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Abstract: The problem of recovering signals from partial fractional Fourier transform information arises in wave
propagation problems where the measured information is partial, spread over several observation planes, or not
of sufficient spatial resolution or accuracy. This problem can be solved with the method of projections onto
convex sets, with the convergence of the iterative algorithm being assured. Several prototypical application
scenarios and simulation examples are presented.
1 Introduction
The fractional Fourier transform (FRT) has found many
applications in signal and image processing and optics
[1–15]. The ath-order FRToperation corresponds to the
ath power of the ordinary Fourier transform operation.
The zeroth-order FRT of a function is the function itself
and the first-order transform is equal to the ordinary
Fourier transform. The relationship of the FRT to wave
and beam propagation is well established [16–18]. It is
well known that the Fourier transform of the original
object, aperture or source distribution is observed in the
far field. It has been shown that at closer distances, one
observes the FRTs of the original object. As the wave
propagates, its distribution evolves through FRTs of
increasing order. In other words, it is continually
fractional Fourier transformed as it propagates, starting
from the original function and finally reaching its
ordinary Fourier transform in the far field. Thus the
problem of recovering signals from partial FRT
information naturally finds applications in wave
propagation problems where the measured information
is partial, spread over several observation planes, or not
of sufficient spatial resolution or accuracy.

In this paper, the problem of signal recovery from
partial FRT information is solved by using an iterative
algorithm involving alternating projections onto sets
representing measurements in fractional Fourier domains.
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(This problem was first proposed and preliminary results
presented in [19].) The reconstruction algorithm is
globally convergent and it is based on the method of
projections onto convex sets (POCS), a classical
numerical technique [20–22]. The convergence of this
algorithm can be proved easily for both continuous and
discrete signals because partial fractional Fourier
information in an interval corresponds to a closed and
convex set [in L2(R) and l2, respectively]. Other closed
and convex sets that may be used in the reconstruction
algorithm include sets representing bounded energy, the
non-negativity constraint and finite-support information
in the time or space domain.

The purpose of this paper is to show that partial FRT
information distributed over several fractional Fourier
domains can be used to reconstruct a signal and to
illustrate this with a diversity of application scenarios
involving different distributions of the available
information. It is not the aim of this paper to
determine the best algorithm for this purpose. Our
main focus is to provide a framework for consolidating
distributed information regarding a wavefield. The
POCS algorithm has been used in our simulations for
its ease of implementation, but we should note that
straightforward application of the POCS procedure
may not produce the best convergence rates [22].
Methods for obtaining faster algorithms are discussed
and reviewed in [22, 23].
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25/
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In the next section, brief information on the FRT is
given. In Section 3, the signal recovery algorithm is
described. Section 4 discusses several prototypical
application scenarios and simulation examples. In an
example from radar signal processing, radar pulses
under chirp-type interference are successfully retrieved
using the proposed algorithm. In another example
inspired by swarm robots/sensor networks, it is shown
that a wavefield can be recovered from an irregular
array of known samples.

2 FRT and the signal recovery
problem
In this section, the FRT is briefly reviewed and the signal
recovery problem is formulated. For a comprehensive
treatment of the transform and its properties the
reader is referred to [1]. Let us denote the ath-order
FRT operator by F a. When a ¼ 1 we have the
ordinary Fourier transform operator F. The FRT may
be defined by standard eigenvalue methods for finding
a function G(H) of a linear operator H. We consider
the Hilbert space L2(R). Hermite–Gaussian functions
are the eigenfunctions of the ordinary Fourier transform

Fcn(u) ¼ exp(�inp=2)cn(u) (1)

where

cn(u) ¼ 21=4(2nn!)�1=2Hn(
ffiffiffiffiffiffi
2p
p

u)

�exp(�pu2), n ¼ 0, 1, 2, . . . (2)

are the set of Hermite–Gaussian functions and Hn(u)
are the standard Hermite polynomials. The FRT is
defined in terms of the eigenvalue equation
F

acn(u) ¼ [exp(�inp=2)]acn(u) with the fractional
ath power [exp(�inp=2)]a ¼ exp(�ianp=2). An
analytic expression for the FRT of an arbitrary square-
integrable function x(u) can be obtained by expanding
it in terms of the complete orthonormal set of
functions cn(u) and then applying the above
eigenvalue equation to each term of the expansion.
This leads to the following expression for the ath-
order FRT xa(u) ; F

ax(u) [1]
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The zeroth-order FRTof a function is the function itself
and the first-order transform is equal to the ordinary
Fourier transform. Positive and negative integer values
of a simply correspond to repeated application of the
ordinary forward and inverse Fourier transforms,
respectively. The fractional Fourier transform operator
satisfies index additivity: F a2F

a1 ¼ F
a2þa1 . The

operator F a is periodic in a with period 4 since F2

equals the parity operator which maps x(u) to x(2u)
and F 4 equals the identity operator.

Just as it is customary to refer to the domain where the
time or space representation of a signal lives as the time
or space domain, and the domain where the Fourier
transform representation of the signal lives as the
frequency domain, we will refer to the domain where
the ath FRT xa(u) lives as the ath-order fractional
Fourier domain. These domains have a meaningful
interpretation in the time- or space-frequency plane.
With the time/space domain representing the
horizontal axis and the frequency domain representing
the vertical axis, the ath domain is the axis making
angle ap/2 with the horizontal axis [13].

The ath-order discrete FRT xa of an N � 1 vector x is
defined as xa ¼ Fax, where Fa is the N � N discrete
FRT matrix [24, 25], which is essentially the ath power
of the ordinary discrete Fourier transform matrix F. Let
the discrete-time vector x contain the samples x[n] of the
continuous-time signal x(u). If N is chosen equal to or
greater than the space-bandwidth product of the signal
x(u), then the discrete fractional transform approximates
the continuous fractional transform in the same way as
the ordinary discrete transform approximates the
ordinary continuous transform.

The signal recovery problem under consideration is
the reconstruction of x[n] from x̂a[n], n [ U , Z, at
one or more domains a ¼ a1, a2, . . . . Here x̂a[n]
denotes the known values of xa[n]. The set U may
consist of the union of an arbitrary collection of
intervals in the ath fractional Fourier domain. It may
also contain or consist of isolated points representing
measurements x̂a[n] of xa[n] at n ¼ ni, i ¼ 1, 2, . . . .

3 Iterative signal recovery
algorithm
This section describes the signal recovery algorithm
which is based on the method of POCS that has been
successfully used in many signal recovery and
restoration problems [23, 26–30]. The theoretical
basis of this method may be found in [20–22]. The
key idea is to obtain a solution which is consistent
with all the available information. In this method, the
set of all possible signals is assumed to constitute a
Hilbert space with an associated norm in which the
& The Institution of Engineering and Technology 2008
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prior information about the desired signal can be
represented in terms of convex sets. In this paper, the
Hilbert space is ‘2 for discrete-time signals. Let us
suppose that the information about the desired signal
is represented by M sets, Cm,m ¼ 1, 2, . . . ,M. Since
the desired signal satisfies all of the constraints it must
be in the intersection set C0 ¼ >M

m¼1Cm. Any member
of the set C0 is called a feasible solution [27]. If all of
the sets Cm are closed and convex then a feasible
solution can be found by making successive orthogonal
projections onto the sets Cm. Let Pm be the orthogonal
projection operator onto the set Cm. The iterates
defined by the following equation

y(lþ1)[n] ¼ P1P2 � � � PM y
(l)[n], l ¼ 0, 1, 2, . . . (4)

converge to a member of the set C0, regardless of the
initial signal y(0)[n]. The order of projections is
immaterial. The rate of convergence can be improved
by using non-orthogonal projections as well.

We do not devote further space to the underlying
mathematical concepts, which can be found in [22].
POCS is an iterative method whose aim is to find a
solution satisfying all of the constraints of the
numerical problem. An orthogonal projection is made
onto one of the constraint sets in each iteration. This
ensures that the current iterate satisfies at least this
specific constraint. The iterate is then projected to
another constraint set in the next iteration. The iterate
will now satisfy the new constraint, but may no longer
satisfy the previous one; however, it will typically still
be closer to satisfying the previous one compared to
when it was not yet projected onto the first constraint
at all. The iterate is then cyclically projected onto the
other constraint sets with similar effect.

Thus while subsequent projections may partly undo
the effect of previous ones, the overall effect of
cycling through all constraints is to bring the iterate
to more closely satisfying all constraints. When the
intersection of the constraint sets is not empty, it
is intuitively plausible that this procedure has
the potential of finding a solution satisfying all the
constraints. Each projection ‘pulls’ the iterate to the
constraint set in question, but otherwise is indifferent
to whether the iterate satisfies the other constraints or
not. Therefore after multiple rounds of repeated
pulling, the iterate ends up in the non-empty solution
set. It has been proved [20–22] that the iterative
process actually converges to a solution satisfying all
the requirements of the problem, if they are
represented as closed and convex sets in a Hilbert space.

Let xa1 [n] be the discrete FRT of x[n] in the a1th
domain. We define the set C1 in ‘2 as the set of
signals whose a1th discrete FRTs are equal to x̂a1[n] for
he Institution of Engineering and Technology 2008
n [ U1 in the a1th fractional domain

C1 ¼ {x[n]:xa1 [n] ¼ x̂a1 [n], n [ U1} (5)

This set is convex because the FRT is linear. The proof of
closedness can be established as in [20]. If data are also
available in another (a2th) fractional domain, another
set C2 can be defined in a similar manner and so on. If
the signal is a finite-extent signal, then this information
can be modelled as a closed and convex set as in other
well-known signal recovery problems. Actually, time/
space-domain information about the original signal
such as the knowledge that x[n] ¼ 0 in a bounded or
unbounded window in the time/space domain already
belongs to the above class of sets since the time/space-
domain merely corresponds to the special case of
a ¼ 0. In this case, (3) simply becomes the identity
operator for the fraction a ¼ 0.

Another convex set which can be used in the signal
recovery algorithm is the bounded energy set Ce, which
is the set of sequences whose energy is bounded by e0

Ce ¼ {x[n]:
X
n

x[n]
�� ��2 � e0} (6)

This set provides robustness against noise, if e0 is known
or some idea about e0 is available. Yet other convex sets
describing partial fractional Fourier domain information
can be defined. Non-negativity information about the
signal samples also leads to a closed and convex set Cp
in ‘2 [20, 21]. The same also holds when we know
that the signal is real. The set of discrete real signals
can be represented by

Cr ¼ {x[n]:x[n] ¼ x�[n], 8n [ Z} (7)

where � denotes complex conjugation. The key
operation of the method of POCS is the orthogonal
projection onto a convex set. Projection operations
onto the sets C1, C2, . . . are straightforward to
implement. The orthogonal projection operator onto
set Ci replaces the FRT values xai [n] in the index set
Ui, and retains the rest of the data outside the set Ui

xai [n] 
x̂ai [n], n [ Ui

xai [n], n � Ui

�
i ¼ 1, 2, . . . (8)

where x̂ai[n] represents the known FRT values in the aith
domain.

Orthogonal projection onto the energy set Ce simply
consists of scaling the signal x[n] such that the energy of
the scaled signal is e0 [22]. Orthogonal projection onto
the non-negativity set Cp is carried out by forcing the
negative values of x[n] to zero. Orthogonal projection
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25/
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onto the realness set Cr is performed by taking the
real part of the signal. The formulas for the
orthogonal projection operations are summarised below.
Projections onto the sets representing partial
information in the fractional Fourier domains can be
realised as

Pix[n] ¼ F�ai �
x̂ai [n], n [ Ui

xai [n], n � Ui

(

i ¼ 1, 2, . . .

(9)

where F�ai is the2aith discrete FRToperator. Projection
onto the bounded-energy set Ce is realised as

Pex[n] ¼
x[n], e � e0
x[n] �

ffiffiffiffiffiffiffiffiffi
e0=e

p
, e . e0

�
(10)

where e is the energy of x[n]. Projection onto the
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25
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non-negativity set Cp is realised as

Ppx[n] ¼
x[n], x[n] � 0
0, x[n] , 0

�
(11)

Finally, projection onto the real signal set Cr is realised as

Prx[n] ¼
x[n]þ x�[n]

2
¼ < x[n]ð Þ (12)

Let us now summarise the signal recovery algorithm
from partial FRT information.

0. Set k ¼ 0 and start with an arbitrary initial estimate
x(0)[n].
Figure 1 Reconstructed (solid) and original (dashed) signal at the 1st, 5th and 25th iterations and percent error against
number of iteration cycles

a Reconstructed (solid) and original (dashed) signal at the 1st iteration
b Reconstructed (solid) and original (dashed) signal at the 5th iteration
c Reconstructed (solid) and original (dashed) signal at the 25th iteration
d Percent error against number of iteration cycles
& The Institution of Engineering and Technology 2008



& T

www.ietdl.org
1. Project x(k)[n] onto the sets Ci, i ¼ 1, 2, . . . ,
representing the partial fractional Fourier domain
information in domains ai, i ¼ 1, 2, . . . [Eq. (9)].

2. If energy, non-negativity, or realness information is
available, project onto the corresponding convex sets
Ce, Cp or Cr [Eqs. (10)–(12)].

3. Increase k by 1.

4. Stop if kx(k)[n]� x(k�1)[n]k , d for some pre-
specified value of d, or k ¼ K for a limit K on the
number of iterations. Otherwise go to Step 1.

In our implementation of Step 1, we enumerate the orders
ai in increasing order and visit them in this sequence, and
we go directly from the aith order to the aiþ1th order
with a FRT of order (aiþ1 � ai) without having to go
back to the zeroth domain. As long as the signal satisfies
all of the constraints, the algorithm provides a solution in
the set of feasible solutions [20–22].

4 Application examples
The problem formulated and solved in this paper is very
general and encompasses a variety of application
scenarios. In this section, we will present several such
he Institution of Engineering and Technology 2008
prototypical application scenarios and examples; other
variations can be easily imagined. To rephrase the
general problem, it is assumed that measurements
x̂a[n] at n ¼ ni, i ¼ 1, 2, . . . , Ia for a ¼ aj, j ¼ 1,
2, . . . are available. This may also include the
assumption that the signal is of finite support. Realness
information may be additionally available. The FRT
integral (3) can either be numerically approximated or,
if the fractional Fourier domain data are available on a
uniform grid, the problem can be directly posed in
terms of the discrete FRT. The latter is assumed in the
following examples, all of which are solved according
to the POCS procedure described in Section 3.

Scenario 1: Low-resolution version of signal is available in
the FRT domain together with finite-extent information
[31].

In the examples we consider, it is known that the
desired signal is zero outside a certain interval, and
only one out of every three samples in the fractional
Fourier domain are known over a certain extent.

We assume that the 128-point discrete FRT
x0.5[n] of the desired signal x[n] ¼ {0, . . . , 0, 1

"
, 2,

3, 2, 1, 3, 3, 1, 1, 1, 3, 3, 1, 2, 3, 2, 1, 0, 0, . . . , 0}
Figure 2 Real parts of the time-domain radar pulse and interference signal

Solid line: radar pulse; dashed line: interference signal
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25/
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Figure 3 Wigner distribution of the corrupted signal
defined in the interval �64 � n , 64, is available
for n ¼ �64, �61, �58, . . . , 59, 62. It is also
known that x[n] ¼ 0 outside the interval
�5 � n , 25. We define percentage restoration
error as follows: 100�

P
n x

(l)[n]
���

�x[n]j2Þ=
P

n jx[n]j
2

� �
where x(l)[n] is the lth iterate.

Note that this definition of percentage error
involves the energy of the error and not the norm.
In all of the examples in this section, the unknown
values are initialised to zero. In this example (1a),
the percentage error drops below 1% after 25
iterations.

Let us consider a variation of this example where the
available information allows the recovery of the original
signal with a much higher accuracy (1b). We assume the
fractional Fourier domain information about the original
signal is the same as above but the available time-domain
information about the signal is that x[n] ¼ 0 for n , 0
and x[n] is real everywhere. In this case, the error drops
below 0.0001% after 200 iterations. Figs. 1a– c show the
original and reconstructed signals at the end of 1st, 5th
and 25th iterations. Fig. 1d shows the percent error as a
function of the number of iteration cycles.

Let us now consider the same example as in Fig. 1a,
but add stationary zero-mean Gaussian white noise onto
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25
doi: 10.1049/iet-spr:20070017
the measured FRT data, with a signal-to-noise ratio of
unity (1c). Because of the substantial amount of noise,
the iterates fluctuate around the solution, and the
percentage error does not fall below 2%.

Finally, in order to understand the behaviour of the
algorithm in the presence of non-uniform samples, we
perform the following experiment (1d). The only
difference of this example from 1a is that the samples of
x0:5[n] are now assumed to be known at the following
randomly selected 40 points in the interval [264, 64):
n [ f259, 257, 253, 249, 248, 245, 244, 243,
240, 238, 236, 235, 233, 228, 225, 220, 218,
216, 215, 212, 2, 4, 5, 8, 12, 13, 20, 21, 23, 25, 28,
33, 34, 42, 56, 57, 58, 59, 60, 63g. The resulting error
again falls below 1% after 25 iterations, suggesting that
the performance is not affected significantly by the non-
uniform locations of the measurements.

Scenario 2: Low-resolution version of signal is available in
two different FRT domains, possibly with additional
information [31].

In the examples we consider, only one out of every
two samples of the FRT at two or three domains is
known.
& The Institution of Engineering and Technology 2008
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Figure 4 Real parts of the 0.2th fractional Fourier transforms of the radar pulse and interference signal

Solid line: radar pulse; dashed line: interference signal
First, we assume that we have all odd samples of
x0:5[n] for �64 � n , 64 and all even samples of
x0:75[n] for �64 � n , 64. In this example (2a), the
error falls below 1% after 50 iterations and falls near
0.01% after 500 iterations.

In the next example (2b), odd samples of x0:5[n] and
x0:75[n] are available within a limited range �25 �
n , 25. Additionally, we have all even samples of x[n]
for �64 � n , 64. This time, after 500 iterations, the
error is reduced only to around 2–3%. If we
additionally know that the signal is zero outside the
interval �32 � n , 32, performance is much improved
and in this case (2c), the error falls below 0.0001% after
100 iterations.

In the final variation of this scenario (2d), we examine
the effect of having non-uniformly distributed samples.
We assume that both x0:5[n] and x0:75[n] are available
for index values of n [ {�64, �62, . . . , �2}<
{0, 3, . . . , 63}. That is, we know the value of the signal
at one out of every two samples for n , 0 and at one out
of every three samples for n � 0. We also assume that the
signal is zero outside n [ [�32, 32). As in 2c, we obtain
an error below 0.0001% after 100 iterations.
he Institution of Engineering and Technology 2008
Scenario 3: The FRTof the signal is known over a limited
interval in a single domain, together with additional
constraints.

In the example we consider (3a) the signal is known
at full resolution in the 0.3rd fractional domain over the
interval �15 � n , 15. We additionally know that the
original signal in the time/space domain is real. The
error drops below 0.1% after 100 iterations.

Scenario 4: The FRTof the signal is known over a limited
interval in two or more domains, possibly with
additional constraints.

First, we assume (4a) that x0:5[n] is known in the interval
0 � n , 55 and x0:75[n] is known in�55 � n , 0. The
error drops below 0.1% after 100 iterations.

Next, we consider the case where the signal is known
over a rather small interval in several domains (4b). The
signal is known in the 0.2nd, 0.3rd, 0.5th, 0.6th, 0.75th
domains in the interval �5 � n , 5 and we
additionally know that x[n] takes real values for all n.
The error drops below 0.5% after 100 iterations.
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25/
doi: 10.1049/iet-spr:20070017
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Finally, to further illustrate the application of the
method, we consider the case of a finite-extent radar
pulse corrupted by wideband chirp interference. The
time-domain radar pulse x[n] and the interference
term y[n] are given by

x[n] ¼
1

40
ffiffiffiffi
p
p exp �

n2

1600
þ j

pn2

256
tan 0:1pð Þ

� 	
(13)

y[n] ¼
1

2
ffiffiffiffi
p
p exp �

n2

400
þ j

pn2

256
tan �0:3pð Þ

� 	
(14)

for �128 � n , 128. Real parts of x[n] and y[n] are
plotted in Fig. 2. The Wigner distribution of the
corrupted signal is shown in Fig. 3, where we see that
the interference y[n] is much more dominant than the
signal x[n]. We will employ the following strategy to
recover the radar pulse. Recall that the axis making
angle ap/2 with the time/space axis is the ath
fractional Fourier domain. Both the desired radar
signal and the corrupting signal exhibit different
degrees of compactness in different domains.
Therefore we may transform to domains where their
separation is relatively large and eliminate those parts
which are heavily corrupted by the distorting signal
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25
doi: 10.1049/iet-spr:20070017
and then use interpolation to recover the complete
signal. We will make use of two domains, the domain
in which the desired signal is maximally spread, and
the domain in which it is most compact. The domain
in which the desired signal is maximally spread is
a ¼ 0.2, and the corrupted signal in this domain is
shown in Fig. 4. We will eliminate the corrupted
interval �24 � n , 24 from this data and assume
that the 0.2th FRT of the signal is known only outside
this interval, in addition to the support information
x[n] ¼ 0, jnj � 75. Second, we look at the 20.8th
domain in which the desired radar pulse is most
compact, shown in Fig. 5. Here, we know that the
desired signal is of negligible value outside the interval
�4 � n , 4 so that we will assume the 20.8th FRT
of the signal is zero outside this interval. The signal is
assumed not to be known inside the interval
�4 � n , 4. The available information in the two
domains now fulfills Scenario 4 and the signal can be
recovered by the interpolation procedure presented in
this paper. The error falls to 0.2% after 200 iterations.

We also solved the same problem after adding
additive zero-mean white Gaussian random noise to
the corrupted radar pulse in the original a ¼ 0th
domain. The noise variance is (0.002)2, which leads to
Figure 5 Real parts of the -0.8th fractional Fourier transforms of the radar pulse and interference signal

Solid line: radar pulse; dashed line: interference signal
& The Institution of Engineering and Technology 2008
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noise sample values comparable to the uncorrupted
signal. The error falls to around 2–3% after 50
iterations.

Although not used in this example, two additional
domains could have been employed: (i) The domain in
which the distorting signal is maximally distributed;
here, we would have eliminated all samples outside of
a centrally located interval. (ii) The domain in which
the distorting signal is most compact; here, we would
have eliminated the centrally located interval where
the distorting signal is dominant.

The general nature of our formulation and the
flexibility it affords allows it to be applied to situations
where we need to recover a propagating wave from
measurements from a random and/or irregular or
otherwise inconveniently arranged array of sensors.
Such problems arise with sensor networks, where a
large number of possibly irregularly situated sensors
may be employed to gather information on the
environment [32, 33]. Similarly, the same problem
may arise with swarm robots, where a large number
of robots with relatively simple sensors and
intelligence work cooperatively to understand and
operate in a given environment [34, 35]. Based on the
established relationship between the distance along the
he Institution of Engineering and Technology 2008
direction of propagation and the fractional order [1], a
separate domain can be assigned to each measurement
based on its axial coordinate. Only one sample value
will be known and the others unknown in that
domain. Therefore we are confronted with the
problem of recovering a signal from a large number of
domains, in each of which only one sample value is
known. This problem is a special case of Scenario 4.

Let us consider the case where the 128 measurement
points are randomly distributed both axially (in the
propagation direction) and transversely. To keep the
problem pure, we will assume the points are
uniformly distributed both in a and u. The distribution
of points employed is shown in Fig. 6. With the
support [25, 25), the error drops below 0.12% after
only 10 iterations and 0.0001% after 25 iterations.
Let us now assume that the sample values are not
known for every value of a but for every other value,
so that now there are a total of only 64 known
samples instead of 128. Despite this deficiency in the
available information, the error drops below 2.2%
after 500 iterations.

Because of the theoretical assurance on algorithm
convergence, there is no reason to think that the
algorithm will behave differently with other examples.
Figure 6 Distribution of known sample points
IET Signal Process., 2008, Vol. 2, No. 1, pp. 15–25/
doi: 10.1049/iet-spr:20070017
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5 Discussion and conclusion
In this paper, we discussed the solution of the problem of
signal recovery from partial FRT domain information by
using an iterative algorithm. This problem finds
applications in wave propagation problems where the
measured information is partial, spread over several
observation planes, or not of sufficient spatial
resolution. The signal recovery algorithm is based on
the method of POCS and convergence is assured
regardless of the initial estimate. After presenting the
general formulation, we presented several generic
application scenarios illustrating a wide variety of
prototypical situations which are covered by our
framework. We also presented an application example
involving the recovery of a corrupted radar pulse and
another example inspired by swarm robots and sensor
networks. The presented framework can be easily
extended to multi-dimensional problems as well. It can
also be generalised to the case where signal information
is available or can be deliberately measured in a
number of generalised ‘domains’ which are related
through linear transformations other than the FRT,
such as the family of linear canonical transforms [36].

In all the examples considered, we have observed
consistent behaviour of the algorithm. If the FRT
measurements are available in a very narrow interval,
the corresponding entries of the neighbouring rows of
the transform matrix may get very close to each other
and this structure may lead to unstable reconstruction
results from noisy measurements. This is not
especially related to the FRT case; in this respect, the
problem is very similar to the problem of signal
reconstruction from narrow-band ordinary Fourier
transform information.

The relative overlap and separation of signal and
noise (desired and undesired information), the
localisation of this overlap, and therefore the signal-to-
noise ratio at a certain interval will, in general, be
different in different domains. By choosing regions in
each domain where the signal-to-noise ratio is relatively
favourable and discarding those regions where it is
unfavourable and then using the generalised interpolation
strategy presented in this paper to combine these partial
signals, is a general approach which we believe will find
widespread applicability in a variety of situations.
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[13] OZAKTAS HM, AYTÜR O: ‘Fractional Fourier domains’, Signal
Process., 1995, 46, pp. 119–124
& The Institution of Engineering and Technology 2008



& T

www.ietdl.org
[14] BARKER L, CANDAN Ç, HAKIOĞLU T, ET AL.: ‘The discrete
harmonic oscillator, Harper’s equation, and the discrete
fractional Fourier transform’, J. Phys. A, 2000, 33,
pp. 2209–2222

[15] TAO R, DENG B, WANG Y: ‘Research progress of the
fractional Fourier transform in signal processing’, Sci.
China (Ser. F, Inf. Sci.), 2006, 49, pp. 1–25

[16] OZAKTAS HM, MENDLOVIC D: ‘Fractional Fourier optics’,
J. Opt. Soc. Am. A, 1995, 12, pp. 743–751

[17] OZAKTAS HM, MENDLOVIC D: ‘Fractional Fourier transform as
a tool for analyzing beam propagation and spherical mirror
resonators’, Opt. Lett., 1994, 19, pp. 1678–1680

[18] ERDEN MF, OZAKTAS HM, MENDLOVIC D: ‘Synthesis of mutual
intensity distributions using the fractional Fourier
transform’, Opt. Commun., 1996, 125, pp. 288–301
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