

u~x ! → u~2x !,

W~x, j! → W~2x, 2j!, (58)

where x and j are the two coordinates of the Wigner
transform. In matrix terminology, the matrix that oper-
ates over the

Fxj G
vector and inverts it,

S F2x
2j G D ,

is

F21 0

0 21G .
This is true because

F21 0

0 21G Fxj G 5 F2x
2j G .

• Fourier transformation. This is expressed in the
Wigner plane by the matrix
Fig. 5. The setups of (a) and (b) are totally equivalent. (c) Configuration that is equivalent to FSP of distance z. (d) Setup that obtains
the FRT with constant distances and varying focal lengths.
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F0 21

1 0 G .
• Lens with a focal power of R/f1 (or, mathematically,

exp$2ip@(x2 R)/lf1#%). This is expressed by the matrix

F 1 0

R 1G .
• FSP over a distance of z 5 Rf1 . This is expressed

by the matrix

F1 2R

0 1 G .
Thus the setup described in Fig. 5(b) can be written as

F0 21

1 0 GF 1 0

R 1GF0 21

1 0 G 5 F0 2R

0 1 GF21 0

0 21G . (59)

Hence a FSP of length z 5 Rf1 can be represented as the
structure illustrated in Fig. 5(c), where

fT 5
f1

2 1 sin f
. (60)

Applying this result to the basic FRT setup shown in
Fig. 2, we replace the FSP part with the setup illustrated
in Fig. 5(c). After combining the lenses’ focal powers, we
obtain the setup described in Fig. 5(d), with

fa 5
f1

tan~ f/2! 1 1
, (61)

fb 5
f1

sin f 1 2
, (62)

fc 5 fa . (63)

Thus the setup suggested in Fig. 4 is appropriate for the
generation of the (x, p) display, since the distances of the
FSP f1 are fixed and only the focal lengths fa , fb , fc are
varied according to the fractional order p.

Two masks that act as a varied Fresnel zone plate were
constructed. These masks were generated in a multifac-
eted (multichannel) manner.37 Each strip (different
channel) in the mask is a Fresnel zone plate with a dif-
ferent focal power, according to the fractional orders p of
the specific strip. The different focal lengths of the dif-
ferent strips in the first mask are related to the fractional
order p according to Eq. (61). In the second mask they
are related according to Eq. (62). The third mask [with
focal lengths according to Eq. (63)] may be placed in the
output plane. This mask is unnecessary only if the abso-
lute value of the output is examined.

The masks’ function is

t~x, y ! 5 exp~2piax !expS 2pi
x2

lf D expS 2pi
y2

lZR
D . (64)

The generation of the mask was done with a computer-
generated interferogram technology38 that yields a binary
mask. The phase term of exp$2pi@x2/(lf )#% is the encoded
Fresnel zone plate. f is either fa or fb (depending on
whether this is the first or the second mask), and it varies
from one strip to the other as a function of the fractional
order, as shown in Eqs. (61) and (62). The term
exp(2piax) is a carrier frequency that conveys the infor-
mation to the first diffraction order. To avoid overlaps
among the different diffraction orders, we require

maxU]u

]x
U ,

2pa

2
, (65)

where u 5 px2/(lf ). Thus

a . U xmax

lfmin
U, (66)

while xmax , is the maximal x coordinate and fmin is the
minimal focal power. The term exp$2pi@ y2/(lZR)#% was
added to avoid overlapping among the different strips,
which is due to diffraction. Note that in the output plane
the sizes of the strips will be the same as in the first
mask. This helps to avoid interference noise among the
different facets. We assumed that the input wave is a
Gaussian wave in its waist. ZR is the Rayleigh distance
of the Gaussian wave and is equal to

ZR 5
pw2

2l
, (67)

where w is the waist width. Since the distance between
the first and the second masks is f1 , we wish to use ZR
5 f1 .

2. Experimental Results
The setup suggested in Fig. 4 was constructed. The pre-
pared masks were designed for a size of 10 3 10 mm with
l 5 532 nm. The number of strips (channels) was 25;
thus, since we assumed that the input wave was at its
waist, w 5 (10 mm/25) 5 0.4 mm/channel, the width of
the beam at the second mask is w/A2; i.e., only 1/A2 of
each strip is illuminated. According to w 5 0.4 mm, one
obtains ZR 5 472 mm. Since in practice the input wave
is not exactly at its waist, the real FSP distance should be
a bit smaller than 472 mm; thus we chose the FSP dis-
tance f1 as 450 mm. Since the masks sizes are 10
3 10 mm, xmax 5 5 mm. For the first mask, famin

(ob-
tained for p 5 1) is f1/2 5 225 mm. Thus, according to
inequality (66), a should be greater than 42. We chose
a 5 60. For the second mask, the minimal power length
obtained for p 5 1 is fbmin

5 f1/3 5 150 mm. Thus, ac-
cording to inequality (66), a . 60. Hence our choice for
a satisfies both cases.

We produced the designed masks with a step of 0.04 in
the fractional order p, starting from zero and ending at
0.96. Figure 6(a) illustrates the output obtained for an
input of a Ronchi grating of 200 lines/cm. Figures 6(b)
and 6(c) illustrate the output obtained for an input of a
Ronchi grating of 100 and 50 lines/cm, respectively.

Figures 7(a) and 7(b) illustrate the output plane for an
input of a chirp input 5exp$2@(ix2)/2 f 2#%, with the con-
stants of f 5 1.5 m and f 5 2.5 m, respectively.

Theoretically, it is known that the FRT of a chirp will
be a delta function for the fractional order of
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Fig. 6. Experimental results for an input of a Ronchi grating of (a) 200 lines/cm, (b) 100 lines/cm, (c) 50 lines/cm.
p 5
2

p
tan21S 2pf 2

lf1
D , (68)

Fig. 7. Experimental results for an input of a chirp with the
constants (a) 1.5 m, (b) 2.5 m.
and the experimental results of Fig. 8 indeed demonstrate
this effect.

B. (r, p) Chart
The next step after defining the (x, p) chart is to define
what we call an (r, p) chart. This chart performs a
Cartesian-to-polar coordinate transform of the (x, p)
chart.4 Here all the FRT orders of the function are
drawn as angular vectors. Each FRT orders is drawn
along the r axis in a specific angular orientation of f
5 p(p/2), where p is the fractional order. Implicitly,
one can write the (r, p) representation as

F~r, p ! 5 up~r !. (69)

Figure 9 is a graphical illustration of the (r, p) chart rep-
resentation.

It is important to note that, despite the fact that r is a
radial coordinate, it may obtain negative values. The
r-coordinate negative values are a by-product of the (r, p)
chart definition. However, mentioning negative values
for r presents no conflict with the polar coordinate defini-
tion, since

up12~r ! 5 up~2r !. (70)

Another noteworthy item is associated with r 5 0.
This singular point contains no relevant information and
should be avoided while using the chart. As a polar rep-
resentation, the required spatial resolution for a lower r
value is higher. Thus, in practical terms, a certain area
of uru , r0 is not able to carry the necessary information
(owing to the limited spatial resolution of every plot) and
must be avoided as well.

The (r, p) chart is our candidate for serving as a phase-
space representation. It contains complete information
about the object (along f 5 0) and about its spectrum
[along f 5 (p/2)]. Additional information regarding the
combined space–frequency information is given along
with other values of f. The inverse transformation is
trivial:

up~r ! 5 F~r, p !, (71)

and, for the object itself,

u0~r ! 5 F~r, 0 !. (72)
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1. Mathematical Properties
Motivation. Let us recall from Lohmann31 that one can
achieve the FRT by the following two algorithms:

u~x0! ⇒ W $u~x0!% 5 W~x, n! ⇒ Rot $W~x, n!%

⇒ Inverse Wigner 5 up~x !, (73)

u~x0! ⇒ W~x, n! ⇒ Xshear$W~x, n!% ⇒ Yshear$W~x, n!%

⇒ Xshear$W~x, n!% ⇒ Inverse Wigner 5 up~x !,
(74)

where Rot is the rotation operation in the plane and
Xshear , Yshear are the shearing operations in the x and the
y axes, respectively:

Xshear$ f~x, y !% 5 f~x 1 ay, y !,

Yshear$ f~x, y !% 5 f~x, y 1 ax !. (75)

Since the lens operation in the Wigner plane is a Yshear
operation and a FSP is a Xshear operation, the procedure
described in relation (74) is in fact a FRT operation.

Note that properties very similar to those just men-
tioned are also relevant for the Yv diagram. The fact
that common optical operations (FSP, lens, Fourier trans-
form, and FRT) affect the Wigner and the Yv charts in

Fig. 8. Experimental results for an input of a plane wave.

Fig. 9. Illustration of the (r, p) chart.
relatively simple geometrical transformations increases
the potential use of these charts for analyzing and synthe-
sizing optical systems.

Our motivation is to show that the (r, p) chart has
properties similar to those discussed above and that it
hence might be more suitable, for some applications, than
the Wigner and the Yv charts.

Full mathematical definition. The explicit mathemati-
cal definition of the (r, p) chart is based on Eqs. (50) and
(70) as follows:

F~r, p ! 5 up~r ! 5 C1E
2`

`

u~x0!expS pi
r2 1 x0

2

tan f
D

3 expS 22pi
rx0

sin f
D dx0 . (76)

Note that, in the mathematical definition of the FRT, the
coordinates were normalized by Alf1 [in comparison with
the physical definition of Eq. (50)].

To obtain the conventional Fourier transform ( p
5 1), one should examine the distribution over the axis
f 5 p/2 on the (r, p) chart. More generally, to obtain
any other FRT order p, one should examine the chart’s
angular distribution at an angle of (pp)/2.

Note that, since the FRT definition is general enough to
deal with all types of signal (including complex ones), the
information contained in the (r, p) chart is not restricted
to the type of signal.

Fractional Fourier transform operation. Assuming a
function u(x0) and its (r, p) chart F(r, p), the (r, p)
chart of uq(x0) [FRT of order q of u(x)0] is

Fq~r, p ! 5 ~uq!p~r ! 5 uq1p~r ! 5 F~r, p 1 q !. (77)

One can see that Fq(r, p) is a qp/2 angular rotation of
F(r, p).

Thus one can conclude that performing FRT means ro-
tating the (r, p) chart. Algorithm (73), based on the
(r, p) representation, is thus

u~x0! ⇒ F~r, p ! ⇒ Rot $F~r, p !%

⇒ Inverse ~r, p ! chart ⇒ up~x !. (78)

Lens operation. One of the most common optical op-
erators is a multiplication with a chirp function that rep-
resents a field distribution of u0(x0) that passes through
a lens. This can be written as u0(x0)exp(ia8px0

2) when a8
is related to the lens focal length f as

a8 5 21/~lf !, (79)

where a8 is a physical parameter whose unit is inverse
square meters. Since the mathematical formulation has
no unit, to use the parameter a8 there we define a
5 na8, where n 5 1 (m2).

Our interest here is to understand the effect on the
(r, p) chart with respect to the original chart F(r, p).
Let us denote the new (r, p) chart as F lens(r, p). From
Eq. (76) we can see that
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F ~ lens!~r, p ! 5 C1E
2`

`

u0~x0!exp~iapx0
2!

3 expS ip
x0

2 1 r2

tan f
D expS 2i2p

rx0

sin f
D dx0

5 C1 expS ip
r2

tan f
D

3 E
2`

`

expF ipx0
2S 1

tan f
1 a D G

3 expS 2i2p
rx0

sin f
D dx0 . (80)

For simplicity let us write

b 5
1

tan f
1 a 5

1

tan u
. (81)

From a well-known trigonometric equation we obtain

1

sin u
5 ~b2 1 1 !1/2. (82)

Thus, based on the scale factor

s 5
sin u

sin f
, (83)

Eq. (80) becomes

F ~ lens!~r, p ! 5 C1 expS ip
r2

tan f
D E

2`

`

u0~x0!

3 expS ip
x0

2

tan u
D expS 2i2px0

rs

sin u
D dx0

5 cuu~rs !, (84)

where c is the quadratic phase factor outside the integral
and uu(rs) is the 2u/p FRT order of the input function
with a scale factor of s. As a result, one can see that the
effect of a lens on the (r, p) chart is a coordinate transfor-
mation. Each point inside the original chart has an an-
gular rotation and a radial scale. The rotation u 2 f
and the scale s are, respectively,

tan u 5
tan f

1 1 a tan f
,

s 5
1

sin f$@~1/tan f! 1 a#2 1 1%1/2 . (85)

We dub this coordinate transformation the radial shear-
ing transformation. The motivation for using this nick-
name is as follows.

After transformation to polar coordinates, Eqs. (75) be-
come

u 5 tan21S r sin f

r cos f 1 ar sin f
D ,

s 5
r

@~r sin f!2 1 ~r cos f 1 ar sin f!2#1/2 . (86)
Division of the former equation by r cos f and of the latter
by r leads to

tan u 5
tan f

1 1 a tan f
,

s 5
1

sin f$1 1 @~1/tan f! 1 a#2%1/2 . (87)

By inspection one can see that Eqs. (85) and (87) are ex-
actly the same, except that in Eq. (84) the scaled radius is
sr and in Eqs. (75) it is r/s. Those rotation and scale fac-
tors are dubbed the radial shearing operation. Figure 10
is a computer simulation that illustrates this new trans-
formation operated on a rotated square.

In Fig. 10(a) the original rotated square is shown. Fig-
ures 10(b) and 10(c) show the transformed square accord-
ing to the regular X-shearing and the radial shearing op-
erations, respectively.

The regular X-shearing operation applied over a square
turns it into a parallelogram.

Free-space propagation. Another important optical op-
eration is the FSP. According to the Fresnel integral, a
signal u0(x0) that propagates through the free space
along a distance z is

Fig. 10. (a) Rotated-square (r, p) chart. (b) Its X-shearing
transformation. (c) Its radial shearing transformation.
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ui~x, z ! 5

expS i
2p

l
z D

ilz
E

2`

`

u0~x0!expF ip

lz
~x0 2 x !2Gdx0 .

(88)

One can see that the propagation integral, which has a
form of convolution, is fully equivalent to a multiplication
of the spectrum of u0(x0) by exp(2iplzn2) (where n is the
frequency coordinate). Thus the FSP can be visualized
as follows: rotation by 90° of the (r, p) chart, perfor-
mance of a lens operation with a 5 2mlz [where m
5 1 (1/m2) since in our mathematical formulations we
want a to be without units], and, finally, rotation back by
290°. As a result, since we have already proved that the
lens operation is analogous to an X-shearing operation
and is called radial shearing, the 90° rotation will force
the FSP to be analogous to the Y-shearing operation of
the (r, p) chart. This operation is dubbed the angular
shearing operation.

Space–bandwidth product calculation. So far, we
have investigated the effect of various optical operations
on the (r, p) chart. In this part we show additional in-
formation that can be extracted from the (r, p) chart:
the space–bandwidth product (SW) of the signal. In
many cases knowledge of the SW is critical for the analy-
sis and design of optical systems. In general, obtaining
the SW is relatively complicated and involves space and
frequency calculations. Using the effect of a lens and
FSP on the (r, p) chart, one can obtain the field distribu-
tion and the SW in every plane in the optical system.
This ability gives the engineer a very powerful tool for de-
signing and analyzing optical systems.

The SW may be defined as

SW 5 ~DF0!~DF1!, (89)

where DFp is the second moment of the function F(r, p)
at a specific value p(p/2) and is defined as

DFp 5

E
2`

`

r2uF~r, p !u2dr

E
2`

`

uF~r, p !u2dr

. (90)

Hence, after each optical element, one recalculates the
F(r, p) (by applying the radial and the angular shearing
and rotation operations), and, from Eq. (89), the SW can
easily be estimated. That is, the SW can be calculated at
every plane of the optical system. The above definition is
for the SW of the signal itself. To find the SW of other
FRT orders, one can use the equation

SW~ p ! 5 ~DFp!~DFp11!. (91)

In several optical systems it is not necessary that
SW( p) 5 SW(0).

Linearity. The F(r, p) chart is linear, which means
that, for two (or more) different signals u0(x0) and v0(x0),
the associated F(r, p) charts may be added:

Ftotal~r, p ! 5 aFu~r, p ! 1 bFv~r, p !, (92)
where Ftotal(r, p) refers to the chart of au0(x0)
1 bv0(x0). This property does not exist in the Wigner
transformation chart.

2. Mathematical Validity
Here several very simple optical systems are tested with
the (r, p) chart to examine the validity of the representa-
tion. We intend to show that elementary optical systems
applied in cascade are equal to several applications of the
relevant radial or angular shearing operation.

• Two lenses in cascade. It was proved that a lens
operation is a radial shearing operation. Thus two lenses
in cascade are equal to two radial shearing operations ap-
plied one after the other. Let us assume that a lens with
a coefficient factor of a1 is applied. It has a certain radial
shearing effect on the (r, p) chart. Then a second lens
with another coefficient factor, a2 , is applied, and again
another radial shearing of the (r, p) chart is obtained.
Here we shall prove that applying one lens with a total
coefficient factor of a1 1 a2 causes a radial shearing that
is equal to the overall radial shearing that was obtained
above in the two-staged operation.

On the one hand, a lens with a chirp factor of a1 1 a2
provides a radial shearing of

u 5 tan21F tan f

1 1 ~a1 1 a2!tan f
G ,

s 5
1

sin f$@~1/tan f! 1 ~a1 1 a2!#2 1 1%1/2 . (93)

On the other hand, applying two lens operations in cas-
cade gives

~r, f! ⇒ ~s1r, u1!,

~s1r, u1! ⇒ ~s2s1r, u!, (94)

where

u1 5 tan21S tan f

1 1 a1 tan f
D ,

s1 5
1

sin f$@~1/tan f! 1 a1#2 1 1%1/2 ,

u 5 tan21S tan u1

1 1 a2 tan u2
D ,

s2 5
1

sin u1$@~1/tan u1! 1 a2#2 1 1%1/2 . (95)

After applying simple trigonometric equations as

sin2 b 5
tan2 b

1 1 tan2 b
(96)

one obtains, without the slightest deviation in any re-
spect, Eqs. (93) from relations (94) and (95) when s
5 s1s2 .

• Rotation. As was mentioned above, a FRT may be
obtained by use of a bulk optics systems that contain lens-
free spatial lens operations. We shall show that applying
the three relevant shearing operations provides precisely
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a rotation31 of the (r, p) chart. This may be expected,
owing to the mathematical property that FRT means a ro-
tation of the (r, p) chart.

A regular shearing operation applied over x and then
over y and again over x, with factors of A, B, and C, is
equivalent to

~x0 , y0! ⇒ ~x0 2 Ay0 , y0! 5 ~x1 , y1!,

~x1 , y1! ⇒ ~x1 , y1 1 Bx1! 5 ~x2 , y2!,

~x2 , y2! ⇒ ~x2 2 Cy2 , y2! 5 ~x3 , y3!. (97)

To yield a rotation by g, the shearing coefficients should
be

A 5 C 5 tan~g/2!, B 5 sin g. (98)

Now let us perform three modified shearing operations
with factors of a, b, and again a, assuming that the same
relation as in Eqs. (98) should be kept between the factors
of the modified shearing, i.e., between a and b.

A modified shearing operation that is performed three
times means that

~r, f! ⇒ ~s1r, u1!,

~s1r, u1! ⇒ ~s1r, u2!,

~s1r, u2! ⇒ ~s2s1r, u3!,

~s2s1r, u3! ⇒ ~s2s1r, u4!,

~s2s1r, u4! ⇒ ~s3s2s1r, u5!, (99)

where
u1 5 tan21S tan f

1 1 a tan f
D ,

u2 5 u1 1 ~p/2!,

u3 5 tan21S tan u2

1 1 b tan u2
D ,

u4 5 u3 2 ~p/2!,

u5 5 tan21S tan u4

1 1 a tan u4
D ,

s1 5
1

sin f$@~1/tan f! 1 a#2 1 1%1/2 ,

s2 5
1

sin u2$@~1/tan u2! 1 b#2 1 1%1/2 ,

s3 5
1

sin u4$@~1/tan u4! 1 a#2 1 1%1/2 . (100)

Note that we performed the angular shearing operation
by first rotating the chart by 90°, then applying the radial
shearing operation, and finally by again rotating the
chart by 290°. a is the radial shearing factor, and b is
the angular shearing factor. According to Eqs. (98) and
the trigonometric relation

tan
g

2
5

sin g

1 1 ~1 2 sin2 g!1/2 , (101)

we can obtain
Fig. 11. (a) Reference signal u(x). (b) A second, different signal g(x). (c) Fu(x, p) for the reference signal u(x). (d) Fg(x, p) for the
second signal g(x).
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Fig. 12. (a) Correlation given by Eq. (106) when the input signal is equal to the reference signal. (b) One-dimensional cross section of
(a) at p 5 0. (c) Correlation given by Eq. (106) when the input signal is equal to the second, different signal. (d) One-dimensional cross
section of (c) at p 5 0. (e) Ordinary time-domain correlation of the reference signal with itself. (f ) Ordinary time-domain correlation
of the reference signal with the second signal.
b 5
2a

a2 1 1
. (102)

Moreover,

1

tan u4
5 2tan u3 ,

sin u4 5 2cos u3 ,

1

tan u2
5 2tan u1 ,

sin u2 5 cos u1 , (103)

so, using Eqs. (100)–(102) and the trigonometric relation
tan~g1 1 g2! 5
tan g1 1 tan g2

1 2 tan g1 tan g2
, (104)

we obtain

u5 5 f 2 tan21
2a

1 2 a2 ,

s3s2s1r 5 r. (105)

Thus the radius r is unchanged, and the angle is changed
by 2tan21@2a/(1 2 a2)#, which is precisely the definition of
rotation.
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C. Radon–Wigner Phase Spaces for Acoustic Signal
Processing
This subsection presents a new approach based on the
phase-space representations introduced above. In this
new technique the (x, p) or the (r, p) representation is
correlated instead of the signals themselves.

First, the representation of a reference signal u(x) is
computed and stored. Then, we calculate the correlation
of the incoming signal g(x) with the reference, using ei-
ther the Cartesian or the polar representations:

CCar~x, p !

5 E
2`

` E
2`

`

Fg~x8, p8!Fu* ~x8 2 x, p8 2 p !dx8dp8,

(106)

Cpol~x, m!

5 E
2`

` E
2`

`

Fg~x8, m8!Fu* ~x8 2 x, m8 2 m!dx8dm8,

(107)
where Fg(x8, m8) and Fu(x8, m8) are the polar representa-
tions expressed in Cartesian coordinates [(r, p) charts].
Fg(x8, p8) and Fu(x8, p8) are the (x, p) charts.

Numerical evidence indicates that such an algorithm
allows greatly superior discrimination by virtue of the ad-
ditional dimension p or m, as we now illustrate with a spe-
cific example.

Figure 11(a) shows a 128 pixel (15.625-ms) segment
from the middle of an acoustic signal originated by a train
sampled at a rate of 8192 Hz. This segment is taken as
the reference signal. For comparison, a second similar
but distinct acoustic signal, shown in Fig. 11(b), was
taken. Figures 11(c) and 11(d) show the Cartesian rep-
resentation of the signals presented in Figs. 11(a) and
11(b), respectively. Figure 12(a) presents the autocorre-
lation given by Eq. (106) for the case in which the input
signal is the same as the reference. Figure 12(b) pre-
sents the cross section of this correlation at p 5 0. For
comparison, the correlation between the reference signal
and the second signal is presented in Fig. 12(c). The
cross section of this correlation, shown in Fig. 12(d), ex-
hibits a much smaller peak. Finally, in Fig. 12(e) we
show the direct ordinary time-domain correlation of the
reference signal with itself, and in Fig. 12(f ) we show the
direct ordinary time-domain correlation of the reference
signal with the second distinct signal. The peak obtained
is much less distinct and highly oscillatory. Overall, it is
clear that the discrimination that can be obtained from
Figs. 12(e) and 12(f ) is not as good as that which can be
obtained from Figs. 12(b) and 12(d).

The underlying reason that the representations em-
ployed in this subsection lead to superior results may be
similar to the reasons for the benefits obtained by use of
wavelet transforms. In fact, a relationship between the
FRT and a certain wavelet family has been pointed out in
Ref. 25.

D. Representation of Spatial–Temporal Signals
In Subsections 4.A and 4.B we introduced the Radon–
Wigner-based representations that we called the (x, p)
and the (r, p) charts. Those charts were 2D charts for a
1D spatial signal. In this subsection we define more-
general (x, p) and (r, p) displays, which are multidimen-
sional and are defined for signals having spatial as well
as temporal information. Such a general definition may
be

F~x, px , t, pt! 5 upx ,pt
~x, t !, (108)

where x is the spatial vector, t is the temporal axis, and
px and pt are the spatial and the temporal fractional or-
ders, respectively.

Such a general representation may be displayed in Car-
tesian as well as in polar coordinate sets.

Thus this general representation can be related to the
Radon transform of the generalized TS WDF.

5. CONCLUSIONS
In this paper we have reviewed a set of Wigner-related
phase spaces that are used in various signal processing
applications (such as compression and recognition with
discrimination ability). Optical implementation configu-
rations as well as experimental results or computer simu-
lations have been presented. The transformations dis-
cussed here are the generalized Wigner transform, the
fractional Fourier transform, and, primarily, the (x, p)
and the (r, p) representations.

D. Mendlovic can be reached by e-mail at mend@
eng.tau.ac.il.
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