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We report a fast and accurate algorithm for numerical computation of two-dimensional non-separable linear
canonical transforms (2D-NS-LCTs). Also known as quadratic-phase integrals, this class of integral transforms
represents a broad class of optical systems including Fresnel propagation in free space, propagation in graded-
index media, passage through thin lenses, and arbitrary concatenations of any number of these, including
anamorphic/astigmatic/non-orthogonal cases. The general two-dimensional non-separable case poses several
challenges which do not exist in the one-dimensional case and the separable two-dimensional case. The algo-

rithm takes �Ñ log Ñ time, where Ñ is the two-dimensional space-bandwidth product of the signal. Our
method properly tracks and controls the space-bandwidth products in two dimensions, in order to achieve in-
formation theoretically sufficient, but not wastefully redundant, sampling required for the reconstruction of
the underlying continuous functions at any stage of the algorithm. Additionally, we provide an alternative defi-
nition of general 2D-NS-LCTs that shows its kernel explicitly in terms of its ten parameters, and relate these
parameters bidirectionally to conventional ABCD matrix parameters. © 2010 Optical Society of America
OCIS codes: 070.2580, 350.6980, 070.2590.
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. INTRODUCTION
he class of two-dimensional non-separable linear canoni-
al transforms (2D-NS-LCTs) is the class of linear inte-
ral transforms [1–3] that includes among its several spe-
ial cases non-separable two-dimensional (2D) fractional
ourier transforms (FRTs) [4], two-dimensional chirp
ultiplication (2D-CM) and 2D chirp convolution opera-

ions, the two-dimensional Fourier transform (2D-FT),
nd generalized astigmatic scaling (magnification) opera-
ions, as well as their separable special cases. These
ransform integrals can represent a broad class of optical
ystems including Fresnel propagation in free space,
ropagation in graded-index media, passage through thin
enses, and arbitrary concatenations of any number of
hese. The class of non-separable transforms is signifi-
antly more general than two-dimensional separable lin-
ar canonical transforms (2D-S-LCTs) since it can rep-
esent a wide variety of anamorphic/astigmatic/non-
rthogonal systems as well. The systems these integrals
epresent are also known as ABCD systems, which are
lso known as lossless first-order optical systems [5–12].
he classification of first-order optical systems and their
epresentation through linear canonical transforms are
tudied in [13,9,14–16] for one-dimensional (1D) and 2D
ases, respectively.

Linear canonical transforms (LCTs), which are com-
only referred to as quadratic-phase integrals or

uadratic-phase systems in optics [3], have also been re-
erred to by different names such as generalized Huygens
ntegrals [17], generalized Fresnel transforms [18,19],
pecial affine Fourier transforms (FTs) [20,21], extended
1084-7529/10/061288-15/$15.00 © 2
RTs [22], and Moshinsky–Quesne transforms [8], among
ther names.

2D separable LCTs or symmetrical transforms that do
ot include the general non-separable case are addressed

n [6,8,23–27]. The most special case possible is the iso-
ropic two-dimensional linear canonical transforms (2D-
CTs) in which the system is fully symmetric, orthogonal,
nd the parameters for both of the dimensions are identi-
al. This case can be represented by only three param-
ters as in a one-dimensional linear canonical transform
1D-LCT) [16]. When the system is still orthogonal but
he parameters for the orthogonal dimensions differ, the
ystem becomes a 2D-S-LCT, which is represented by six
arameters [16]. This case is also termed as axially sym-
etric [15]. The separable 2D transforms do not pose
uch difficulty because the separable transform is essen-

ially two independent 1D transforms along the two di-
ensions and the dimensions can be treated indepen-

ently. However, the non-separable transform (2D-NS-
CT) is the most general case of this class of integrals
here the two dimensions are coupled to each other by

our additional cross-parameters, increasing the total
umber of parameters to ten. This general case is non-
eparable, non-axially symmetric, non-orthogonal, and
namorphic/astigmatic [11,15–17]. 2D-NS-LCTs are able
o represent not only systems involving anamorphic/
stigmatic components and reference surfaces, but also
ther interesting systems such as optical mode converters
nd resonators since they can represent the coupling be-
ween the dimensions [16,28,29]. Another prominent fea-
ure of 2D-NS-LCTs is their ability to represent systems
010 Optical Society of America
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ith rotations between any arbitrary planes in phase-
pace, like rotations and gyrations [15,16]. These systems
re collected under the general name of gyrators and are
seful in 2D image processing, signal processing, mode
ransformation, etc. [15,30–33]. As a result, the efficient
nd accurate digital computation of 2D-NS-LCTs is of im-
ortance in many areas of optics, optical signal process-
ng, and general digital image processing.

Given an algorithm for efficiently computing 1D-LCTs
34–36], the efficient computation of separable 2D trans-
orms is straightforward because the kernel can be sepa-
ated and the 2D transform can be reduced to two succes-
ive 1D-LCTs. Much work has been done on 1D and 2D
eparable LCTs in terms of sampling issues and fast algo-
ithms for their digital computation [37–40]. On the other
and, in the non-separable case, the two dimensions are
oupled. Handling this case requires special attention and
o the best of our knowledge has not been addressed be-
ore. The current established LCT computation algo-
ithms [34–36] are not able to compute 2D-NS-LCTs.

An alternative representation of LCTs is presented and
tudied in [41]. This decomposition is based on the well-
nown Iwasawa decomposition [42]. In [41], the authors
urther decomposed the first matrix of the Iwasawa de-
omposition into a 2D separable FRT that is sandwiched
etween two coordinate rotators. We had earlier employed
1D Iwasawa decomposition to develop a fast and effi-

ient algorithm for 1D-LCTs [34,35]. In the present paper,
e use the 2D version of this Iwasawa-type decomposition

o derive our efficient algorithm. As in the 1D case, the
istinguishing feature of our approach is the way our al-
orithm carefully addresses sampling and space-
andwidth product issues from an information-theoretical
erspective. Special care is taken to ensure that the out-
ut samples represent the continuous transform in the
yquist–Shannon sense during every stage of the algo-

ithm so that the continuous transform can be fully recov-
red from the samples.

To our knowledge, there is no algorithm in the litera-
ure that efficiently calculates 2D-NS-LCTs. Despite the
ighly oscillatory nature of the integral kernel, we care-
ully manage the sampling rate so as to ensure that the
umber of samples used is sufficient, but not much larger
han the space-bandwidth product of the input signal so
hat the algorithms are as efficient as possible. The
traightforward method of sampling the input field and
he kernel, and then calculating the output field, is not
uitable for several reasons. First of all, due to the highly
scillatory nature of the integral kernel, a naive applica-
ion of the Nyquist sampling theorem to determine the
ampling rate would result in an excessively large num-
er of samples and inefficient computation. On the other
and, ignoring the oscillations of the kernel and deter-
ining the sampling rate according to the input field

lone may cause an under-representation of the output
eld in the Nyquist–Shannon sense. This unacceptable
ituation arises due to the fact that the particular 2D-
CT that we are calculating may increase the space-
andwidth product in one or both of the dimensions. If we
o not increase the number of samples that we are work-
ng with so as to compensate for this increase, there will
e information loss and we will not be able to recover the
rue transformed output from our computed samples.
hirdly, such a straightforward sampled integral compu-

ation takes Ñ2 time, where Ñ=MN for a 2D signal
ampled on a M�N grid. In contrast, the complexity of
ur algorithm is �Ñ log Ñ. This efficiency is even more
rucial in the 2D case than in the 1D case since the num-
er of points is much larger. By choosing the number of
amples Ñ equal to the 2D space-bandwidth product of
he signals, we ensure that the efficiency is near the best
hat is theoretically possible. More generally, through
ach stage of the algorithm, we carefully manage the
ampling rate to maintain the information theoretically
ufficient, but not wastefully redundant, sampling re-
uired for the reconstruction of the underlying continuous
unctions at any stage of the algorithm.

In Section 2, the definition of 2D-NS-LCTs is given. An
xplicit-kernel definition with the least possible number
f independent variables is provided and the forward
nd backward relations between the parameters of this
efinition and the parameters of conventional
BCD-matrices are derived. Section 3 provides the pre-

iminary mathematical background and the tools that we
se in the algorithm. In Section 4, our algorithm is pre-
ented. Section 5 addresses the issue of the sampling rate
nd space-bandwidth product control in order to ensure
he necessary sampling rates sufficient for the proper re-
onstruction in the Nyquist–Shannon sense at each step
f the algorithm. Next, numerical results are reported in
ection 6. We conclude in Section 7.

. DEFINITION OF 2D-NS-LCTs
he 2D-NS-LCT with parameter matrix M, of an input

unction f�u�, can be denoted and defined as [41,43]

g�u� = fM�u� = �CMf��u�

=
1

�det iB
�

−�

� �
−�

�

exp�i��u��B−1Au� − 2u��B−1u

+ uTDB−1u��f�u��du�, �1�

here u= �uxuy�T, u�= �ux�uy��
T, with T denoting the trans-

ose operation. A ,B ,C ,D are 2�2 submatrices defining
he transformation matrix M of the system that repre-
ents the 2D-LCT, with B being non-singular. The matrix
, which is given as

M = �A B

C D	 , �2�

s real and symplectic so that the following hold (I stands
or the 2�2 identity matrix) [14,41]:

ABT = BAT, CDT = DCT, ADT − BCT = I,

ATC = CTA, BTD = DTB, ATD − CTB = I. �3�

rom a group-theoretical point of view, 2D-NS-LCTs form
he ten-parameter symplectic group Sp�4,R�. (M has 16
arameters with six constraints leaving ten independent
arameters.) More on group-theoretical properties of
CTs can be found in [8,26].



p
m

w
p
f
a
r
u
s
a
p
s
o
f
w
m
e
i
t
a
g

o
e
t

I
t
f

A
c

E
E
(
d
t
i
d
c
g
g

3
A
W
W
s
d
f

1290 J. Opt. Soc. Am. A/Vol. 27, No. 6 /June 2010 Koç et al.
We will write the integral relationship between the in-
ut function f�ux ,uy� and the output function g�ux ,uy�
ore explicitly as

g�ux,uy� = e−i�/2��x�y − �x�y

��
−�

� �
−�

�

K�ux,uy,ux�,uy��f�ux�,uy��dux�duy�,

K�ux,uy,ux�,uy�� = exp�i��xux
2 − 2�xuxux� + 2�xuxuy�

+ ��uxuy + �xux�
2 + �yuy

2 − 2�yuyuy�

+ 2�yux�uy + ��ux�uy� + �yuy�
2�, �4�

here �x, �x, �x, �y, �y, �y, ��, �x, �y, �� are the ten inde-
endent parameters defining the 2D-NS-LCT (we will re-
er to them as the “scalar parameters”). These parameters
lso uniquely define the LCT. We will use this set of pa-
ameters for two reasons. First, although the definition
sing matrices gives us a compact and streamlined repre-
entation, the kernel and coefficients are not seen easily
nd explicitly in this case. When one needs to restrict the
arameters to obtain the kernel of any desired particular
ubclass of 2D-LCTs, it is not easy to derive the elements
f the ABCD matrices directly, whereas this is straight-
orward with Eq. (4). Secondly, and more importantly,
hen the ABCD submatrices are used directly, we need to
anipulate 16 parameters (four 2�2 matrices with four

lements each), despite the fact that only ten of them are
ndependent. However, with the explicit definition we use
he least number of required parameters, namely, ten,
nd match the corresponding ten-parameter symplectic
roup with exactly these ten parameters.

It is easy to convert from one set of parameters to the
ther. The ten scalar parameters are given in terms of the
lements of A, B, D as follows (only three of the subma-
rices are independent):

�x =
D11B22 − D12B21

det B
, �5�

�x =
B22

det B
, �6�

�x =
B21

det B
, �7�

�� =
D12B11 + D21B22 − D11B12 − D22B21

det B
, �8�

�x =
B22A11 − B12A21

det B
, �9�

�y =
D22B11 − D21B12

det B
, �10�

�y =
B11

det B
, �11�
�y =
B12

det B
, �12�

�� =
A21B11 + A12B22 − A11B21 − B12A22

det B
, �13�

�y =
B11A22 − A12B21

det B
. �14�

f we wish to obtain the submatrices A, B, D in terms of
he scalar parameters, we can use the following reverse
ormulas:

A =
1

2��x�y − �x�y���y�� + 2�y�x ���y + 2�y�y

���x + 2�x�x �x�� + 2�x�y
	 , �15�

B =
1

�x�y − �x�y
��y �y

�x �x
	 , �16�

D =
1

2��x�y − �x�y���x�� + 2�y�x ���x + 2�y�x

���y + 2�x�y �y�� + 2�x�y
	 .

�17�

s noted earlier, the submatrix C is not independent and
an be expressed in terms of A, B, D as follows:

C11 = �A11D11B22 + A12D12B22 − B22 − B12A21D11

− B12A22D12�/det B,

C21 = �A12D22 + A11D21 − B12C22�/B11,

C12 = �A21D11 + A22D12 − B21C11�/B22,

C22 = �A22D22B11 + A21D21B11 − B11 − B21A12D22

− B21A11D21�/det B. �18�

quations (18), along with the corresponding entries in
qs. (15)–(17), define C in terms of the scalar parameters.

Because the final expressions for C are cumbersome we
o not write them here explicitly.) Note that when we set
he “cross” parameters ��, �x, �y, �� to zero, the general-
zed 2D non-separable transformation matrix M will re-
uce to the transformation matrix of the 2D separable
ase studied in [23]. Also note that A, B, C, and D as
iven in Eqs. (15)–(18) satisfy the required properties
iven in Eq. (3).

. PRELIMINARIES
. Wigner Distributions
e will review the relationship between LCTs and the
igner distribution (WD), which will aid us in under-

tanding the effects of the elementary blocks used in our
ecompositions. The WD Wf�ux ,uy ,	x ,	y� of a 2D signal
�u ,u � can be defined as follows [3]:
x y
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Wf�ux,uy,	x,	y� =�
−�

� �
−�

�

f�ux + ux�/2,uy + uy�/2�f��ux

− ux�/2,uy − uy�/2�e−2�i�	xux�+	yuy��dux�duy�.

�19�

oughly speaking, W�ux ,uy ,	x ,	y� is a function that gives
he distribution of the signal energy over both space vari-
bles and their corresponding frequency variables. We
all this four-dimensional (4D) WD the “4D Wigner distri-
ution,” whereas the usual 2D WD used for 1D functions
ill be referred to as the “2D Wigner distribution.” Let f
enote a function and fM be its 2D-LCT with parameter
atrix M. Then, the relation between the WD of fM and

he WD of f can be expressed as [3]

WfM
�Ms� = Wf�s�, �20�

here the vector s= �ux uy 	x 	y�T is used for the sake of
otational simplicity. An example of the use of the WD in
ampling issues from another perspective can be found in
44].

. Fractional Fourier Transformation
he FRT plays an important role in our algorithm. There-

ore, here we briefly give its definition. The ath order 1D
RT [26,45–51] of a function f�u�, denoted fa�u�, can be de-
ned as

Faf�u� = fa�u� =�
−�

�

Ka�u,u��f�u��du�,

Ka�u,u�� = A
 exp�i��cot 
 u2 − 2 csc 
 uu� + cot 
 u�2��,

A
 = �1 − i cot 
, 
 =
a�

2
�21�

hen a�2j, Ka�u ,u��=��u−u�� when a=4j, and
a�u ,u��=��u+u�� when a=4j±2, where j is an integer.
he square root is defined such that the argument of the
esult lies in the interval �−� /2 ,� /2�. For 0� 
a
�2 �0



���, A
 can be rewritten without ambiguity as

A
 =
e−i�� sgn�
�/4−
/2�

�
sin 


, �22�

here sgn� � is the sign function. When a is outside the
nterval 0 
a
2, we simply need to replace a with its

odulo 4 equivalence lying in this interval and use this
alue in Eq. (22).

. A 3-Sphere for Space-Bandwidth Control for 2D
unctions and Dimensional Normalization
hen we study 1D input functions and 1D-LCTs, the cor-

esponding WD is 2D. One dimension represents the
pace extent and the other represents the spatial-
requency extent of the signal. However, for 2D signals,
here exist two space extents and two corresponding
patial-frequency extents resulting in a 4D Wigner distri-
ution. In [34,35] we used 2D Wigner distributions for
racking and control of the space-bandwidth products of
ignals through the stages of our algorithms. 2D Wigner
istributions are easy to visualize and therefore easy to
nderstand. However, for 2D signals we cannot graphi-
ally show the WD because it is a 4D function. Therefore
e will develop and use a more abstract and rigorous ap-
roach to space-bandwidth tracking and control in order
o achieve the information-theoretical minimum sampling
ate for the lossless reconstruction of the continuous out-
ut function from the output samples.
First, we need to recall the geometrical object known as
“3-sphere.” In general, for a natural number n, an

n-sphere” is the generalization of the ordinary “2-sphere”
n common three-dimensional Euclidian space to any di-

ension. Explicitly, an n-sphere, denoted as Sn and cen-
ered at the origin, is the analog of a sphere in
n+1�-dimensional Euclidian space and is defined as

Sn = �x � Rn+1:�x� = r, �23�

here the positive real number r is the radius of the
-sphere and Rn+1 is an �n+1�-dimensional vector space
ver R. More on n-spheres can be found in [52,53]. Then,
e can provide the generic definition of the 3-sphere, S3,

entered at the origin explicitly as

S3 = ��x1,x2,x3,x4� � R4:x1
2 + x2

2 + x3
2 + x4

2 = r2. �24�

ow, let us turn our attention to our 2D input functions.
t is well known that a non-zero function and its FT can-
ot both be confined to finite regions. However, in prac-
ice, we always work with samples of finite extent func-
ions by assuming that the energy of the signal falling
utside of some region is negligible. In general, the signal
ill exhibit some distribution of energy in the 2D space-

requency hypervolume (which is four dimensional). We
ill assume that a finite hyperellipsoidal boundary in R4

s chosen so as to confine most of the energy of the signal.
his hyperellipsoidal boundary will imply finite extents

n the two space dimensions and the two spatial-
requency dimensions. The intervals of the confinement
hus defined will be denoted by �−�Sx /2 ,�Sx /2� and
−�Sy /2 ,�Sy /2� in the space dimensions, and �−�Bx /
,�Bx /2� and �−�By /2 ,�By /2� in the spatial-frequency
imensions. The space and spatial-frequency representa-
ions of the signal will be approximately confined within
hese intervals. Given these, it also follows that both
pace-domain extents are confined within the worst-case
nterval �−�Smax/2,�Smax/2�, where �Smax
max��Sx ,�Sy, and both frequency-domain extents are
onfined within the interval �−�Bmax/2,�Bmax/2�, where
Bmax=max��Bx ,�By. Under these conditions, the WD
f the function is confined within the boundary O in R4

note that this is not defining a 3-sphere yet),

O =��sx,sy,bx,by� � R4:
sx

2

��Smax/2�2 +
bx

2

��Bmax/2�2

+
sy

2

��Smax/2�2 +
by

2

��Bmax/2�2 = 1� , �25�

here sx and sy are temporary space variables and bx and
y are temporary spatial-frequency variables of the WD of
he signal.

Let us now introduce the scaling parameter P and
caled dimensionless coordinates
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ux = sx/P,

uy = sy/P,

	x = bxP,

	y = byP, �26�

uch that the two space-domain and two frequency-
omain representations are confined to intervals of length
Smax/P and �BmaxP, respectively. Let P
��Smax/�Bmax so that the lengths of all the four inter-
als become equal to the dimensionless quantity
�Smax�Bmax, which we denote by �u. Expressed in di-
ensionless coordinates, the boundary O defined in Eq.

25) reduces to the desired 3-sphere, denoted by Osp,

Osp =��ux,uy,	x,	y� � R4:ux
2 + uy

2 + 	x
2 + 	y

2

= ���Smax�Bmax

2
�2

= ��u

2 �2� . �27�

o summarize, after the dimensional normalization pro-
edure given above has been performed, the 4D Wigner
istribution of our 2D input function can be assumed to
e confined within a 3-sphere Osp of diameter �u.

. ALGORITHM
s noted before, one of the most important features of our
ethod is to control the sampling rate of the function
ith the goal of having enough samples to be able to re-

onstruct the continuous function without information
oss, and at the same time without needlessly increasing
he number of samples to maintain the efficiency. In this
ection, we present our algorithm, discuss the stages in
he decomposition, and derive the parameters of each
tage from the parameters of the 2D-NS-LCT that is be-
ng computed. The effects of each stage of the decomposi-
ion on the WD of our function (thus on the space-
andwidth products) and associated sampling rate issues
ill be addressed in Section 5.
The Iwasawa decomposition is the core of our algo-

ithm. After the dimensional normalization explained in
ubsection 3.C, any transformation matrix M can be writ-
en in the following Iwasawa form [42,41]:

M = �A B

C D	 = � I 0

− G I	�S 0

0 S−1	� X Y

− Y X	 , �28�

here

G = − �CAT + DBT��AAT + BBT�−1, �29�

S = �AAT + BBT�1/2, �30�

X = �AAT + BBT�−1/2A, �31�
Y = �AAT + BBT�−1/2B. �32�

iven the 4�4 matrix M, we can determine the 2�2 ma-
rices G, S, X, Y by using Eqs. (29)–(32). If we are able to
evelop a fast algorithm to compute the three stages in
Ñ log Ñ time, the overall transform can also be calcu-

ated in �Ñ log Ñ time. In this decomposition, the first
peration is an orthosymplectic system, followed by a
caling (magnification) system, and finally followed by a
D-CM. (Note that each of the stages of the algorithm is a
pecial case of 2D-NS-LCTs.)

We begin with the first and the most sophisticated
tage of the decomposition, the orthosymplectic system.
his stage of the decomposition can be further decom-
osed into a two-dimensional separable fractional Fourier
ransform (2D-S-FRT) that is sandwiched between two co-
rdinate rotators [41],

� X Y

− Y X	 = Rr2
Fax,ay

Rr1
, �33�

here the 4�4 matrices Rr1
, Fax,ay

, Rr1
are defined as

Rr1
= �

cos�r1� sin�r1� 0 0

− sin�r1� cos�r1� 0 0

0 0 cos�r1� sin�r1�

0 0 − sin�r1� cos�r1�
� , �34�

Rr2
= �

cos�r2� sin�r2� 0 0

− sin�r2� cos�r2� 0 0

0 0 cos�r2� sin�r2�

0 0 − sin�r2� cos�r2�
� , �35�

ax,ay

= �
cos�ax�/2� 0 sin�ax�/2� 0

0 cos�ay�/2� 0 sin�ay�/2�

− sin�ax�/2� 0 cos�ax�/2� 0

0 − sin�ay�/2� 0 cos�ay�/2�
� ,

�36�

here Rr1
and Rr2

are rotation matrices that impose ro-
ations of angles r1 and r2, respectively, through the spa-
ial variables �ux ,uy� and through their frequency vari-
bles �	x ,	y�. Unlike these traditional rotators which
otate within space and spatial-frequency separately, the
RT rotates within the space-frequency planes of each di-
ension. Fax,ay

stands for a 2D-S-FRT that makes sepa-
able rotations of angle ax� /2 over the variables �ux ,	x�
nd of angle ay� /2 over the variables �uy ,	y�. Since this
D FRT operation is separable, it corresponds to two 1D
RT operations performed over each of the dimensions.
xplicitly, this means first performing 1D-FRTs with the

ractional order ax for each of the rows (or columns) and
hen performing 1D-FRTs with the fractional order ay for
ach of the columns (or rows) of the sampling grid. It is
his observation that enables us to implement this stage
f the decomposition efficiently in O�Ñ log Ñ� time. There
re fast and established algorithms to compute 1D-FRTs
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34,35,54,55] so that this stage can be calculated in
�Ñ log Ñ� time easily.
The interpretation of the coordinate rotators requires

are. When we are working with sampled functions, we
now the value and coordinates (the location where the
articular sample is taken) of all the samples we have. A
oordinate rotation can be interpreted in this situation as
rotation of the locations of the samples, resulting in a

ew sampling grid, rather than a change in the sample
alues. If we assume that we start with a regular rectan-
ular grid, after the coordinate rotation, the grid would no
onger coincide with the original grid unless the rotation
s an integer multiple of � /2. Unfortunately, in order to
erform FRT operations along the horizontal and vertical
irections, we need the samples to be on a regular rectan-
ular grid in order to employ available fast algorithms.
herefore, we must carry out an interpolation operation
o determine the values of the function on a regular rect-
ngular grid. There are several techniques and algo-
ithms to perform this interpolation efficiently. We have
hosen to use in our numerical simulations fast and stan-
ard implementations of nearest neighbor, bilinear, and
ubic interpolations [56,57], but any other efficient
ethod may also be used. This interpolation step and its

erformance can be a major source of error in our algo-
ithm, as we will further discuss later.

We now turn our attention to determining the coordi-
ate rotation angles r1 and r2, and the FRT fractional or-
ers ax and ay. When we plug Eqs. (34)–(36) in Eq. (33),
arry out the matrix multiplications, and equate the en-
ries of both sides of Eq. (33), we get the following equa-
ions in the four unknowns r1, r2, ax, and ay:

X11 = cos r1 cos r2 cos�ax�/2� − sin r1 sin r2 cos�ay�/2�,

X12 = sin r1 cos r2 cos�ax�/2� + cos r1 sin r2 cos�ay�/2�,

X21 = − cos r1 sin r2 cos�ax�/2� − sin r1 cos r2 cos�ay�/2�,

X22 = − sin r1 sin r2 cos�ax�/2� + cos r1 cos r2 cos�ay�/2�,

Y11 = cos r1 cos r2 sin�ax�/2� − sin r1 sin r2 sin�ay�/2�,

Y12 = sin r1 cos r2 sin�ax�/2� + cos r1 sin r2 sin�ay�/2�,

Y21 = − cos r1 sin r2 sin�ax�/2� − sin r1 cos r2 sin�ay�/2�,

Y22 = − sin r1 sin r2 sin�ax�/2� + cos r1 cos r2 sin�ay�/2�.

�37�

hese equations are sufficient to solve for and unambigu-
usly determine the rotation and fractional Fourier
ngles of the decomposition in a straightforward manner,
rovided one pays proper attention to sign considerations
hen inverting the trigonometric functions.
To summarize, the first stage of our algorithm involves

etermining the angles from the above equations, per-
orming the first coordinate rotation, following this by two
D-FRTs over each of the dimensions, and then finishing
ith the second coordinate rotation. All these steps can be

alculated in O�Ñ log Ñ� time.
The second stage is the scaling operation and it seems
o be the simplest of the three stages. It is not, however,
s trivial as in the 1D case [35]. In one dimension, it cor-
esponds to only a reinterpretation of the spacing be-
ween the samples. The sampling interval scales with the
caling parameter. Intuitively, it squeezes in or stretches
ut the total number of samples as the word scaling im-
lies. This means that there is no change in the total
umber of samples and thus no need to oversample the

nput samples. The analog of the 1D scalar scaling param-
ter in the 2D case is the matrix S. When S is diagonal,
hich means that there is no coupling between the two
imensions of the function for scaling purposes, the scal-
ng is separable. Due to this separability, this situation
oes not impose an increase in the space-bandwidth prod-
cts and thus does not require oversampling, just as in
he 1D case. But when the off-diagonal elements of S are
on-zero, the scaling operation is no longer so trivial. Al-
hough the total number of degrees of freedom of the sig-
al remains the same, the space-bandwidth products may

ncrease and an oversampling to match this increase may
e necessary. Readers wishing to better understand how
he space-bandwidth product may increase despite the
act that the number of degrees of freedom remains the
ame are referred to [35], where these issues are studied
raphically for the 1D case. An analogous, although not
isually demonstrable, situation exists for 2D signals.
he sampling rate control mechanism for such 2D scaling
perations will be developed in detail in Section 5. At this
oint, we note that in those cases where the number of
amples needs to be increased, the oversampling should
e performed first, prior to the scaling. Afterward, the
caling is achieved by the mere reinterpretation of the lo-
ations of the samples without changing the samples
hemselves (other than a constant multiplicative factor).
omputationally, such a scaling operation amounts to
odifying the information that tells us which coordinates

he samples belong to. Since it requires only the reinter-
retation of the coordinates of the samples plus a possible
versampling, it does not impose much computational
oad. Equation (30) gives us the scaling parameters. The

atrix S can be easily used to determine the output
amples by using the input-output relation of the scaling
peration,

fsc�u� =
1

�det S
f�S−1u�, �38�

here f is the function to be scaled, fsc is the scaled func-
ion, and u= �ux uy�T.

The last stage of our main Iwasawa decomposition is
he 2D-CM operation whose parameters are given by the
atrix G as defined in Eq. (29). The input-output relation

f this 2D-CM is given as

fch�u� = e−i��G11x2+�G12+G21�xy+G22y2�f�u�, �39�

here fch stands for the chirp-multiplied function. The
D-CM operation is the stage that is mainly burdened
ith any shears inherent in the 2D-NS-LCT to be com-
uted. Such shears may considerably increase the space-
andwidth products of the function. Thus, before the
D-CM operation, the space-bandwidth products of the
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unction should be calculated carefully and any necessary
versampling should be performed. This CM operation
ay turn out to be non-separable or separable for particu-

ar 2D-NS-LCTs but, regardless, it requires only one mul-
iplication for each sample, resulting in O�Ñ� time compu-
ation. As a result, we see that we can perform all of the
tages of the decomposition in O�Ñ log Ñ� time or faster,
hich makes the computational complexity (cost) of our
verall algorithm O�Ñ log Ñ�.

. SPACE-BANDWIDTH AND SAMPLING
ATE CONTROL

n this section, we develop a method to track the space-
andwidth products of our functions as we perform the
onsecutive operations in our decomposition and focus on
ow to control the number of samples efficiently. We need
o calculate the necessary sampling intervals and sam-
ling rates for both dimensions that are necessary to rep-
esent the continuous signal without information loss for
ach of the stages. Oversampling should be undertaken
rior to any stage that increases either of the space-
andwidth products.
As given in Subsection 3.C, the WD of the input signal

s assumed to be confined within a 3-sphere with radius
u /2, which also means that the signal is assumed to be
lmost space- and band-limited in both dimensions. The
D Wigner representation gives us two space extents, two
patial-frequency extents and two space-bandwidth prod-
cts, one for each dimension of the function. Let us denote
he space-bandwidth product along the ux direction by Nx
nd that along the uy direction by Ny. These extents de-
ne the minimum required number of samples along the
orresponding direction, with the total number of samples
eing Nx�Ny. Since the WD is confined within a 3-sphere
f diameter �u, all the extents of the function (space and
patial-frequency) are equal to �u at the beginning. Thus,
he function should be sampled on a Nx�Ny grid, where
he ux-coordinate of the function spans the interval ux=
−�u /2 ,�u /2� and the uy-coordinate spans the interval

y= �−�u /2 ,�u /2�. The distance between two adjacent a

out

W
o

amples is equal to �u−1 along both dimensions. As a re-
ult, the space-bandwidth products are initially Nx=Ny
�u2.
We will track the effects of each stage in our algorithm

o the WD boundary to which the original function is con-
ned, and calculate the extents and the two space-
andwidth products and eventually the required struc-
ure of the sampling grid before each stage is performed.
e will address each of the three stages (the first with

hree steps) given in Section 4 in sequence.
To start, we first write down the 3-sphere boundary in

yperspherical coordinates. The 3-sphere Osp given in Eq.
27) can be transformed to the equivalent hyperspherical
oordinates with the following coordinate transformation:

Osp = �
ux

uy

	x

	y

� =
�u

2 �
cos �1

sin �1 cos �2

sin �1 sin �2 cos �3

sin �1 sin �2 sin �3

� , �40�

here the angular hyperspherical coordinates �1 and �2
ange over �0,��, and the angular hyperspherical coordi-
ate �3 ranges over �0,2��. (Note that this coordinate
ystem transformation is not unique.) The sum of the
quares of the elements of the vector on the right-hand
ide of Eq. (40) again equals ��u /2�2 as expected. Equa-
ion (20) allows us to calculate the new boundary sout of
he WD after any operation from the boundary sin before
he operation. Just as the old boundary confined most of
he energy of the signal represented by the WD, so does
he new boundary. This is because the mapping in Eq.
20) merely maps values of the WD to new space-
requency points, and values which were confined within
he old boundary remain confined within the new bound-
ry.

. First Coordinate Rotator
t the very beginning of the algorithm, we start with the
oundary vector sin=Osp. In other words, the input
oundary vector sin before the first coordinate rotator is
iven by Eq. (40). Then sout is found by multiplying sin
ith the transformation matrix of the coordinate rotator

s

sout = Rr1
sin =

�u

2 �
cos�r1� sin�r1� 0 0

− sin�r1� cos�r1� 0 0

0 0 cos�r1� sin�r1�

0 0 − sin�r1� cos�r1�
��

cos �1

sin �1 cos �2

sin �1 sin �2 cos �3

sin �1 sin �2 sin �3

�
=

�u

2 �
cos�r1�cos �1 + sin�r1�sin �1 cos �2

− sin�r1�cos �1 + cos�r1�sin �1 cos �2

cos�r1�sin �1 sin �2 cos �3 + sin�r1�sin �1 sin �2 sin �3

− sin�r1�sin �1 sin �2 cos �3 + cos�r1�sin �1 sin �2 sin �3

� , �41�
ith �1 and �2 ranging over �0,��, �3 ranging over
0,2��, and s represents the boundary of the output
D. We can show that this boundary remains a 3-sphere
f radius �u /2 by writing
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x
2 + uy

2 + 	x
2 + 	y

2

= ��u

2 �2

��cos�r1�cos �1 + sin�r1�sin �1 cos �2�2

+ �− sin�r1�cos �1 + cos�r1�sin �1 cos �2�2

+ �cos�r1�sin �1 sin �2 cos �3

+ sin�r1�sin �1 sin �2 sin �3�2

+ �− sin�r1�sin �1 sin �2 cos �3

+ cos�r1�sin �1 sin �2 sin �3�2� = ��u

2 �2

, �42�
s can be verified after some algebra with trigonometric T
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unctions. This result means that the coordinate rotation
peration does not change the 3-sphere nature of the con-
ning boundary of the WD, and since rotating an
-sphere (just like an ordinary sphere) does not change its
xtent along any direction, it does not have any effect on
he space-bandwidth products. Therefore, no matter what
he angles are, the coordinate rotation operation does not
equire a change in the number of samples and the sam-
ling grid.

. 2D-S-FRT
ince the previous rotation operation left the WD con-
ned within the original 3-sphere, and since we are inter-
sted only in the worst-case boundary, sin (sout of the pre-
eding operation) can still be expressed as in Eq. (40).

hen, the new sout is found as
sout = Fax,ay
sin =

�u

2 �
cos�ax�/2� 0 sin�ax�/2� 0

0 cos�ay�/2� 0 sin�ay�/2�

− sin�ax�/2� 0 cos�ax�/2� 0

0 − sin�ay�/2� 0 cos�ay�/2�
��

cos �1

sin �1 cos �2

sin �1 sin �2 cos �3

sin �1 sin �2 sin �3

�
=

�u

2 �
cos�ax�/2�cos �1 + sin�ax�/2�sin �1 sin �2 cos �3

cos�ay�/2�sin �1 cos �2 + sin�ay�/2�sin �1 sin �2 sin �3

− sin�ax�/2�cos �1 + cos�ax�/2�sin �1 sin �2 cos �3

− sin�ay�/2�sin �1 cos �2 + cos�ay�/2�sin �1 sin �2 sin �3

� . �43�
s in the coordinate rotator step, sout again defines the
oundary of the output WD. Once again it defines a
-sphere since ux

2+uy
2+	x

2+	y
2= ��u /2�2. This too can be

asily shown by using simple algebra and trigonometric
unction properties. This is an expected result since the
RT corresponds to rotation in the joint space-frequency;

f the original confinement region is an n-sphere, it re-
ains an n-sphere after a 2D-S-FRT. Therefore, we again
eed not change the number of samples and sampling
rid before the FRT step.

. Second Coordinate Rotator
imilar considerations as with the first coordinate rota-
ion apply so that an increase in the number of samples or
change in the sampling grid is not needed.

. 2D Scaling Operation
p to the scaling stage, we do not have to worry at all
bout the sampling rate. The three steps which constitute
he first stage have the effect of rotating the original
-sphere, and the extent of the 4D Wigner distribution re-
ains unchanged in all directions. We are able to track

he confinement boundary through the steps precisely
ince we are able to write down the entire boundary para-
etrically by using hyperspherical coordinates and since

fter each step, the transformed points still form a
-sphere. In fact, the WD of the signal is confined within
he same 3-sphere as at the beginning. However, the scal-
ng operation does not preserve the 3-sphere and thus it is
ery difficult to track all the points on the boundary since
hey may not constitute an easily trackable geometrical
bject by analytical and parametric means. Therefore, in-
tead of tracking the infinite number of boundary points
f our 3-sphere, we will use a tesseract (a 4-cube), which
s basically the counterpart of an ordinary cube in R4, just
s the 3-sphere is the counterpart of the ordinary sphere
52]. The unit tesseract is defined as

��x1,x2,x3,x4� � R4:− 1  xi  1. �44�

t has 16 vertices and we will use these 16 points to track
he WD after the scaling operation. We take the smallest
esseract that contains the 3-sphere within itself and use
ts 16 vertices to find the 16 vertices of the output. These
6 vertices define the maximum extents of the distribu-
ion, and by employing them we can safely define the
orst-case boundary confining the WD after the opera-

ion. Then the two space-bandwidth products can be cal-
ulated by finding, separately for each of the four coordi-
ates, the maximum distances between the corresponding
oordinates of the 16 vertices. Readers wishing to find a
impler example of such a streamlined procedure in a 1D
etting can refer to [55].

Let us represent, in R4, the coordinates of the 16 verti-
es of the tesseract of edge length �u (which is the small-
st one confining the 3-sphere with diameter �u) with col-
mns of the matrix V,
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V =
�u

2 �
1 1 1 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

1 1 1 1 − 1 − 1 − 1 − 1 1 1 1 1 − 1 − 1 − 1 − 1

1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1

1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1
� . �45�
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fter the scaling operation is performed, these coordi-
ates of the 16 input vertices are mapped to 16 new ver-
ices, which we will hold in the columns of V̄ as follows:

V̄ = �v1 v2 v3 . . . v15 v16� = �S 0

0 S−1	V, �46�

here vi �i=1,2, . . . ,16� are vectors in R4 that hold the co-
rdinates of the scaled vertices. Then, we need to find the
oordinate-wise distances for every possible combination
f pairs of vertices, for each of the four coordinates sepa-
ately. There are 120 possible combinations of pairs out of
6 vectors. We calculate the distances between their coor-
inates and denote this with di,j as

di,j = �

vi�1� − vj�1�



vi�2� − vj�2�



vi�3� − vj�3�



vi�4� − vj�4�

� , �47�

nd then construct the 4�120 distance matrix D,

= �d1,2 d1,3 . . . d1,16 d2,3 d2,4 . . . d2,16 . . . d15,16�
�48�

here i=1,2, . . . ,15 and j= i+1, . . . ,16. By using D, we
an define the sampling grid and sampling rates that are
ecessary to represent the function without any informa-
ion loss. The extent of the function along ux and uy
hould be max�D1,1 ,D1,2 ,D1,3 , . . . ,D1,120� and max�D2,1 ,
2,2 ,D2,3 , . . . ,D2,120�, respectively. On the intervals along
x and uy given above, the samples should be taken
ith intersample spacings of �max�D3,1 ,D3,2 ,D3,3 , . . . ,
3,120��−1 and �max�D4,1 ,D4,2 ,D4,3 , . . . ,D4,120��−1, respec-

ively. The corresponding space-bandwidth products are
hen equal to

NSx = max�D1,1,D1,2,D1,3, . . . ,D1,120�

�max�D3,1,D3,2,D3,3, . . . ,D3,120�, �49�

NSy = max�D2,1,D2,2,D2,3, . . . ,D2,120�

�max�D4,1,D4,2,D4,3, . . . ,D4,120�, �50�

nd the total necessary number of samples after the scal-
ng is given by Ñ=NSxNSy. Remember that the number of
amples should be increased to this number Ñ=NSxNSy
efore the scaling operation is performed (the minimum
ppropriate integer number of samples greater than the
alculated values may be used for simplicity). The deter-
ined number of samples should be uniformly spread so

s to snugly fit the original extents (thus they will be
paced closer than the original samples). After the scaling
peration is performed by using the matrix S, these
amples are transformed to new and extended positions
s predicted by the above calculations. Finally, although
ot a necessity, a similar simple interpolation may be em-
loyed (as done after the coordinate rotations) to carry the
amples from these transformed locations to the regular
rid within the predicted extents. This may facilitate the
mplementation of the next operation.

. 2D-CM
he 2D-CM operation is the stage that is mainly bur-
ened with any shears which may be inherent in the 2D-
S-LCT to be computed. Such shears may considerably

ncrease the space-bandwidth products of the function.
hese increases are unavoidable if these elongating dis-

ortions in the space-frequency are part of the 2D-NS-
CT which we wish to compute. This will in turn require
n increase in the number of samples if we wish to be able
o reconstruct the continuous output function without any
nformation loss. Therefore, as in the previous subsection,
e must increase the number of samples prior to the

hirp multiplication operation. The vertices obtained as a
esult of the scaling operation are taken as the starting
ertices for the 2D-CM operation. We begin with the coor-
inates of these vertices, denoted by V̄, determine what
appens to them as a result of the 2D-CM operation, and
alculate the new difference matrix D by using the follow-
ng equation along with Eqs. (47)–(50):

V� = �v1 v2 v3 . . . v15 v16� = � I 0

− G I	V̄. �51�

inally, the sampling extents, rates, and locations can be
etermined similarly as in the scaling stage. After the
umber of samples has been increased, the 2D-CM stage
an be safely performed to complete the entire transfor-
ation.

. Summary of the Algorithm
aving explained all the stages in detail, we summarize

he entire algorithm stage by stage. The algorithm can be
ompactly stated in operator notation as follows:

CM = QGKGMSKSRr2
Fax,ay

JRr1
, �52�

here the operators QG, MS, Rr2
, Fax,ay

, and Rr1
, respec-

ively, represent the 2D-CM with parameter matrix G,
he 2D scaling with parameter matrix S, the coordinate
otation with angle r2, the 2D-S-FRT with orders ax and
y, and the coordinate rotation with angle r1. J stands for
simple interpolation without oversampling that is per-

ormed to obtain the function on a regular rectangular
rid from the rotated samples. KS and KG stand for the
nterpolation operations before the scaling and chirp mul-
iplication operations, respectively. Beyond the task of J,
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hese also increase the number of samples as explained in
ubsections 5.D and 5.E.
The algorithm can be summarized as follows:
1. Normalize the input field (function) as explained in

ubsection 3.C and obtain the input samples.
2. Given the transform matrix M, obtain the chirp mul-

iplication �G� and scaling �S� matrices, the coordinate ro-
ation angles (r1 and r2), and FRT orders (ax and ay) by
sing Eqs. (28)–(37).
3. Perform the first coordinate rotation and obtain the

amples on a regular grid by simple interpolation.
4. Use the fast algorithm for 1D-FRTs to implement the

D-S-FRT by successively applying 1D-FRTs along the
wo dimensions.

5. Perform the second coordinate rotation and obtain
he samples on a regular grid by simple interpolation.

6. Use the method given in Subsection 5.D to obtain the
ecessary number of samples before the 2D scaling opera-
ion, perform the oversampling, and then apply the scal-
ng operation. Optionally, go back to a regular rectangular
rid by simple interpolation after the scaling has changed
he locations of the samples to a non-rectangular grid.

7. Use the method given in Subsection 5.E to obtain the
ecessary number of samples before the 2D chirp multi-
lication operation, perform the oversampling, and then
pply the chirp multiplication operation.

. NUMERICAL RESULTS
ere we report numerical results for some example func-

ions and transforms in order to demonstrate the perfor-

Fig. 2. T1 of F1 (ou
ance and accuracy of our algorithm. We also discuss
ources of error in our algorithm and the effect of interpo-
ation methods on the error. As example input functions,
e consider the 2D Gaussian field exp�−��x2+y2�� and de-
ote it with F1, the 2D chirped-Gaussian field exp�−��x2

y2��exp�−i��x2+y2�� and denote it with F2, and a 2D
on-symmetric chirped Gaussian field exp�−��3x2

y2��exp�−i��x2+2y2�� and denote it with F3. All these
rst three input fields are sampled on a 64�64 grid. Ad-
itionally, we also consider a more challenging function
xhibiting discontinuities and larger frequency extents
epicted in Fig. 1. This S-shaped function is denoted with
4 and is sampled on a 256�256 grid. We consider two
ifferent arbitrarily chosen 2D-NS-LCTs: the first one

Fig. 1. Example function F4.

ithm and reference).
r algor
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T1� has a parameter set ��x ,�x ,�x ,�y ,�y ,�y ,�x ,�y ,
� ,���= �−3,−2,−1,2,3,4,0.1,0.2,1,−0.1� and the second
ne �T2� has a parameter set (1, 2, 3, �2, �1, �0.8, 0.6,
0.5, 0.3, –0.4). As a result of the space-bandwidth and

ampling rate control procedure presented in Section 5
nd for the given number of initial samples, the output
elds are obtained by the algorithm on 141�166 and
40�211 sampling grids for T1 and T2, respectively, for
he input functions F1, F2, and F3. For the input function
4, the output grids are 563�663 and 2958�842 for T1
nd T2, respectively. T1 is of such a nature that it re-
uires a relatively small amount of oversampling,
hereas T2 is of such a nature that it requires a rela-

ively large amount of oversampling. These oversam-
lings are necessary to be able to recover the continuous
utput from the output samples produced by the algo-
ithm.

The 2D-NS-LCTs (T1 and T2) of the functions F1, F2,
3, F4 have been calculated both by the presented fast al-
orithm and by an extremely finely tuned and inefficient
rute force numerical approach based on the 2D Simp-
on’s method [58] which we use as an accurate reference.
he results for T1 of (F1, F2, F4) and T2 of (F3, F4) along
ith the corresponding brute force reference results are
lotted in Figs. 2–6. The error percentages for all func-
ions (F1, F2, F3, F4) are tabulated in Table 1, for both
ransforms T1 and T2. There are no visible differences for
1, F2, F3 and very small visible difference for F4. We de-
ne the error as the energy of the difference of the two re-

Fig. 3. T1 of F2 (ou
ults normalized by the energy of the reference, expressed
s a percentage. The tabulated error percentages show
hat the presented fast algorithm is very accurate. An-
ther important observation from Table 1 is that the error
oes not depend so much on the transform parameter set
s is does on the transformed function; the error percent-
ges for T1 and T2 are close to each other. In general, our
lgorithm maintains approximately the same perfor-
ance over different transforms. A similar conclusion was

eached for the 1D case [34,35]. To the best of our knowl-
dge the presented algorithm is the first fast and accurate
lgorithm that is capable of computing the very general
lass of 2D-NS-LCTs and the first generalization of the 1D
ast algorithms for LCTs to two dimensions. Moreover, it
lso deals with the space-bandwidth and sampling rate is-
ues very carefully so that the output samples—indeed
he samples at any stage—are sufficient to accurately re-
onstruct the underlying continuous function, but are not
astefully redundant either. Therefore our algorithm is
ble to effectively obtain a continuous transform from a
ontinuous input function.

In Table 1, we also show the errors that arise when the
iscrete Fourier transform (DFT) is used to approxi-
ately compute the ordinary 2D-FT of the same func-

ions. [The DFT would most likely be implemented with
he fast Fourier transform (FFT) algorithm but how the
FT is implemented does not affect the error compari-

on.] The same reference method that we use in calculat-
ng the error percentages for our algorithm is used to nu-

ithm and reference).
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erically calculate “exact” continuous FTs of the example
unctions. The DFT serves as an ultimate benchmark for
omparing our results. Theoretically, our algorithm can-
ot reduce the error below that value which results from
omputing a FT with the DFT because they share the
ame inevitable source of error that arises from the fun-
amental fact that a signal and its transform cannot both
e of finite extent. In the 1D version of our algorithm, as

Fig. 4. T2 of F3 (ou

Fig. 5. T1 of F4 (our algorithm and reference).
ell as the separable 2D case, it is possible to achieve er-
ors which approach that for the DFT, and which are thus
he best which one may ever hope to obtain [34,35]. Un-
ortunately, the necessity of interpolation in the 2D case
oes not allow this, but still it is possible to achieve very
ow errors that would be acceptable in most applications.

The key observations that can be made from Table 1
re as follows. The resulting errors depend strongly on

ithm and reference).

Fig. 6. T2 of F4 (our algorithm and reference).
r algor
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he function and the assumed space and spatial-frequency
xtents. Indeed, this is the main determinant of the error
or a given interpolation method. Different functions have
iffering degrees of decay rates of their tails and, for
iven assumed extents, different amounts of energy left
ut of the extents. Since a function cannot be made to con-
ain 100% of its energy in both the space and spatial-
requency domains, a compromise between error and com-
utational complexity is necessary. If we choose the
xtents within which we assume the function and its FT
o be mostly contained in a conservative manner, the ex-
ents will be relatively large and the number of samples
ill be relatively large. If we economize on the extents
nd the number of samples, a relatively large fraction of
he energy will be left outside and the resulting error will
e large. Among our examples, F4 is an example where
he space-bandwidth product has been chosen less conser-
atively than the other examples, and therefore the error
s relatively large around 2%. The error can be reduced by
ncreasing the number of samples taken.

From a fundamental perspective, our algorithm is sup-
osed to compute 2D-NS-LCTs with a performance simi-
ar to the DFT in computing the FT. As noted, this is
chieved for separable transforms which reduce to 1D
ransforms. However, in the general non-separable case,
lthough our algorithm is quite accurate, for the first
hree functions, its accuracy is quite below that for the
FT. This degradation is due to the complex and chal-

enging nature of non-separable LCTs which forces us to
mploy interpolation operations from irregular grids to

able 1. Percentage Errors for Different Functions
F and Transforms T

T1 T2 DFT

1 2.25�10−3 3.82�10−4 2.12�10−23

2 1.12�10−2 1.09�10−3 2.02�10−21

3 7.17�10−2 3.21�10−3 2.58�10−8

4 2.07 1.92 1.05

able 2. Percentage Errors for Different Interpola-
tion Methods and Functions F for T1

F1 F2 F3 F4

earest 3.4�10−3 1.75�10−1 6.18�10−1 11.3
ilinear 1.02�10−2 5.04�10−2 2.66�10−1 4.33
ubic 2.25�10−3 1.12�10−2 7.17�10−2 2.07

able 3. Percentage Errors for Different Interpola-
tion Methods and Functions F for T2

F1 F2 F3 F4

earest 1.72�10−1 3.28�10−1 4.59�10−1 11.24
ilinear 1.78�10−2 5.58�10−2 8.4�10−2 6.24
ubic 3.82�10−4 1.09�10−3 3.21�10−3 1.92
egular grids. This is an important source of error. For F4,
ur algorithm has a comparable accuracy with the DFT.
his is due to the fact that, in this case, the error is a re-
ult of the significant amount of signal energy that lies
utside the assumed space and spatial-frequency extents.
his source of error, which affects both our algorithm and

he DFT in the same way, dominates the error arising
rom the interpolation (which affects only the non-
eparable LCT computation) so that the results are simi-
ar. On the other hand, for the other functions, the inter-
olation error (which does not affect the DFT) results in
igher errors for the LCT computations as compared to
he DFT.

To be more confident in the above claims, we also stud-
ed the effects of the method of interpolation on our algo-
ithm and studied how they change the accuracy of the al-
orithm. We employed in our algorithm nearest neighbor,
ilinear, and cubic interpolation methods because they
re among the most standard, mainstream, and efficient
ethods [56,57]. Different versions of the algorithm have

een implemented by using each of the above methods.
he error percentages resulting from the use of different

nterpolation methods are tabulated in Tables 2 and 3 for
1 and T2, respectively. As can be seen from the tabu-

ated data, the error values are affected considerably by
he interpolation method chosen. The best results are ob-
ained when we use the cubic interpolation method,
hich is the most advanced among the three. Since there
re essentially two sources of error, the one that is funda-
ental equally affecting LCTs and the DFT, we are not

urprised to observe that as the quality of the interpola-
ion is increased, the accuracy of the algorithm improves
nd approaches the DFT benchmark.
The results of our fast algorithm were obtained within
couple of seconds by using Matlab code running on a

tandard personal computer. The calculation of the brute
orce reference results took several days.

. CONCLUSIONS
e presented an algorithm for the fast digital computa-

ion of the most general family of two-dimensional non-
eparable linear canonical transforms (2D-NS-LCTs).
his family of transform integrals represents a quite gen-
ral class of two-dimensional (2D) quadratic-phase sys-
ems in optics. Our approach is based on concepts from
he signal analysis and processing rather than the con-
entional numerical analysis. With careful consideration
f sampling issues, the number of samples M�N of the
ampling grid can be chosen very close to the space-
andwidth product of the functions. A naive approach
ased on the examination of the frequency content of the
ntegral kernels would, on the other hand, result in an
nnecessarily high number of samples being taken due to
he highly oscillatory nature of the kernels, which would
ot only be representationally inefficient but also increase
he computation time and storage requirements. The
ransform output may have a higher space-bandwidth
roduct than the input due to the nature of the transform
amily. Through careful space-bandwidth tracking and
ontrol, we can assure that the output samples obtained
re accurate approximations to the true ones and that
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hey are sufficient (but not unnecessarily redundant) in
he Nyquist–Shannon sense, allowing the full reconstruc-
ion of the underlying continuous function.

The algorithm takes the samples of the input function
nd maps them to the samples of the continuous 2D-NS-
CT of this function in the same sense that the FFT

mplementation of the DFT computes the samples of the
ontinuous FT of a function. The presented algorithm can
e used for the fast and efficient realization of filtering in
inear canonical transform (LCT) domains [59].

The only inevitable source of deviation from exactness
n our algorithm arises from the fundamental fact that a
unction and its Fourier transform (FT) cannot both be of
nite extent. This limitation affects not only the sepa-
able and one-dimensional (1D) versions of the algorithm
eported earlier, but also the computation of FTs using
he DFT. Thus this is a source of error we cannot hope to
vercome.

A second source of error which was not of substantial
mpact in the 1D case or the separable 2D case but which
s significant in the non-separable 2D case arises from the
ecessity to carry out interpolations to revert samples on
otated grids to the original rectangular grid. This error
epends on how accurately the interpolation operation is
andled. We have used well-established and standard
ethods for interpolation that are readily available, since

dvancing methods of interpolation is beyond the scope of
his paper. While we believe that the levels of accuracy at-
ained with these interpolation methods will be sufficient
or most applications, in those cases where they are not,
ore efficient and customized interpolation methods for

on-rectangular grids can be utilized to further improve
he accuracy. We have also developed the link between the
ompact matrix-based 16-parameter definition of 2D-NS-
CTs and the ten-parameter explicit-kernel definition.
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“Digital computation of the fractional Fourier transform,”
IEEE Trans. Signal Process. 44, 2141–2150 (1996).

5. B. M. Hennelly and J. T. Sheridan, “Generalizing, optimiz-
ing, and inventing numerical algorithms for the fractional
Fourier, Fresnel, and linear canonical transforms,” J. Opt.
Soc. Am. A 22, 917–927 (2005).

6. B. Jahne, Digital Image Processing, 5th ed. (Springer,
2002).

7. R. G. Keys, “Cubic convolution interpolation for digital im-
age processing,” IEEE Trans. Acoust., Speech, Signal Pro-
cess. 29, 1153–1160 (1981).

8. J. C. Brégains, I. C. Coleman, F. Ares, and E. Moreno, “Cal-
culating directivities with the two-dimensional Simpson’s
rule,” IEEE Antennas Propag. Mag. 46, 106–112 (2004).

9. B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal fil-
tering with linear canonical transformations,” Opt. Com-
mun. 135, 32–36 (1997).

0. J. Healy and J. T. Sheridan, “Fast linear canonical trans-
forms,” J. Opt. Soc. Am. A 27, 21–30 (2010).


