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Continuum extensions of common dual pairs of operators are presented and consolidated, based on the frac-
tional Fourier transform. In particular, the fractional chirp multiplication, fractional chirp convolution, and
fractional scaling operators are defined and expressed in terms of their common nonfractional special cases,
revealing precisely how they are interpolations of their conventional counterparts. Optical realizations of
these operators are possible with use of common physical components. These three operators can be inter-
preted as fractional lenses, fractional free space, and fractional imaging systems, respectively. Any optical
system consisting of an arbitrary concatenation of sections of free space and thin lenses can be interpreted as
a fractional imaging system with spherical reference surfaces. As a special case, a system departing from the
classical single-lens imaging condition can be interpreted as a fractional imaging system. © 2003 Optical So-
ciety of America
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1. INTRODUCTION
The fractional Fourier transform, which is a generaliza-
tion of the ordinary Fourier transform, has received con-
siderable interest over the past decade and has found
many applications in optics and signal processing.1–24 Of
particular interest from an optics perspective is the obser-
vation that as light propagates, its amplitude distribution
evolves through fractional Fourier transforms of increas-
ing orders. This observation is based on a relationship
between the fractional Fourier transform and the Fresnel
transform with the fractional order being related to and
increasing with the distance of propagation.25 With use
of this result, it is possible to analyze a wide family of op-
tical systems.1,26 An important concept is that of frac-
tional Fourier domains, which are generalizations of the
conventional space and frequency domains.27,28 This
continuum of domains provides a continuous transition
between the space and frequency domains.

Several pairs of operators are known to be Fourier du-
als (or conjugates). (For a discussion of such duals in an
optics context, see Refs. 29 and 30.) Coordinate
multiplication/differentiation and phase-shift/translation
operators are just two common dual pairs. In this paper
we will introduce and consolidate several continuums of
operators indexed by the fractional order parameter a,
whose members are associated with the ath fractional
Fourier domain and which likewise provide a continuous
transition between common dual operator pairs.

The operators that we deal with in this paper perform
the same actions in fractional domains as their conven-
tional counterparts perform in the space domain. We
will also discuss the optical implementation of these op-
erators in terms of their conventional counterparts.

The ath-order fractional Fourier transform fa(u)
5 $F af %(u) of the function f(u) is defined for 0 , uau
, 2 as
1084-7529/2003/112033-08$15.00 ©
F a@ f~u !# [ $F af %~u ! [ E
2`

`

Ka~u, u8!f~u8!du8,

Ka~u, u8! [
exp$2i@p sgn~a!/4 2 a/2#%

usin au1/2

3 exp@ip~cot au2 2 2 csc auu8

1 cot au82!#, (1)

where

a [ ap/2. (2)

The definition may be extended outside the interval
(22, 2) through F 4j1af 5 F af for any integer j. More-
over, F 4j and F 4j11 correspond to the identity operator I
and the ordinary Fourier transform operator F, respec-
tively. The transform is a linear operator, and it is addi-
tive in index: F a1F a2f 5 F a1 1 a2f. Other properties
are given in Ref. 1.

It will also be useful to review the three-parameter
group of linear integral transforms known as linear ca-
nonical transforms, of which the fractional Fourier trans-
form is a special case. The linear canonical transform of
f(u), denoted fM(u) 5 $CMf %(u), is defined as31

$CM f %~u ! 5 E CM~u, u8!f~u8!du8,

CM~u, u8! 5 AM exp@ip~au2 2 2buu8 1 gu82!#,
(3)

where AM 5 Ab exp(2ip/4). Here CM is the linear ca-
nonical transform operator and M represents the three
real parameters a, b, g. It is convenient to represent M
in matrix form:

M [ F g/b 1/b

2b 1 ag/b a/bG [ FA B

C DG . (4)
2003 Optical Society of America
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The reason we define M in this manner is that the matrix
corresponding to the composition of two systems is the
matrix product of the matrices of the corresponding indi-
vidual systems. Moreover, the matrix of the inverse of a
transform corresponds to the inverse of the original trans-
form’s matrix.

The fractional Fourier transform operator is a linear
canonical transform whose matrix is the rotation matrix

F a 5 exp~iap/4!CM , (5)

where

M 5 F cos a sin a

2sin a cos a
G . (6)

We note that some of the developments and results of this
paper can be seen as special cases of corresponding re-
sults for linear canonical transforms. In some cases this
is merely a matter of substituting the matrix parameters
given in Eq. (6). For such more general results, we refer
the reader to general studies on linear canonical trans-
forms and operator methods.32–47

The effect of ath-order fractional Fourier transforma-
tion on the Wigner distribution of a signal is to rotate the
Wigner distribution by an angle a.27,28,48 Hence the
mathematical relation between the Wigner distribution of
a function and the distribution of its fractional Fourier
transform is as follows:

Wfa
~u, m! 5 Wf ~u cos a 2 m sin a, u sin a 1 m cos a!.

(7)

The Radon transform operator RDNa , which takes the
integral projection of the function Wf (u, m) onto an axis
making an angle a 5 ap/2 with the u axis, can be used to
restate the previous property in the following manner:

$RDNa@Wf ~u, m!#%~ua! 5 u fa~ua!u2. (8)

Here the projection axis ua is referred to as the ath frac-
tional Fourier domain (Fig. 1).27,28 The space and fre-
quency domains are merely special cases of the con-
tinuum of fractional Fourier domains.

It is important to distinguish between two distinct
senses of the term ‘‘fractional’’ as it applies to operators.
The first and more common is the sense in which we
speak of the ath fractional power of an operator A, which
we denote by Aa. The fractional Fourier transform is in-
deed the ath mathematical power of the ordinary Fourier
transform in this sense.49

Fig. 1. The ath fractional Fourier domain.
Second, we may speak of the operator that has the
same effect on the ath fractional Fourier transform fa(ua)
in the ath domain as the original operator has on the
original function f(u) in the space domain. To distin-
guish this operator associated with the ath fractional
Fourier domain from the ath power of A, we will denote it
by Aa . From this definition it follows that

Aa 5 F 2aAF a. (9)

Note that A and Aa are two different operators, whose
representations in the 0th and ath domains, respectively,
are identical. They are not different representations of
the same operator.

It is this second kind of ‘‘fractional’’ operator that we
will be dealing with in this paper. Thus when we speak
of fractional free space or fractional lenses or fractional
imaging systems, we will not be referring to fractional
powers of an ordinary section of free space, lens, or imag-
ing system. We will rather be referring to that system
which has the same effect on a distribution of light repre-
sented in the fractional Fourier domain as its conven-
tional counterpart would have in the space domain.

Indeed, the ath fractional power of a section of free
space of length d in the first sense is merely a section of
free space of length ad. Likewise, the fractional power
of a lens with focal length f in the first sense is merely a
lens with focal length f/a. It can be easily verified that
these fractional powers satisfy the interpolation property
at a 5 0 and a 5 1 and index additivity.

In the following sections we will first focus on coordi-
nate multiplication/differentiation and phase-shift-
translation operator pairs and discuss their fractional
counterparts. Section 4 deals with the fractional scaling
operator, which will be seen to correspond to fractional
imaging in an optics context. Section 5 deals with frac-
tional chirp multiplication and convolution operators,
which will be seen to correspond to fractional lenses and
free space in an optics context. In Section 6 we will re-
visit the fractional scaling operator to discuss an impor-
tant interpretation. The final section will discuss the im-
portance of our results in an optical context.

2. COORDINATE MULTIPLICATION AND
DIFFERENTIATION OPERATORS
We begin by defining the multiplication operator U and
the differentiation operator D through their effects in the
space domain:

$U f %~u ! 5 uf~u !, (10)

$Df %~u ! 5 ~i2p!21
df~u !

du
. (11)

It can be easily shown that this pair forms a Fourier dual,
which means that coordinate multiplication in the space
domain corresponds to differentiation in the frequency do-
main and vice versa: The Fourier transform of uf(u) is
(2i2p)21dF(m)/dm, and the Fourier transform of
(i2p)21df(u)/du is mF(m). A consequence is that U and
D are related through the Fourier transform operator as
follows:
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D 5 F 21UF. (12)

The fractional forms of these operators are defined so
as to have the same functional effect in the ath domain:

$Uafa%~ua! 5 uafa~ua!, (13)

$Dafa%~ua! 5 ~i2p!21
dfa~ua!

dua
.

(14)

From this definition we may obtain, generalizing Eq. (12)
and consistent with the general form given in Eq. (9),

Ua 5 F 2aUF a, (15)

Da 5 F 2aDF a, (16)

where

U0 5 U, U1 5 D, U21 5 2D,

D0 5 D, D1 5 2U, D21 5 U.

It has been shown (for instance (see Refs. 27, 28, and 31),
that these fractional operators can be expressed in terms
of their integer counterparts as follows:

Ua 5 cos aU 1 sin aD, (17)

Da 5 2sin aU 1 cos aD. (18)

As the fractional-order parameter a varies from 0 to 1, the
relative contributions of U and D to Ua and Da are given
by simple trigonometric factors. We also point out that
these relations or their more general forms corresponding
to more general linear canonical transforms follow imme-
diately from an alternative definition of the fractional
Fourier transform (Ref. 1, pp. 126–129) or linear canoni-
cal transforms31 in terms of U and D.

3. PHASE-SHIFT AND TRANSLATION
OPERATORS
The phase-shift operator P H(j) and the translation op-
erator S H(j) are defined as follows:

P H~j! 5 exp~i2pjU!, (19)

S H~j! 5 exp~i2pjD!. (20)

These operators shift or translate signals in the space or
frequency domain, respectively1:

$P H~j!f %~u ! 5 exp~i2pju !f~u !, (21)

$S H~j!f %~u ! 5 f~u 1 j!. (22)

Phase shifting and translation are Fourier duals of each
other, which again means that phase shifting in the space
domain corresponds to translation in the frequency do-
main and vice versa: The Fourier transform of
exp(i2pju)f(u) is F(m 2 j), and the Fourier transform of
f(u 2 j) is exp(2i2pjm)F(m). Consequently, the two op-
erators in question are related through

S H~j! 5 F 21PH~j!F, (23)

which is of the same form as Eq. (12).
The fractional forms of these operators are defined

as27,28
P Ha~j! 5 exp~i2pjUa!, (24)

S Ha~j! 5 exp~i2pjDa!, (25)

where

P H0~j! 5 P H~j!, P H1~j! 5 S H~j!,

P H21~j! 5 S H~2j!, S H0~j! 5 S H~j!,

S H1(j) 5 P H(2j), S H21(j) 5 P H(j). These opera-
tors have the same functional effect in the ath domain as
their conventional counterparts have in the space do-
main:

$P Ha~j!fa%~ua! 5 exp~i2pjua!fa~ua!, (26)

$S Ha~j!fa%~ua! 5 fa~ua 1 j!. (27)

By using the power series expansion of the fractional
phase shift operator, we obtain

P Ha~j! 5 (
n50

`
~i2pj!n

n!
Ua

n

5 F 2a(
n50

`
~i2pj!n

n!
U nF a

5 F 2aP H~j!F a. (28)

Similarly, it can be shown that the fractional translation
operator satisfies

S Ha~j! 5 F 2aS H~j!F a. (29)

Equations (28) and (29) could have been taken as alterna-
tive definitions for the fractional phase-shift and transla-
tion operators [see Eq. (9)]. Let us substitute Eqs. (17)
and (18) into the hyperdifferential forms given in Eqs.
(24) and (25) and apply the well-known formula50

exp~A!exp~B! 5 exp~A 1 B!exp~@A,_B#/2!,

where both A and B commute with their commutator:
@A,_@A,_B#] 5 0 and @B,_@A,_B#] 5 0. The commutator
[A,_B] of A and B is defined as @A,_B# 5 AB 2 BA. This
leads to the following equations expressing the operators
in question in terms of their integer counterparts27,28:

P Ha~j! 5 exp~ipj2 sin a cos a!P H~j cos a!S H~j sin a!,
(30)

S Ha~j! 5 exp~ipj2 sin a cos a!S H~j cos a!

3 P H~2j sin a!. (31)

As the fractional-order parameter a varies from 0 to 1, the
relative contributions of P H(j) and S H(j) to P Ha(j) and
S Ha(j) are given by simple trigonometric factors. It is
interesting to compare these equations with Eqs. (17) and
(18).

4. SCALING OR MAGNIFICATION
OPERATOR
The scaling operator M(M) can be defined through the
multiplication and differentiation operators in the follow-
ing way1:

M~M ! 5 exp@2ip ln M~UD 1 DU!#, (32)
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where M . 0. Its effect in the space domain is

$M~M !f %~u ! 5 A1/Mf~u/M !. (33)

The scaling operator, which corresponds to magnified or
demagnified imaging in optics, is its own dual in the sense
that scaling in the space domain corresponds to descaling
in the frequency domain: The Fourier transform of
A1/Mf(u/M) is AMF(Mm). Consequently,

M~M ! 5 F 21M~1/M !F, (34)

which is a result of the following identity:

U D 1 D U 5 F 21@2~U D 1 D U!#F. (35)

The scaling operator is a one-parameter subgroup of
the group of linear canonical transforms with a 2 3 2 ma-
trix:

M~M ! 5 FM 0

0 1/MG 5 F1/M 0

0 MG21

. (36)

The fractional form of the scaling operator is again de-
fined in the same manner:

Ma~M ! 5 exp@2ip ln M~UaDa 1 DaUa!#, (37)

where

M0~M ! 5 M~M !, M1~M ! 5 M~1/M !,

M21(M) 5 M(1/M). This operator has the same func-
tional effect in the ath domain as its conventional coun-
terpart has in the space domain:

$Ma~M !fa%~ua! 5 A1/Mfa~ua /M !. (38)

From this definition we again obtain, in the form of Eq.
(9),

Ma~M ! 5 F 2aM~M !F a. (39)

Noting that Ma(M) is also a linear canonical trans-
form, we use Eq. (39) to obtain its matrix as

Ma~M !

5 F cos a 2 sin a

sin a cos a
GFM 0

0 1/MGF cos a sin a

2sin a cos a
G

5 F M cos2 a 1 sin2 a/M ~M 2 1/M !sin a cos a

~M 2 1/M !sin a cos a M sin2 a 1 cos2 a/M G ,
(40)

where the phase factors from Eq. (5) cancel each other.
By using Eqs. (34) and (39) we can write

Ma~M ! 5 F 2aM~M !F a 5 F 212aM~1/M !F 11a.
(41)

This result expresses the fractional scaling operator in
terms of the ordinary scaling operator or its dual (which
is also a scaling operator with reciprocal parameter). We
can see that when a 5 0, M0(M) 5 M(M) and when a
5 1, M1(M) 5 M(1/M). As the fractional-order pa-
rameter a varies from 0 to 1, Ma(M) evolves from M(M)
to M(1/M). Also, compare this equation with Eqs. (17)
and (18) and Eqs. (30) and (31).
5. CHIRP MULTIPLICATION AND CHIRP
CONVOLUTION
The chirp multiplication operator Q(q) and the chirp con-
volution operator R(r) are defined as follows:

Q~q ! 5 exp~2ipqU 2!, (42)

R~r ! 5 exp~2iprD 2!. (43)

Their effect in the space domain is given by

$Q~q !f %~u ! 5 exp~2ipqu2!f~u !, (44)

$R~r !f %~u ! 5 exp~2ip/4!A1/r exp~ipu2/r !* f~u !.
(45)

These two operators again form a Fourier dual pair,
meaning that multiplying with a chirp function in the
space domain corresponds to convolving with a chirp func-
tion in the frequency domain and vice versa.1 The chirp
multiplication and chirp convolution operators are related
through

R~r ! 5 F 21Q~r !F, (46)

which is again in the form of Eq. (9). The chirp multipli-
cation operator describes the action of a thin lens on a
field incident on it, and the chirp convolution operator de-
scribes the action of propagation through a section of free
space in the Fresnel approximation.1

These chirp operators are one-parameter subgroups of
the group of linear canonical transforms with 2 3 2 ma-
trices:

Q~q ! 5 F 1 0

2q 1G 5 F1 0

q 1G21

, (47)

R~r ! 5 F1 r

0 1G 5 F1 2 r

0 1 G21

. (48)

The fractional forms of these operators are defined as

Qa~q ! 5 exp~2ipqUa
2!, (49)

Ra~r ! 5 exp~2iprDa
2!, (50)

where

Q0~q ! 5 Q~q !, Q1~q ! 5 R~q !,

Q21~q ! 5 R~q !, R0~r ! 5 R~r !,

R1~r ! 5 Q~r !, R21~r ! 5 Q~r !.

These operators have the same functional effect in the ath
domain as their conventional counterparts have in the
space domain:

$Qa~q !fa%~ua! 5 exp~2ipqua
2!fa~ua!, (51)

$Ra~r !fa%~ua!

5 exp~2ip/4!A1/r exp~ipua
2/r !* fa~ua!. (52)

It can again be shown through their power series ex-
pansion that these definitions imply

Qa~q ! 5 F 2aQ~q !F a, (53)

Ra~r ! 5 F 2aR~r !F a. (54)
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Noting that Qa(q) and Ra(r) are also linear canonical
transforms, we can use Eq. (53) to obtain a matrix repre-
sentation for Qa(q) as

Qa~q ! 5 F cos a 2 sin a

sin a cos a
GF 1 0

2q 1GF cos a sin a

2sin a cos a
G

5 F1 1 q sin a cos a q sin2 a

2q cos2 a 1 2 q sin a cos a
G , (55)

which can be written as

Qa~q ! 5 F1 2 tan a

0 1 GF 1 0

2q cos2 a 1GF1 tan a

0 1 G .
(56)

Recognizing the matrices on the right-hand side as inte-
ger chirp operators enables us to express the fractional
chirp multiplication operator Qa(q) in terms of Q0(q) and
R0(r) as

Qa~q ! 5 R~2tan a!Q~q cos2 a!R~tan a!. (57)

If we employ the same technique for the fractional chirp
convolution operator Ra(r), we will arrive at an analo-
gous result:

Ra~r ! 5 F1 2 r sin a cos a r cos2 a

2r sin2 a 1 1 r sin a cos a
G , (58)

Ra~r ! 5 R~cot a!Q~r sin2 a!R~2cot a!. (59)

Use of dual matrix decompositions [that is, with the lower
and upper triangular matrices that appear in Eq. (56) in-
terchanged], we can obtain two further equations as fol-
lows:

Qa~q ! 5 Q~cot a!R~q sin2 a!Q~2cot a!, (60)

Ra~r ! 5 Q~2tan a!R~r cos2 a!Q~tan a!. (61)

Equations (57), (59), (60), and (61) together constitute re-
lations expressing the fractional operators in terms of
their ordinary counterparts. Again, these can be used to
realize fractional chirp multiplication and convolution op-
erators in terms of their conventional counterparts.
Since conventional chirp multiplication and chirp convo-
lution correspond to lenses and sections of free space in
optics, these formulas can be used to realize optical sys-
tems acting as fractional chirp multipliers or convolvers.
Fractional chirp multipliers and convolvers can also be
referred to as fractional lenses and fractional sections of
free space.

By inserting Eq. (17) into Eq. (49) and using Eq. (57),
we can also write the corresponding hyperdifferential
Baker–Campbell–Hausdorff formula,

exp$2ipq@cos2 aU 2 1 sin a cos a~U D 1 D U!

1 sin2 aD 2]% 5 exp~ip tan aD 2!exp~2ipq cos2 aU 2!

3 exp~2ip tan aD 2!. (62)

We can use exactly the same technique on the remaining
three Eqs. (59), (60), and (61) to obtain three more hyper-
differential Baker–Campbell–Hausdorff formulas as
exp$2ipq@cos2 aU 2 1 sin a cos a~U D 1 D U!

1 sin2 aD 2]% 5 exp~2ip cot aU 2!exp~2ipq sin2 aD 2!

3 exp~ip cot aU 2!, (63)

exp$2ipq@sin2 aU 2 2 sin a cos a~U D 1 D U!

1 cos2 aD 2]% 5 exp~2ip cot aD 2!exp~2ipq sin2 aU 2!

3 exp~ip cot aD 2!, (64)

exp$2ipq@sin2 aU 2 2 sin a cos a~U D 1 D U!

1 cos2 aD 2]% 5 exp~ip tan aU 2!exp~2ipq cos2 aD 2!

3 exp~2ip tan aU 2!. (65)

6. FRACTIONAL SCALING OPERATOR
REVISITED
We now discuss an interesting property of the fractional
scaling operator:

Every linear canonical transform can be expressed as a
fractional scaling operator with properly chosen quadratic
phase factors at the input and output.

Since optical systems consisting of arbitrary concatena-
tions of any number of sections of free space and lenses
can be mathematically expressed as linear canonical
transforms, this means that all such optical systems can
be interpreted as a fractional scaling operator with prop-
erly chosen spherical reference surfaces at the input and
output. This result can be expressed in terms of matrices
as follows:

FA B

C DG
5 F 1 0

1

lR2

1G FA8 B8

C8 D8
GF 1 0

2 1

lR1

1G
5 F A8 2

B8

lR1

B8

A8

lR2
2

D8

lR1
1 B8S 1 2

1

l2R1R2
D B8

lR2
1 D8

G ,

(66)

where AD 2 BC 5 1; A8, B8, C8, D8 are the matrix ele-
ments of the fractional scaling operator given in Eq. (40)
(B8 5 C8); and R1 and R2 are the radii of the spherical
reference surfaces. The first and third matrices that ap-
pear in the right-hand side of Eq. (66), corresponding to
multiplication by a quadratic-phase factor (chirp), ac-
count for the effect of using spherical reference surfaces.
The solution for this system of equations for B Þ 0 is as
follows:

a 5
1

p
sin21S 2B

M 2 1/M D , (67)
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R1 5
B

l~M cos2 a 1 sin2 a/M 2 A !
, (68)

R2 5
2 B

l~M sin2 a 1 cos2 a/M 2 D !
. (69)

These equations mean that given A, B, C, D, we can
choose either M or a but we cannot choose both of them
independently. Once we choose either from Eq. (67), the
other is determined, and the radii can be found by using
Eqs. (68) and (69). Alternatively, we can start by choos-
ing either R1 or R2 . The resulting equation together
with Eq. (67) will determine both M and a and also the
other radius. In other words, given an arbitrary optical
system consisting of lenses separated by sections of free
space, we are able to interpret it as a fractional scaling
operation provided that we choose M, a, and the two
spherical reference surface radii as required by these
equations. Notice that when B 5 0, a takes on integer
values (for M Þ 1), and the fractional imaging system
turns into a conventional imaging system. The M 5 1
case merely corresponds to the identity operator and is of
no interest to us.

In certain situations, one might not wish to have a
spherical reference surface at the input (or the output).
This case can be handled by simply putting R1 5 ` (or
R2 5 `). In this case, a, M, and the other radius are
fully determined in terms of the ABCD parameters. The
same would hold true if we were to impose a parametric
constraint between R1 and R2 , which effectively reduces
them to a single parameter. This would be the case if we
wished to evenly distribute the additional quadratic-
phase factors between the input and the output.

Note that if we wish to avoid complex values of a, we
must choose M such that uBu , uM 2 1/Mu/2. This and
the form of Eqs. (68) and (69) would also bound our free-
dom in those cases where we wish to specify R1 or R2 (or
a constraint between them).

As an example, let us consider the well-known classical
single-lens imaging system with distance d1 from the ob-
ject plane to the lens and d2 from the lens to the image
plane. The focal length of the lens is f. The above set of
Eqs. (67)–(69) can be rewritten for this system as follows:

a 5
1

p
sin21F2l~d1 1 d2 2 d1d2 /f !

M 2 1/M G , (70)

R1 5
d1 1 d2 2 d1d2 /f

M cos2 a 1 sin2 a/M 2 1 1 d2 /f
, (71)

R2 5
2 d1 2 d2 1 d1d2 /f

M sin2 a 1 cos2 a/M 2 1 1 d1 /f
. (72)

When the imaging condition 1/f 5 1/d1 1 1/d2 is satis-
fied, it is possible to show that B 5 0 and hence a be-
comes an integer. If the parameters are such that we de-
part from this condition, that is, if the imaging condition
is not exactly satisfied, then a will assume a fractional
value. In fact, this remains true not only for small devia-
tions but for large ones as well. This supports referring
to such systems as fractional imaging systems, as opposed
to conventional ‘‘whole’’ imaging systems.

Using well-known matrix multiplication-based decom-
position formulas given in Ref. 1 and several earlier
studies,31,42,51 we can write

Ma~M ! 5 QS 1 2 D8

B8
DR~B8!QS 1 2 A8

B8
D (73)

5 RS A8 2 1

B8
DQ~2B8!RS D8 2 1

B8
D , (74)

where A8, B8, D8 are the matrix elements of the frac-
tional scaling operator given in Eq. (40) (C8 5 B8).
Equating these equations to the expression obtained by
substituting Eqs. (17) and (18) into Eq. (37) and express-
ing everything in terms of U and D, we obtain hyperdif-
ferential Baker–Campbell–Hausdorff formulas for
Ma(M). Since these formulas are rather complicated,
they are not explicitly presented.

It is also interesting to note that since the right-hand
sides of Eqs. (73) and (74) consist only of chirp multipli-
cation and chirp convolution operators, these equations
suggest a way of implementing fractional scaling opera-
tors by use of sections of free space and thin lenses.

7. DISCUSSION AND CONCLUSIONS
Two operators are Fourier duals if what one operator does
in the space domain corresponds to what the other one
does in the frequency domain. Coordinate multipli-
cation/differentiation and phase-shift/translation opera-
tors are common examples. In this paper we have con-
sidered and consolidated the continuum extension of this
duality by employing the fractional Fourier transform
and the concept of fractional Fourier domains. In other
words, we have extended common dual pairs of operators
to a continuum of operators that assume the common
dual pair as special cases at opposite extremes.

In this paper we defined the fractional chirp multipli-
cation/convolution and the fractional scaling operators.
We expressed these operators in terms of their nonfrac-
tional special cases, revealing in what way they are com-
binations or interpolations of the common nonfractional
operators. The results obtained are summarized in Table
1 along with corresponding results for coordinate
multiplication/differentiation and phase-shift/translation
operators that were previously established.

Of particular interest was the fractional scaling opera-
tor. Since mathematical scaling corresponds to optical
imaging, we can also refer to this as the fractional imag-
ing operator. We have seen that any optical system com-
posed of lenses and sections of free space can be inter-
preted as a fractional scaling or imaging operator with
spherical reference surfaces at the input and output. In
other words, such optical systems, which do not satisfy
the imaging condition, can be interpreted as fractional,
rather than full, imaging systems. The fractional order
of such imaging systems is a function of the parameters of
the optical system.
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Table 1. Summary of Fractional Operators

Fractional Operator Symbol Equivalent Expression

Fractional coordinate
multiplication

Ua cos a U 1 sin aD

Fractional differentiation Da 2sin a U 1 cos aD
Fractional phase-shift PHa(j) exp(ipj 2 sin a cos a)PH(j cos a)SH(j sin a)
Fractional translation SHa(j) exp(ipj 2 sin a cos a)SH(j cos a)PH(2j sin a)
Fractional scaling Ma(M) F 2aM(M)F a, F212aM(1/M)F11a

Fractional chirp multiplication Qa(q) R(2tan a)Q(q cos2 a)R(tan a)
Fractional chirp convolution Ra(r) Q(2tan a)R(r cos2 a)Q(tan a)
The fractional chirp multiplication and the chirp convo-
lution can be optically interpreted as fractional lenses and
fractional sections, respectively, of free space. We have
seen how these or fractional imaging systems can be re-
alized in terms of common physical lenses and sections of
free space. Although not emphasized in this paper, the
fractional phase-shift operator can be likewise inter-
preted as a fractional prism, and the fractional transla-
tion operator can be interpreted as a fractional lateral
translation of the optical axis. The formulas that we
have provided also show how these can be realized in
terms of common physical prisms and simple lateral
physical translations of the optical axis.

Numerous applications require the frequency content
of an optical signal or field to be altered. In such cases it
is valuable to know the equivalent action to be taken in
the space domain. Similarly, it has been shown that in
certain cases improved performance or lower cost can be
achieved by altering the content of the signal in a frac-
tional domain, on the ath domain representation of a sig-
nal, rather than in the ordinary Fourier domain. An im-
portant use of the equations presented in this paper,
expressing the fractional operators in terms of their non-
fractional counterparts, is that these formulas are useful
for implementing fractional operators with only the use of
common physically available components.
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