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Abstract

In this communication we propose performing two-dimensional correlation operation between phase-space repre-
sentations based on the fractional Fourier transform, instead of correlating the signals themselves. A numerical ex-
amples clearly indicates superior discrimination performance. © 2001 Published by Elsevier Science B.V.
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1. Introduction and background

The fractional Fourier transform (FRT) [1-3]
operation has been found useful for various spatial
filtering and signal processing applications [4,5].
The transform is defined through the transforma-
tion kernel ([1]):

where B,(u,u') is the kernel of the transformation
and a is the fractional order.
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The relationship of the FRT to optical propa-
gation and optical systems has been discussed in
several works [2,3,6-8]. Further references may be
found in Ref. [1].

The phase-space representations employed in
this communication were first suggested in Ref. [9],
where they were referred to as the (x, p) chart and
the (r, p) chart, for reasons that will become obvi-
ous shortly. Their optical implementation was pre-
sented in Ref. [10]. The Cartesian representation of
a signal f'(u) (the (x,p) chart) is defined by [9,10]:

Ty(u,a) ={7°f ()} (u) 3)
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where {7 ...} is the FRT of order a. This chart is
a two-dimensional (2-D) chart for a one-dimen-
sional (1-D) input signal.

Many new mathematical properties of these rep-
resentations and their relationship to other phase-
space representations are presented in Ref. [11].

The FRT has found many applications in cor-
relation, matched filtering, and pattern recognition
[12]. In this transform the amount of shift variance
may be controlled by choosing the proper frac-
tional order a for the transformation. When the
fractional order is one, the FRT becomes the con-
ventional Fourier transform which is totally shift
variant. For fractional order of zero the FRT gives
the input function, i.e. it is totally shift invariant.
For any other fractional orders in between, the
transform has a partial amount of shift variance.
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Several researchers have exploited this property
for pattern recognition applications (see Ref. [12]
for references). Here we will propose a new method
based on the phase-space representations intro-
duced above, which is based on correlating these
representations instead of the signals themselves.

First, the representation of a reference signal
h(u) is computed and stored. Then, we calculate
the correlation between the phase-space represen-
tations of the incoming signal f(u) with the ref-
erence h(u):

)
Clu,a) = [ : [ Z Tl d)T (o — u,d — a)dud dd
4)

Numerical evidence indicates that such an algo-
rithm allows greatly superior discrimination re-

Fig. 1. (a) Reference signal %(u), (b) a second, different signal f(u), (c) T} (u,a) for the reference signal /(u) and (d) Ty (u,a) for the

second signal f(u). [15].
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sulting from the additional dimension a, as we now
illustrate with a specific example in Section 2.
Some computation considerations as well as the
required optical configuration are presented in
Section 3. Section 4 concludes the paper.

2. Computer simulations

Fig. 1a shows a 128 pixel (15.625 ms) segment
from the middle of a chirp acoustic signal sampled
at a rate of 8192 Hz. This segment is taken as the
reference signal. Fig. 1c shows the Cartesian rep-
resentation of this reference signal (an (x, p) chart).
Fig. 2a presents the correlation given by Eq. (4)
when the input signal is the same as the reference.
This 2-D correlation expression has two axes — the
vertical one that corresponds to the coordinate u
and the horizontal one that corresponds to the
coordinate a. A cross section of this 2-D correla-
tion may be seen in Fig. 2c that displays the cross
section at the vertical axis (¢ = 0). For compari-
son, the correlation between the reference signal
and a second similar but distinct acoustic signal
(shown in Fig. 1b) is presented in Fig. 2b. Fig. 1d
shows its Cartesian representation. The cross sec-
tion of this correlation shown in Fig. 2d exhibits a
much smaller peak. Finally, in Fig. 2e, we show
the direct ordinary time-domain correlation of the
reference signal with itself and in Fig. 2f, we show
the direct ordinary time-domain correlation of the
reference signal with the second distinct signal.
The peak obtained is much less distinct and highly
oscillatory. Overall, it is clear that the discrimi-
nation that can be obtained from parts e and f is
poorer than the one obtained from parts c and d of
Fig. 2. This detection discrimination ability im-
provement is obtained due to the addition of the
another axis: the fractional order a.

The underlying reason why the representations
employed in this communication lead to superior
results may have similar reasons to the bene-
fits obtained by the use of wavelet transforms. In
fact, a relationship between the FRT and a certain
wavelet family has been pointed out in Ref. [5].
The fractional order axis is equivalent to the scale
axis of the wavelet transform since varying the
fractional order of the transform scales the chirp

kernel which multiplies the signal. As in the
wavelet transform, displaying a one dimensional
signal using two axes of scale and shift allows to
represent the signal properly despite its fast local-
ized frequency variations (as occurs for instance in
oscillating or transient signals). A representation
that could not be achieved using a conventional
spectral display (a Fourier transform). The adap-
tation between the localization of the input signal
and the transformation kernel is the basis for its
improved discrimination ability of transient sig-
nals (such as acoustic signals).

In order to further demonstrate the ability of
the discussed approach, we present additional sim-
ulations obtained with various input signals. The
presented examples are just a chosen set out of a
larger variety of simulations we performed. In Fig.
3a and b, one may see two samples of laugh sig-
nals. Signal 3a is chosen to be the reference. Fig. 3c
and d display the Cartesian representation of the
signals in Fig. 3a and b respectively. The obtained
two dimensional auto and cross correlations are
presented in Fig. 3e and f respectively. Their cor-
responding cross sections may be seen in Fig. 3g
and h. As one may notice the auto correlation
peak is sharp and the cross correlation is very low.
The obtained auto and cross correlations when an
ordinary time domain approach is used may be
seen in Fig. 3i and j. Here, the auto correlation is
not sharp and the cross correlation is not as low as
in Fig. 3g and h.

As previously noted, the usage of the suggested
phase space allowed to improve the recognition
performances of 1-D acoustic signals due to the
fact that the phase space is 2-D and thus it has
an increased discrimination ability. In addition,
the phase space representation, that is FRT based,
actually realized a sophisticated wavelet-like spec-
tral decomposition [5]. Wavelet transform capa-
bilities in dealing with transient signals was
previously proven [13].

Note that since the investigated phase-space
representations are based upon the FRT, they are
shift variant. Applying various techniques such as
a decomposition of the input signal to circular,
Mellin or logarithmic harmonics [14] prior to
computing the phase space may allow incorpo-
rating invariant pattern recognition capabilities.
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Fig. 2. (a) Correlation given by Eq. (4) when the input signal is equal to the reference signal, (b) correlation given by Eq. (4) when the
input signal is equal to the second, different signal, (c) 1-D cross section of part a at a = 0, (d) 1-D cross section of part b at a = 0, (e)
ordinary time-domain correlation of the reference signal with itself and (f) ordinary time-domain correlation of the reference signal
with the second signal. [15].

3. Computation considerations and experimental using the fast Fourier transform (fft) algorithm.
setup For an input signal having N pixels, the compu-
tation complexity for computing the phase space is

The Cartesian phase space ((x, p) chart) is based MNlog N where M is the computation resolution
on the FRT operation and thus may be computed in the fractional order axis. The computation
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Fig. 3. (a) An input reference signal, (b) a different signal, (c) the Cartesian representation of the reference signal, (d) the Cartesian
representation of the second signal, (e) auto correlation given by Eq. (4), () cross correlation given by Eq. (4), (g) 1-D cross section of
part e at a =0, (h) 1-D cross section of part f at a = 0, (i) ordinary time-domain auto correlation and (j) ordinary time-domain
correlation of the reference signal with the second signal.
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Fig. 3 (continued)
complexity for obtaining the 2-D correlation will

be MNlog(MN) since the correlation may also be
obtained using the fft technique.
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Fig. 3 (continued)

The phase space as well as the 2-D correlation
may be obtained optically. As explained in Ref.
[10], three filters are used in a configuration that
implements an FRT with constant separation
distances between the filters. Each filter contains
strips that correspond to various fractional orders
indicated as pl to p25 in Fig. 4. Experimental re-
sults obtained from the above discussed setup are
presented in Ref. [10]. An implementation of the
2-D correlation between the two-phase spaces may
be obtained using a conventional VanderLugt 4-f
correlator setup.

4. Conclusions

This paper presents a novel identification tech-
nique of fractional Fourier transform based phase-
space representation. The proposed approach for
detecting and identifying signals offers significant
improvement with respect to common correlation
techniques. The improvement is expressed both in
obtaining a sharp and narrow auto correlation
peaks with negligible side lobes and in a very low
cross correlation peak of below 20% for all the
cases. The conventional technique exhibits at least
10 times wider correlation peak with side lobes of
more than 30% from peak’s height and a cross
correlation peak of above 50%.

Exploring further possibilities in this direction,
as well as the comparison of the proposed ap-
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Fig. 4. Optical setup for realizing the (x, p) chart.

proach with wavelet-based techniques constitute
avenues for future research.
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