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6.1 Introduction

In some applications we want to synthesize a discrete signal from another discrete
signal by designing a system that maps the signal we have to the desired one. The
problem of obtaining a specific output g corresponding to a specific input f 1s not an
interesting problem if all entries of f are nonzero, because we may recover g from
f by using only a single multiplicative filter h. However, in the event that some of
the entries of f are zero, the problem is no longer trivial and a number of iterative
algorithms have been proposed. A distinct problem arises when, rather than spec-
ifying a specific output for a specific input, an input-output relation is specified.
This is the system synthesis problem, as opposed to the signal synthesis problem.
If some information is available about the input (in some statistical form), and we
want to synthesize an input-output relation represented by the system matrix H,
the problem may be posed as the following minimization problem

min E (||HE — Tf]%), (6.1)

where T represents a matrix that is constrained to correspond to some efficiently
realizable form. For example, we may want to implement the desired input-output
relation with a Fourier domain filter, which is easy to realize efficiently. Then T
would be constrained to the form T = F~'AF, where F is the Fourier transform
matrix, A is a diagonal matrix, and Eq. (6.1) is minimized with respect to A. An-
other synthesis problem involves synthesizing an input in order to produce a de-
sired output. Despite the different interpretation, this problem is mathematically
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identical to the problem of signal recovery: We have an output, which may be
interpreted as the desired signal, and we try to recover the input, which may be
interpreted as the signal to be synthesized.

Many synthesis problems arise in optics. One important problem is synthesiz-
ing a desired optical field from a given source when both are characterized by their
statistical properties. The most commonly used statistical descnpnons of light are
the second-order expectations known as coherence functions.! There are two kinds
of coherence: temporal and spatial. Temporal coherence is concerned with the abil-
ity of a light beam to interfere with a delayed version of itself. Spatial coherence
characterizes the ability of light to interfere with a spatially shifted version of it-
self. When both factors are simultaneously taken into consideration, we are led to
the concept of the mutual coherence function.!* A random optical wave that ex-
hibits arbitrary spatial and temporal coherence properties can be characterized by
its mutual coherence function! defined as:

T r(p1, pas 11, 12) = (£ (p1. 1) (P2, )5 (6.2)

where f(p,t) is the complex amplitude of the optical signal, p and ¢ are the spa-
tial and temporal variables, the angle brackets { ) denote the ensemble average
over realizations of the fluctuating optical field, and ()* denotes complex conjuga-
tion. In this chapter we restrict our attention to quasi-monochromatic conditions in
which temporal coherence effects can be ignored and the coherence function can
be reduced to

Tr(p1, p2) = (P fH (o)), (6.3)

which is known as the mutual intensity function.

The basic problem we deal with in this chapter is symbolically depicted in
Fig. 6.1. We assume we have a quasi-monochromatic light source with given mu-
tual intensity Jg. We wish to design the system H, possibly subject to certain con-
straints to ensure efficient realization such that the output mutual intensity Jg satis-
fies as closely as possible the given specifications. We employ a discrete formula-
tion because this leads to a simple matrix-algebraic formulation without the distrac-
tions accompanying discussions of continuous function spaces. One-dimensional
notation is employed for simplicity, although it is easy to generalize the results to
two-dimensional problems as well. Our goal is to solve for the necessary optical
system H and to synthesize it efficiently.

Figure 6.1 The mutual intensity synthesis problem.
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We will first define a number of matrices that characterize the second-order
correlations of a field and discuss important properties of these matrices. We will
also discuss the limiting cases of fully incoherent and coherent light and propose
a definition to measure the scalar degree of partial coherence of light. We will
then focus on our main problem of synthesizing light of desired mutual intensity.
Since this problem is quadratic, we will employ the singular-value decomposition,
which reduces this quadratic problem to a linear one. We then propose the use
of fractional Fourier domain filtering circuits introduced in Refs. [13], [14], and
[23]-[26] to efficiently implement the necessary optical system.

6.2 Correlation Matrices and Their Properties

For one-dimensional random optical fields, the mutual intensity function can be
written as

Jr(xi, x2) = [ f ) fH(x2)]. (6.4)

Letf=[f(1), f(2),..., f(N)]T be a vector representing the continuous field f(x)
such that the elements of f are obtained by sampling the complex optical field
f(x). Here, N is the space-bandwidth product of f(x). Analogous to Eq. (6.4),
the mutual intensity matrix J¢ of f is then defined as

Jp = (), (6.5)

where the angle brackets denote ensemble averaging and the superscript H denotes
Hermitian transpose. We will simply write J instead of J¢ when there is no room for
confusion. The diagonal elements of J correspond to the intensity of the field, and
their sum is the energy. We will use the notation J (m, n) to represent the elements
of the matrix J. Referring to the theory of random processes, J is an autocorrelation
matrix.

We now state some elementary but important properties of J that hold for any
field f:

1. As a direct consequence of its definition [Eq. (6.5)], J is known to be Her-
mitian symmetric and positive semidefinite:

J=J9 and vHjv >0 for any vector v.

Due to Hermitian symmetry and positive semidefiniteness, all eigenvalues
of J are real and nonnegative.

2. | (m,m) > < [ (n,m)| | (m, ).

3. Eigenvectors corresponding to distinct eigenvalues will always be orthogo-
nal. Furthermore, as with any Hermitian symmetric matrix, a complete set
of orthogonal eigenvectors can always be found even when there are de-
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generate eigenvalues. As a consequence, J can be diagonalized by a unitary
matrix U (UUY = UMU = 1) whose columns are the eigenvectors of J:

J=UAUH (6.6)

Here, A is a diagonal matrix of real eigenvalues of J greater than or equal to
zero. The above representation is just the singular-value decomposition of
the matrix J3. It can also be written as

R
J=> Ny, (6.7)
k=1

where uy 1s the kth column of U, A; is the eigenvalue corresponding to wy,
and R is the number of nonzero eigenvalues.® Note that each uy is orthog-
onal to the other since U is a unitary matrix. This expression is sometimes
referred to as the spectral expansion of J. It is also known as the coherent-
mode representation in optics® because each term corresponds to a coherent
mode of light.!

4. If J can be expressed as the outer product of two vectors w’ and u” in the
form u'u”!, then Hermitian symmetry implies that w' and u” must be par-
allel, so that by appropriate scaling J can be expressed in self-outer-product
form wuf. That is, any Hermitian symmetric matrix that can be written in
outer-product form can also be written in self-outer-product form.

5. The rank of J is equal to the number of nonzero eigenvalues.>

Sometimes it is more convenient to work with the normalized version L of J©

Lommy = @) Tomm
T JUIFmPY PR VTm m)Tnn)

(6.8)

where L(m,n) are the elements of the matrix L. L is referred to as the complex
coherence matrix.%

“Since L is obtained by normalizing J, the properties given above also hold
for 1.5 In addition to these properties, the following is also true: The diagonal
entries of L. are all equalto 1, |L(m, n)| < 1, and if J has unit rank, then all elements
of L. have unit magnitude. Conversely, if all elements of L, have unit magnitude,
positive semidefiniteness implies that J has unit rank.%

6.3 The Degree of Partial Coherence

In the previous section two different matrices that characterize the second-order
statistics of a discrete random optical field were introduced and their properties
were discussed. In this section we will examine the two extreme cases of random
light—namely, fully incoherent and fully coherent light—in terms of these matri-
ces. Later we will discuss a possible definition of a scalar measure of the degree of
partial coherence of a field. Further details can be found in Ref. [6].
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The statistical correlations of pairs of spatial samples of an optical field deter-
mine the degree of coherence or incoherence. A field is considered coherent if any
two samples of the field are fully correlated, that is, they are just as correlated with
each other as they are with themselves. A field is considered incoherent if any two
distinct samples are fully uncorrelated, that is, the magnitude of their normalized
correlation or covariance is zero.

First we consider fully coherent fields. Since any two samples of such a field
must be fully correlated, the magnitude of their normalized correlation must be
unity. This means that all of the elements of matrix L must have unit magnitude. In
this case the matrices J and L both have unit rank, are of outer-product form, and
consequently have only one nonzero eigenvalue.® The sole nonzero eigenvalue of
L is equal to N. Thus, we can say that a discrete optical field is fully coherent if
any of the following alternative conditions are satisfied:

1. All elements of the associated L matrix have unit magnitude:
|L(m,n)|=1, m,n=1,...,N; (6.9)

7. The associated mutual intensity matrix J has unit rank;
3. J (or L) has only one nonzero eigenvalue; and
4. J (or L) is of outer-product form.

Next we consider fully incoherent fields. Since any two distinct samples of
such a field must be uncorrelated, the mutual intensity matrix J and its normalized
version L must be diagonal. In fact, L is the identity matrix. Therefore, we can say
that a discrete optical field is fully incoherent if the following alternative conditions
are satisfied:

1. The associated normalized mutual intensity matrix L is the identity matrix

L=IL (6.10)
and

2 The associated mutual intensity matrix J is diagonal.

Though trivial, we also note that for the fully incoherent case, the matrix L is
of full rank (R = N), and all of its eigenvalues are equal to unity. However, we
should note that the J matrix for an incoherent field need not be full rank, nor does
every full-rank matrix correspond to an incoherent field.

Based on the definitions of full coherence and full incoherence in terms of
the correlation matrices, we can define a scalar measure of the degree of partial
coherence of a field. This can be accomplished by interpolating any of the char-
acteristics of the matrices in question.6 There are many ways of constructing such
interpolation functions, leading to several definitions of such a measure. Here we
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will present one possible definition and refer the reader to Ref. [6] for other possi-
ble definitions and further discussion.

As already stated, incoherent light is characterized by all unity eigenvalues and
coherent light by one nonzero eigenvalue of the matrix L. We also note that the
eigenvalues of matrix L are all nonnegative and their sum is equal to N. Based
on these, we can state that the more concentrated the eigenvalues are around the
largest eigenvalue, the more coherent the light; and the more uniformly spread they
are, the more incoherent the light. It is convenient to assume that in the general case
the eigenvalues are ordered in decreasing order. Therefore, the following measure
of the spread of the eigenvalues away from the largest eigenvalue (which has index
n = 1) may be used as a measure of the degree of partial coherence:

1 N
2
c=-N—n§(n_1) An. (6.11)

When all eigenvalues of L are unity (incoherent light), we have ¢ = (N — 1) (2N —
1)/6, and when there is only one nonzero eigenvalue (coherent light) we have
¢ = (). For convenience, we can define a new measure

, (N—-D@N-1/6—c
 (N=1D@N-=1)/6

(6.12)

so that ¢/ = 0 corresponds to full incoherence and ¢’ = 1 corresponds to full coher-
ence.

6.4 Synthesis of Arbitrary Mutual Intensity Matrices

Having discussed the properties of matrices J and L and a definition for a measure
of the scalar degree of partial coherence of light, we now turn our attention to
the synthesis problem. Referring to Fig. 6.1, our problem is to design the system
H, possibly subject to certain constraints, such that the output mutual intensity Jg
satisfies as closely as possible the given specifications.

Once the optimal system H is determined, there remains the problem of im-
plementing it. One way of implementing such general linear systems is to employ
matrix-vector product architectures or multifaceted architectures.® However, these
approaches are not space-bandwidth efficient. If the input has a space-bandwidth
product of N, these systems require an optical system with space-bandwidth prod-
uct N2 in order to realize an arbitrary linear system. To alleviate this inefficiency,
we propose to employ the space-bandwidth efficient filtering configurations intro-
duced in Refs. [13], [14], [25], and [26]. In order to efficiently implement H with
these configurations, we can employ one of the following two approaches: (1) we
can directly synthesize the optimal system H with such configurations; or (2) we
can take the form of these filtering configurations as a constraint on the form of H
and optimize over the free parameters of these configurations.?
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Referring to Fig. 6.1, the output field g is related to the input field f through the
discretized relation

g = Hf (6.13)
and
N
g(m) =Y H(m,n)f(n), (6.14)
n=1

where N is the space-bandwidth product of the signals and H is an N x N matrix
representing the optical system. For simplicity in notation, we will assume that
the dimensions of the input and the output optical fields are the same, although
the discussion and the solutions we will provide may easily be generalized to the
rectangular case where the input and the output dimensions are different.

It is easy to show that the output mutual intensity is related to the input mutual
intensity through the relation

(g™ = ((HD (D) = H{fE H" (6.15)
and
J, = HIH". (6.16)

Since the right-hand side of Eq. (6.16) 1s quadratic in the elements of H, it
is desirable to introduce a representation for the mutual intensity that makes this
equation linear in H. Thus, we now discuss the square-root representation, which
will serve for this purpose.

Square-Root Representation: In Sect. 6.2 we discussed some important prop-
erties of the mutual intensity matrix J. Based on these properties, it is possible to
show that J may always be expressed in the form (see Ref. [3])

=1t 6.17)

To show this, we first define A'/2 to be the diagonal matrix whose elements are
equal to the nonnegative square roots of the elements of A [Eq. (6.6)]. Then we
can write A — AY/ZURUA /2 since UMU is equal to the identity matrix. It follows
that

J=UAUH = (UA'2U) (UAV20M) = 3 = 3%, (6.18)

where we have defined J = J# = UA'/2UH. Thus, the mutual intensity matrix Jis
related to the posirive semidefinite square-root representation J through the relation

J=J7=Ji% (6.19)
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It is possible to find many matrices %) p labeled by p that satisty J = 8 p(j )I;.
The first reason for the multiplicity of such matrices is that the choice of U in
Eq. (6.6) is not unique when the eigenvalues are not distinct. In this case, within the
subspace associated with each degenerate eigenvalue, the choice of orthonormal
basis is not unique. Second, we may define the matrix A'/? to be the diagonal
matrix whose elements are equal to the negative square roots of the eigenvalues of
A rather than nonnegative square roots, or we may choose nonnegative square roots
for some of them and negative square roots for others. More detailed discussion can
be found in Ref. [3]. If we assume J is both of full rank and has distinct eigenvalues,
and we choose only the positive square roots of the eigenvalues, then we can find
a unique J.

The positive semidefinite square-root representation introduced above provides
a way to make our problem linear in H. If we insert two instances of Eq. (6.19) for
J¢ and Jg, Eq. (6.16) can be written as

Tt = HygtH, (6.20)
One solution of this equation is
Jz = HI;. (6.21)

The last system of equations can be solved to obtain the linear optical system H
required to obtain an optical field with the desired mutual intensity matrix Jg from
a given field characterized by Js.

There remains the problem of efficiently implementing the system represented
by H. We propose to use fractional Fourier domain-filtering configurations for this
purpose. In the following section we will briefly introduce these configurations and
how they can be used to implement the system matrix H.

6.4.1 Fractional Fourier domain-filtering circuits

In this section, we introduce the concept of filtering circuits in fractional Fourier
domains. This configuration includes the multistage (repeated) and multichannel
(parallel) filtering configurations that are generalizations of the single domain-
filtering configuration.

The general single-stage transform domain-filtering configuration is shown in
Fig. 6.2(a). According to this configuration, the output is obtained by multiplying
the input with a filter function h in the transform domain. The overall system is
characterized by

T=8""AS, (6.22)

where S is a transform and Ay, corresponds to a multiplication with the filter func-
tion h. T can be implemented efficiently if the transform S has efficient implemen-



Synthesis of Optical Fields 111

£ § ae%%-s*»g f= F a@a-F‘i-s-g
h b

(a) (b)
ra@a g fF? »@a—F‘“ég

h h

(c) (d)

Figure 6.2 (a) Single-stage transform domain filtering. (b) Fourier domain filtering.
(c) Time (space) domain filtering. (d) Fractional Fourier domain filtering.

tation. A time-invariant system is a special case with the transform S equal to the
ordinary Fourier transform [Fig. 6.2(b)]. Another special case may be obtained by
using the identity transform (S = I); in this case, we have the time or space do-
main filtering for which the output is obtained by simply masking the input with a
window function h [Fig. 6.2(c)].

If we choose the transform in Eq. (6.22) as the fractional Fourier transform
(S = F%), we obtain the single-stage fractional Fourier domain filter [Fig. 6.2(d)].
In this case the overall system is given by

Tss =F ?ApF?. (6.23)

This configuration interpolates between the time-domain and frequency-domain
filtering configurations and enables significant improvements in signal restoration
and denoising.”1?

The ath-order fractional Fourier transform®!5-20 of f(x) is denoted by
F4 f(x). Then F° f(x) = f(x) is the function itself, F' f(x) = F(v) is the ordi-
nary Fourier transform, and F9 F% = F®Ta1 In the discrete case, the ath-order
fractional Fourier transform f, of a vector f can be obtained by

f, = F,

where F“ represents the ath-order fractional Fourier transform matrix.>!2 A com-
prehensive treatment of this transform and an extensive list of references may be
found in Refs. [13] and [14].

In the multistage filtering configuration shown in Fig. 6.3, M single-stage frac-
tional Fourier domain filters are combined in series.??32* The input is first trans-
formed into the ajth domain, where it is multiplied by a filter h;. The result is
then transformed back into the original domain. This process is repeated M times
consecutively. (Notice that this amounts to sequentially visiting the domains ay,
ap, as, etc., and applying a filter in each.) It has been shown in Ref. [24] that, by
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modifying the filters hy appropriately, the fepeated configuration cap be reduced
lo one involving only ordinary Fourier transforms. However, the modified filters

k with order @ may be combined with the forward transform of stage k + 1 with
order g |, resulting in a single transform of order a4y — g Thus, the System
consists of multiplicatiye filters sandwiched between fractional transform stages of
ordera; =gy, ; — a.

Let Ay, denote the operator corresponding to multiplication by the filter func-
tion hy. The overal] operator T, corresponding to the multistage configuration is
given by

Tos = (F Ay, po-a An FO)E, (6.24)
and the output g, ig related to input as
8s = Iyt (6.25)

A dual configuration to the multistage filtering is the multichanne] filtering.25:26
In this configuration we combine the M single-stage fractional Fourier domain

Figure 6.4 Multichanne] (parallel) filtering configuration,
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The overall operator T corresponding to the multichannel configuration is
given by

M
Te = ) F~%ApF™, (6.26)
k=1

and the output g, is related to input as
gp = Tncf. (6.27)

Both multistage and multichannel filtering configurations have at most MN -+
M degrees of freedom. Their digital implementation will take O(M N log N) time
since the fractional Fourier transform can be implemented in O (N log N) time.?!
Optical implementation will require an M-stage or M -channel optical system, each
with space-bandwidth product N. These configurations interpolate between gen-
eral linear systems and shift-invariant systems in terms of both cost and flexibility.

It is helpful to clearly distinguish the two different ways in which these config-
urations can be used in a given application:

1. Starting with a recovery or synthesis problem, we determine the optimal
matrix H using any models and methods considered appropriate. Then we
seek the transform orders a; and filters hy such that the overall multistage or
multichannel filtering configuration matrix (Tms of Tiyc) 18 as close as possi-
ble to H according to some specified criterion, for example, in the minimum
Frobenious norm sense.

2. We take Eq. (6.24) or (6.26) as a constraint on the form of the matrix to be
employed. Given a specific optimization criterion such as minimum mean
square error, we find the optimal values of ar and hy subject to this con-
straint.

In the multichannel case, the problem of determining the optimal filters can
be exactly solved for both of the above approaches since the overall configura-
tion matrix depends linearly on the elements of the filter vectors hy.20 In the case
of multistage configurations, Ty depends nonlinearly on the elements of the fil-
ter vectors hy, and the resulting nonlinear optimization problem is much more
difficult. Nevertheless, an iterative approach has been successfully applied to this
problem.?3%*

6.4.2 Synthesis algorithm

In order to implement the desired matrix H, which satisfies Eq. (6.21), we can em-
ploy both of the approaches discussed in the previous section. Using approach (1),
we can first solve Eq. (6.21) by standard techniques such as pseudo-inverse and
least-squares methods:> then we may synthesize the resulting matrix H in the
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form of fractional Fourier domain filtering configurations. Or we may employ ap-
proach (2) by directly inserting the form to Eq. (6.21) and finding the optimal filter
coefficients and orders. For instance, in the multichannel configuration, the prob-
lem is to find the optimal filter coefficients that minimize the error:

2

o2 = [Ty~ T2 = 628)

M
Jg - (ZF_akAkFa")jf

k=1

F

Here, || - ll%, denotes the Frobenious norm.
Overall the mutual intensity synthesis problem can be solved by the following
algorithm:

o Given the desired mutual intensity function Jg and the input mutual inten-
sity function Jy, find the square-root representations using the singular-value
decomposition: Ji= UfA;/ ZU? and jg = UgAé/ 2UH, where Jf = UfAfU?
and Jg = UgAgUg;

e Form the equation jg =HJ ¢ and solve for H using well-known linear inverse
problem solution techniques.® If no solution exists (which means that the
field specified to be synthesized is in fact physically unrealizable), solve the
problem in the least-squares sense to obtain the closest physically realizable
field. Synthesize the desired kernel in the form of fractional Fourier domain-
filtering circuits using the solutions described in Refs. [23] and [26];
or

o Find the fractional Fourier domain-filtering circuit that minimizes the error
”jg — ijﬂ%ﬂ, where T corresponds to the overall filtering configuration ma-
trix for single-stage, multistage, or multichannel fractional Fourier domain-
filtering configurations, using the procedures described in Refs. [24]-[26].

We note that the solution clearly depends on the choice of matrices jf and jg,
which, as we have noted, are not unique. We can find other matrices (jf)?_ and
(jg)z that satisfy Eq. (6.18). Since one may be implemented more efficiently than
the other, we are actually not exploiting all possible room for improvement.

In this section, we formulated the mutual intensity synthesis problem and pro-
posed a solution that reduces this quadratic problem into a linear one. The main
point is that the system that satisfies Eq. (6.21) can be used to synthesize the de-
sired mutual intensity function from an input mutual intensity function. However,
as noted, there may be many such equations with different positive semidefinite
roots. One solution may be implemented efficiently by using fractional Fourier
domain-filtering configurations. Therefore, it may be advantageous to further op-
timize over the whole set of possible solutions, a task which is not undertaken in
this chapter.
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6.5 Examples

In this section we will give some computer simulations illustrating the mutual in-
tensity synthesis problem.

First we will consider the synthesis of a field described by its coherent-mode
expansion from an incoherent source. Then we will consider the synthesis of a
field from another field, again described by its coherent-mode expansion. The mu-
tual intensity functions in the examples are represented by the superposition of
Hermite-Gaussian modes

o1, x2) = Aty (21 (x2), (6.29)

n=0

where 1, (-) is the nth-order Hermite-Gaussian function. For computer simula-
tions, the above function is discretized using the definition of the discrete Hermite-

Gaussian functions??:

N—-1

Jo= ) Ml (6.30)

n=0

Here, 1, is the n-th order discrete Hermite-Gaussian vector of length N, defined
in Ref. [22]. Since the discrete Hermite-Gaussian vectors are orthonormal to each
other, we have

1!’2’4’:1 = 6mm

and the expansion in Eq. (6.30) corresponds to the coherent-mode expansion of Jq.
We want to synthesize such a beam from an incoherent source whose mutual in-
tensity function is given by J¢(x1, x2) = p(x1)8(x; — x2) in continuous time, and

Je = Ay, (6.31)
in discrete time, where Ay is a diagonal matrix.
Example 1

In our first example, the expansion coefficients A, in Eq. (6.30) are chosen as plot-
ted in Fig. 6.5(a) with N = 64. With this choice, the mutual intensity matrix Jg is
full rank, has no degenerate eigenvalues, and is shown in Fig. 6.5(b). The mutual
intensity of the incoherent source is taken to be the identity matrix J¢ = I. The
positive semidefinite roots are then given by:

N—1
Ji=1 Jg=> Nl (6.32)

n=0
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Expansion Coefficients
5 T T T T T T

(b)

Figure 6.5 (a) The expansion coefficients appearing in Eq. (6.30) used for Example 1.
(b) Mesh plot of the desired mutual intensity function Jg.

The desired system kernel H, which satisfies jg = HJ, is then simply given by

H=]J . When we synthesize this desired H in the form of a single-stage filter, the
normalized error, which is defined as

_IT—Hj}

, (6.33)
IH|12

turns out to be 22% in the optimum domain a = 0.4. For the multichannel filtering
configuration with M = 4 filters, the normalized error is 4%, and for the multistage
configuration with M = 4 filters, it is 3% (a; = 0.25, a; = 0.5, a3 = 0.75, and
aq = 1 for both configurations). The normalized errors

1Tg — TIFTH2.
1Tgl%

(6.34)

Emut =

in the synthesis of Jg are then 34%, 7%, and 6% for the single-stage, multichannel
(M =4), and multistage (M = 4) configurations, respectively. The synthesized
mutual intensity functions are plotted in Fig. 6.6.
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Synthesized using single-stage filiering
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Figure 6.6 (a) Synthesized mutual intensity function using single-stage filtering. (b) Syn-
thesized mutual intensity function using multistage filtering (M = 4). (c) Synthesized mu-
tual intensity function using multichannel filtering (M = 4).

We can also take approach (2) and directly find the optimal fractional Fourier
domain-filtering configuration by minimizing the error ||jg — TJ|| %, But since J
is the identity matrix and H = Jy, this approach would yield the same result as
above.

To illustrate the cost performance trade-off in this problem, we have plotted
the number of filters versus error plot for multistage (repeated) and multichannel
configurations in Fig. 6.7.

Example 2

In the second example, we consider the problem of synthesizing a field from an-
other field when both are described by coherent-mode expansion. The expansion
coefficients of the given beam and the desired (to be synthesized) beam are plotted
in Fig. 6.8. With these choices of coefficients, J¢ is of rank R = 50 and Jg is of
rank R = 60; both have degenerate eigenvalues. Since Jg has a rank greater than
that of Jr, no system H exists that exactly satisfies J, = HJgH". We are seeking
H in the form of a fractional Fourier domain filter that minimizes the Frobenious
norm between the synthesized and desired mutual intensity functions. Since Jg is of
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Figure 6.7 Normalized error versus number of filters for (a) multistage case; and (b) mul-
tichannel case.
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Figure 6.8 The expansion coefficients of the (a) given beam J¢; and (b) desired beam Jg.

rank R = 50, we cannot achieve a synthesized mutual intensity function of a rank
greater than R = 50. On the other hand, we know that the best rank-50 approx-
imation of Jg (in the Frobenious-norm sense) is achieved by keeping the largest
50 eigenvalues of J, and discarding the others. Thus, our problem in this example
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reduces to synthesizing jg from Jg, where jg is the rank-50 approximation of Jg
obtained by keeping the largest 50 expansion coefficients.

The desired system kernel H that minimizes ng — ijllfF can be found by
solving the associated normal equations.> When we synthesize this desired H in
the form of a single-stage filter, the normalized error €y turns out to be 27% in
the optimum domain a = —0.5. For the multichannel filtering configuration with
M = 5 filters, the normalized error is 10%; and for the multistage configuration
with M =5 filters, it is 13%. The normalized errors &my in the synthesis of Jg are
then 48%, 18%, and 21% for the single-stage, multichannel (M = 5), and multi-
stage (M = 5) configurations, respectively. (In both the multistage and multichan-
nel configurations, we chose a1 = 0.2, a3 =0.4, a3 =0.6,a4 =0.8, and as = 1.)

We can also take approach (2) and directly find the optimal fractional Fourier
domain-filtering configuration by minimizing the error 2 = ng — Tjg“zF. For
single-stage filtering, the normalized error in the synthesis of Jg turns out to be
Emut = 38%, and it is 15% and 17% for the multichannel and multistage filtering
configurations, respectively (M = 4 for both configurations). The mutual intensity
function of the beam synthesized by using multichannel filtering, together with the
desired beam, is shown in Fig. 6.9.

Desired J 9

Figure 6.9 The mutual intensity functions of (a) the desired beam; and (b) the synthesized
beam.
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