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Abstract—We are concerned with the problem of optimally mea-
suring an accessible signal under a total cost constraint, in order
to estimate a signal which is not directly accessible. An important
aspect of our formulation is the inclusion of a measurement device
model where each device has a cost depending on the number of
amplitude levels that the device can reliably distinguish. We also
assume that there is a cost budget so that it is not possible to make
a high amplitude resolution measurement at every point. We inves-
tigate the optimal allocation of cost budget to the measurement de-
vices so as to minimize estimation error. This problem differs from
standard estimation problems in that we are allowed to “design”
the number and noise levels of the measurement devices subject to
the cost constraint. Our main results are presented in the form of
tradeoff curves between the estimation error and the cost budget.
Although our primary motivation and numerical examples come
from wave propagation problems, our formulation is also valid
for other measurement problems with similar budget limitations
where the observed variables are related to the unknown variables
through a linear relation. We discuss the effects of signal-to-noise
ratio, distance of propagation, and the degree of coherence (corre-
lation) of the waves on these tradeoffs and the optimum cost allo-
cation. Our conclusions not only yield practical strategies for de-
signing optimal measurement systems under cost constraints, but
also provide insights into measurement aspects of certain inverse
problems.

Index Terms—Distributed estimation, error-cost tradeoff, exper-
iment design, fractional Fourier transform, measurement design,
random field estimation, rate distortion, sensing, wave propaga-
tion.

I. INTRODUCTION

T HE problem addressed in this work was motivated mostly
by problems related to measurement of propagating wave-

fields. We are concerned with the problem of estimating the
values of a wave-field in a certain region from measurements
of its values at another region. How well we can do this has to
do with how much information the measured values carry about
the unknown values. A study of these issues can also lead to
a better understanding of what happens to the information car-
ried by a wave-field as it propagates. Utilization of signal pro-
cessing and information theory concepts in wave propagation
problems has a long history, which we can here provide only a
limited sample of. The concept of number of degrees of freedom
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is used in several works including [1]–[11]. Other works have
adopted a sampling theory approach [12], [13]. The concepts of
structural and metrical information discussed in [14] have found
application in [2], [15], and [16]. A number of works utilizing
information theoretic concepts such entropy or channel capacity
in different contexts have appeared [17]–[25]. Nevertheless, we
are not aware of any works which try to address wave measure-
ment problems of the kind dealt with in this paper.

The linear wave equation is of fundamental importance in
many areas of science and engineering. It governs the propa-
gation of electromagnetic, optical, acoustic, and other kinds of
fields so that the problem we discuss is of interest in a wide
variety of contexts. The solution of the wave equation can be
expressed in many forms. One of these is to express the field
over one region as a linear superposition integral over another
region.

In this paper, we consider a very general measurement sce-
nario. Let us consider a wave-field propagating through a system
characterized by a linear input-output relationship. We wish to
recover the input wave field as economically as possible from
noisy measurements of the output field. We are concerned with
accuracy both in the sense of spatial resolution and in the sense
of the amplitude resolution. We are also concerned with the
cost of performing the measurements and the tradeoffs between
the total cost and estimation accuracy. The cost of a measure-
ment device is primarily determined by the number of ampli-
tude levels that the device can reliably distinguish; devices with
higher numbers of distinguishable levels have higher costs. We
also assume that there is a limited cost budget so that it is not
possible to make a high amplitude resolution measurement at
every point. For a given cost budget, we would like to know
how to best make the measurements so as to minimize the esti-
mation error, or vice versa, leading to a tradeoff. In particular,
we are interested in questions such as how many measurements
we should make, how the sensitivity of each detector should be
chosen, and so forth, in order to obtain the best tradeoff. These
questions are not merely of interest for practical purposes but
can also lead to a better understanding of the information rela-
tionships inherent in propagating wave-fields.

While our primary motivation and numerical examples come
from wave propagation problems, we emphasize that our formu-
lation is also valid for other measurement problems where sim-
ilar cost-budget models are applicable, and the observed vari-
ables are related to the unknown variables through a linear rela-
tion. One such example is the Wiener filtering problem which is
a basic problem in signal processing with many practical appli-
cations. Another example arises in data communications, where
a transmitted signal may suffer intersymbol interference as it
passes through a medium, and the equalization problem is to
estimate the transmitted signal from the received signal. These
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problems are of the same general structure as the one we are con-
sidering. In digital implemention of such estimators, the usual
approach is to work with constant accuracy over all samples of
the observation. Our framework introduces great flexibility in
terms of the number, positions, and accuracies of these samples.
This not only allows better optimization, but also allows us to
observe a number of interesting tradeoffs and relationships.

In this paper, we formulate and solve a measurement strategy
problem which arises in a diversity of physical contexts. We
are concerned with measurement and estimation of spatially
(or temporally) distributed fields modeled as random vectors.
An important aspect of our formulation is that it allows sen-
sors with different performances and costs in the model. While
the kind of cost function we use may come as natural in the
context of communication costs, we believe it has never been
used to model the cost of measurement devices. The optimal
measurement problem we define differs from standard estima-
tion problems in that we are allowed to “design” the number
and noise levels of the measurement devices subject to a total
cost constraint. Our main results are presented in the form of
tradeoff curves between the estimation error and the total cost.
We discuss the effects of signal-to-noise ratio (SNR), distance
of propagation, and the degree of coherence on these tradeoffs in
wave-propagation problems. The degree of coherence is a mea-
sure of the amount of correlation among different points of a
random wave-field. We are not aware of previous discussion
of the effects of distance of propagation and degree of coher-
ence in these types of problems. Our conclusions not only yield
practical strategies for designing optimal measurement systems
under cost constraints, but also provide interesting insights into
the nature of information transfer in wave propagation.

In Section II of the paper, we present the mathematical model
of the measurement problem discussed above. A fundamental
concept in our formulation, the cost of a measurement, is dis-
cussed in Section III. Some special cases of our formulation
are presented in Section IV. In Section V, we propose an iter-
ative algorithm and provide numerical results. We conclude in
Section VI.

II. PROBLEM FORMULATION

In the specific measurement scenario under consideration in
this paper, noisy measurements are made at the output of a linear
system, in order to estimate the input of the system. We study a
discrete version of this problem by assuming that the space vari-
able is discretized to a fixed finite set of points. The following
development was first proposed in [26]–[28].

The system we consider may be represented by a matrix equa-
tion

(1)

where is the unknown input random vector,
is the random vector denoting the inherent system noise, and

is the output of the linear system. We assume that
and are statistically independent zero-mean random vectors.
Here is a matrix denoting the linear system. We put
no restrictions on the system matrix . For instance, in wave
propagation applications, the locations of the measurements and
the locations of the unknown field values may be quite distant

Fig. 1. Measurement and estimation systems model block diagram.

from each other, e.g., we may wish to estimate the field at the
outer edges of a region with measurements made in the center.

Measurements are made at the output of the linear system
to obtain the measurement vector according to the
measurement model

(2)

where denotes the measurement noise. We assume that
is independent of and . Further, we assume that the compo-
nents of are independent, zero-mean random variables, but
not necessarily identically distributed. So, the variance of
each component of , indexed by , may be dif-
ferent. Here is an intrinsic part of the relation between and

which we have no control over, whereas is the noise asso-
ciated with the measurement devices we use and thus depends
on the choices we make.

In the following formulation, we assume the knowledge of
only second-order statistics of the underlying random variables.
We let , and denote the covariance matrices of

, and , respectively. Note that
. Note also that since we assume that has independent

components, .
We assume that the cost associated with measuring the th

component of is , where de-
notes the variance of . The units of are bits. Smaller mea-
surement noise levels result in higher costs whereas larger mea-
surement noise levels allow lower costs. The plausibility of this
form for the cost function is discussed in Section III. The cost
of measuring is defined as , the sum of the costs of
measuring all of its components.

The objective is to minimize the mean-square error (MSE)
between and , the estimate of given . We consider only
linear minimum mean-square error (LMMSE) estimators, and

denotes the LMMSE estimator. Hence, the estimate may
be written as where is an by matrix. A
block diagram illustrating this problem is given in Fig. 1.

The problem can be stated as follows: Given the covariance
matrices , and a system matrix

, determine

(3)

(4)

subject to

(5)

where is the covariance of
denotes expectation with respect to , and denotes Eu-
clidean norm, and tr denotes the trace operator. is the total
cost budget; the sum of the cost of all detectors is not allowed to
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exceed . We go from (3) to (4) by writing

. A list of selected variables and parameters is given
in Table I.

We note that for a given , the minimization over in (4)
is a standard LMMSE problem with solution .
This standard solution may be arrived at using the orthogonality
condition , where

. Hence, we obtain:

(6)

subject to (5). In other words, our aim is to minimize the es-
timation error by allocating a given measurement cost budget
optimally over the components of (2). This is equivalent to
optimally adjusting the measurement noise level for each com-
ponent, realizing that with a given budget, we cannot measure all
components as highly accurately as we wish. Although not ex-
plicitly stated, the number of components we actually measure
is also an optimization variable. If as the result of our optimiza-
tion we find that for certain components, this means
that measuring those components do not usefully contribute to
the estimation and therefore need not be measured in the first
place.

As seen above, this problem differs from a standard LMMSE
estimation problem in that the covariance of the measure-
ment noise is subject to optimization. We are allowed to “de-
sign” the noise levels of the measurement devices subject to
a total cost constraint so as to minimize the overall estimation
error. To the best of our knowledge this problem is novel.

Our formulation can be easily generalized to allow repeated
measurements (more than one measurement of any is al-
lowed); however repeated measurements always yield higher
error for a given cost budget hence including them in the model
does not provide a better performance. This point is discussed
in Section IV-1).

III. COST FUNCTION

What we refer to as a measurement device is an instrument
which can measure the value of a scalar physical quantity over
some range with some resolution in amplitude. The cost of a
measurement device is primarily determined by the number of
amplitude levels that the device can reliably distinguish, a no-
tion which is sometimes referred to as its dynamic range (al-
though the term is sometimes also used to refer to an interval).
We will assume that the ranges of measurement devices can be
chosen freely to match any interval, and that this has no effect on
the cost of the measurements provided the number of resolvable
levels remains the same (similar to scaling the range of a multi-
meter). For a given linear system, the ranges of the measurement
devices depend only on the given covariances. Therefore, they
need to be changed only if the covariances change. Given the
variances of and in the measurement process ,
the number of distinguishable levels can be quantified as

(7)

where is a constant that depends on how reliably the
levels need to be distinguished. In using this expression we are

TABLE I
SELECTED VARIABLES AND PARAMETERS

following the same rationale used to define the number of dis-
tinguishable signal levels at the receiver of an additive noise
channel, which is due to Hartley [29], and further discussed
in [30] and [31]. The square-root in the expression keeps the
number of levels invariant under scaling of the signals by any
constant. Clearly, in the limit of very noisy measurements,
should be 1; therefore, we set henceforth.

We now list some properties that any plausible cost function
must possess.

1) must be a nonnegative, monotonically increasing
function of , with since a device with one
measurement level gives no useful information.

2) For any integer , we must have .
This is because a measurement device with levels can be
used times in succession with range adjustments between
measurements, to distinguish levels. (We also note that
this property may be expressed in a more general form as

.)
A function possessing these properties is the logarithm func-

tion; therefore we propose

(8)

as the cost of carrying out a measurement .
The proposed cost function has the same form as Shannon’s

formula for the capacity of a Gaussian noise channel. This does
not come as a surprise since a measurement process
is analogous to sending a message across a communication
channel that adds a noise term to it. On the other hand, the
notion of adjusting the range while keeping the number of re-
solvable levels constant has no direct counterpart in the com-
munication setting; hence, the measurement and communica-
tion problems are not identical problems. We believe such a cost
function has never been used to model the cost of measurement
devices.

In the communication problem, the amount of information
delivered to the receiver is measured by the mutual informa-
tion between the transmitted and re-
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ceived signals. is also an attractive candidate for the cost
function in the measurement scenario since the value of a mea-
surement would be quantified most fairly by how many bits of
information it actually conveys on the average about the mea-
sured quantity. On the other hand, there is a practical difficulty
in charging a fee as it depends on the actual probability
distribution of the measured quantity. It is logical that the
measurement device manufacturer will try to sell its device at
the price where the maximum is calculated sub-
ject to a power constraint . The would-be equipment
purchaser on the other hand will not be willing to pay more than

since she or he is only assured that
. Shannon [30] shows that this minmax problem

is solved by the Gaussian densities for both and and
the resulting minmax value is the expression given in (8).
Thus, the cost function we propose has a satisfying economic
interpretation: the seller of the equipment assumes that the pur-
chaser will make the best use of the equipment while the pur-
chaser assumes that the equipment will give the worst type of
measurement noise (which is Gaussian) for the given level of
resolution.

Since Gaussian error is an acceptable model for many types of
measurement devices, the cost function that we use makes sense
in a wide range of contexts. For problems where measurement
noise is known to follow a different distribution, the cost func-
tion can be modified accordingly.

Finally we explore the relationship of the measurement
problem to rate-distortion theory. It is clear from Fig. 1 that,
by the data-processing theorem [32], we have the following
relationship regarding the mutual information of the related
random vectors: ; i.e., the estimate can
only provide as much information about as the measurement
devices extract from the observable . In turn, by standard ar-
guments, we have . The cost function

that we use upper-bounds
whenever the measurement noise is Gaussian with a given
variance and the variance of the measured quantity is
fixed as . Thus, for Gaussian measurement noise, we have

where is the total measurement budget.
The goal of measurements is the minimization of the MSE

within a budget where denotes
. From a rate-distortion theory viewpoint, interpreting

as a distortion measure, this is similar to minimizing the av-
erage distortion in the reconstruction of from a representation

subject to a rate constraint . This viewpoint im-
mediately gives the bound where
is the distortion-rate function applicable to this situation.

In the rate-distortion framework one is given complete
freedom in forming the reconstruction vectors subject only
to a rate constraint, which in measurement terminology would
mean the ability to apply arbitrary transformations on the ob-
servable before performing a measurement (so as to carry out
the measurement in the most favorable coordinate system), and
not being constrained to linear measurements or linear estima-
tors. Thus, the measurement problem can be seen as a deviation
from the rate-distortion problem in which the formation of the
reconstruction vector is restricted by various constraints.

IV. SPECIAL CASES

1) Repeated Measurements of the Field at a Single Point: As
noted, repeated measurements of components of are always
suboptimal in the sense that doing so results in greater error for
given cost. Here we allow more than one measurement of any
component of and show that this is indeed the case. We assume
that different measurements are statistically independent condi-
tional on even if repeated measurements of the same compo-
nent are in question.

First we consider the simple case in which repeated measure-
ments are made at a single point and the other components of

are not measured. That is, one is allowed to make measure-
ments on indexed by as subject to
the usual cost constraint. Here the subscript denotes the index of
the component of where the repeated measurements are made.
Since no other component of is measured, the total number of
measurements is equal to the number of repeated components

, the measurement noise vector
, and the measurement vector .

We consider the problem of estimation of a single component
of the input field where . By studying this case,
we wish to see which measurement strategy is better: i) to make
one high quality measurement by renting the best device within
budget limits, or ii) to split the budget among multiple lower
quality devices. Simple LMMSE analysis shows that the first
alternative is better, as we now show.

For any given allocation of noise variances ,

the measurements yield the LMMSE estimate
where . Here, the components of are obtained by
solving the orthogonality conditions:

(9)

where . The associated MSE is

(10)

The total measurement cost for this scheme is
. We observe that among

all schemes of allocation of noise variances yielding the same
(hence giving the same MSE), the cost is minimized by

taking for any one of the indexes and
for the others. This corresponds to making one high quality
measurement. Therefore, for a given error, the total cost is
minimized by making one high quality measurement rather
than many low quality ones. The error is a strictly decreasing
function of the cost so that we can further conclude that this is
also the strategy minimizing error for given cost.

We note that this result trivially holds when one wants to es-
timate the whole field vector instead of a single com-
ponent of the vector. It also remains true when other compo-
nents of are measured alongside with , as can be shown by
noting that the estimation errors for the components of do not
change as long as is the same, so that the estimator coeffi-
cients associated with these components and therefore the esti-
mation error for also do not change. Therefore, we conclude
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that allowing repeated measurements of the same point does not
provide an opportunity for further optimization, since for every
measurement scheme involving more than one measurement of
the same component, it is certain that there is another scheme
that yields the same error with a lower cost budget.

2) Diagonal Case: In order to see the relationship of our for-
mulation with the “water-filling” solutions common in certain
information-theoretic problems (e.g., [32, Ch. 9] and [33, Ch.
13]), we consider the special case where the matrix ,
the matrix is diagonal, , and is the identity ma-
trix.

In this special case, we have separate LMMSE problems
tied together by a total cost constraint. By standard techniques
[32, Ch. 9], [33, Ch. 13], we obtain the optimal detector vari-
ances that minimize the estimation error as

(11)

where the parameter is selected so that the total cost is .
Notice that for those components for which there is a nontrivial
measurement , we have ,
which is reminiscent of the “water-filling” solutions referred to
above.

3) Accurate Measurements (High Budget) Case: When the
uncertainty introduced by the measurements are small with re-
spect to the range of , we refer to this case as the accurate mea-
surements case. This is the case where is near , where

is the covariance of . Hence, we may
use the first order approximation of the inverse of a positive def-
inite symmetric matrix to write ,
and using the linearity of the trace operator, the MMSE can be
written as

(12)

The error is expressed as the sum of two parts. The first part is
independent of the accuracy of the measurements. For physical
phenomena represented by noninvertible matrices , this irre-
ducible error remains even if the measurements are perfect, and
corresponds to the limited information transfer capability of the
physical system. The second additive error component is due to
the imperfect measurements. In this case the estimation error is
a linear function of , and the resulting optimization problem
is convex. Since the objective and constraint functions are differ-
entiable and Slater’s condition holds, the Karush–Kuhn–Tucker
(KKT) conditions are necessary and sufficient for optimality
[34, Ch. 5]. Hence, by solving the KKT conditions, the optimal
noise levels can be obtained as

(13)

where is a parameter chosen so that the total cost is ,
and ’s are the diagonal elements of .

V. NUMERICAL RESULTS

First, we present the algorithm we employed for solving the
optimization problem (6). Our algorithm is based on (4) and
relies on taking turns in fixing and and minimizing over

Fig. 2. Block diagram of the algorithm.

the other. For fixed , the optimal value of the linear estimator
that minimizes the error can be analytically written in terms

of as . On the other
hand, if we fix , the problem is to minimize
over subject to (5). Since the differentiability and Slater’s
condition hold in this case as well, the optimal noise levels can
be found as

(14)

by solving the KKT conditions. Here is a parameter
chosen so that the total cost is , and ’s are the diagonal
elements of .

The resulting algorithm is summarized as follows (Fig. 2):
We initialize the algorithm by setting and to
a random positive-definite diagonal matrix. At each iteration
, first we fix and set where

, which is the optimum value
of for . Then we fix and minimize over : We
obtain by solving (14) with replaced with

. For the stopping criterion, we use the relative
error: if does not change by more than
over 10 consecutive iterations, we stop; otherwise, we incre-
ment and continue. The algorithm converges typically within
10–150 iterations depending on the problem parameters. Details
on this type of algorithm may be found in [35, Ch. 9].

The problem we formulate and solve in this paper was moti-
vated by the physical problem of measuring propagating wave
fields at a certain number of points and estimating the values
of the field, possibly at other, distant locations. Although our
formulation can handle very general cases of this problem, in
our numerical examples we will focus on the case where there
are two planar or spherical reference surfaces, perpendicular to
the axis of propagation and separated by a certain distance. We
assume that all measurement probes are placed uniformly on
one surface and we desire to estimate the field on the other sur-
face. In this case the measured field is related to the unknown
field through a diffraction integral, a convenient approximation
of which is the Fresnel diffraction integral or more generally
a quadratic-phase integral (linear canonical transform) [36, Ch.
8], [37, Ch. 2], and [38], [39]. It is well known that these inte-
grals can be expressed in terms of the fractional Fourier trans-
form (FRT), which provides an elegant and pure description of
these systems [40, Ch. 9], [41], and which has found many ap-
plications in signal processing [42]–[49]. The FRT is the frac-
tional operator power of the Fourier transform with fractional
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order . When the FRT reduces to the identity operation
and when it reduces to the ordinary Fourier transform.
Moreover, the transform is index-additive: the th transform
of the th transform is equal to the th transform. Fur-
ther information on the FRT and its computation may be found
in [40] and [50]. Essentially, the FRT captures the underlying
physics of wave propagation and diffraction phenomena in its
purest form and is therefore suitable for modeling wave propa-
gation for our present purposes. Thus, in our examples we will
take the system matrix to be the by real equivalent of the

by complex FRT matrix. For the generation of FRT
matrices of different orders, an implementation of the algorithm
presented in [51] and in [40, Ch. 6] is used; this implementation
is available at [52].

Propagating wave-fields may have different degrees of what
is known as coherence. Highly coherent fields are those whose
values at different points are highly correlated with each other.
Highly incoherent fields are those whose values at different
points are highly uncorrelated. Since we have observed that our
results depend on the degree of coherence of the fields, we will
consider several covariance matrices corresponding to different
degrees of coherence (correlation between their components).
It is known that highly coherent fields have covariance matrices
whose eigenvalues are highly unevenly distributed. On the
other hand, highly incoherent fields have eigenvalues which are
nearly equal to each other [53]. To obtain covariance matrices
with different degrees of coherence, we will choose the eigen-
values to be normally distributed with standard deviation equal
to pixels. Here the parameter can also be interpreted
as the number of standard deviations of the Gaussian covered
by the samples. In our experiments takes the values

, where corresponds to the
case where all but one eigenvalue is negligible, and
corresponds to the case where all eigenvalues are nearly equal.
While is a convenient parameter to work with, we note that
it should not be seen as a linear measure of the degree of
coherence [53]. To generate the covariance matrices with these
eigenvalues, we use the eigenvalue-eigenvector decomposition
of a covariance matrix , where .
Here the orthogonal matrix is obtained by QR decomposition
of a matrix with i.i.d. zero-mean Gaussian entries. For
the system noise , the covariance matrix is generated similarly
with with a different matrix.

Another important parameter used in the experiments is

(15)

where the second form follows from which in turn
follows from the unitarity of the FRT. SNR measures the ratio
of signal power to inherent system noise power, before measure-
ments.

In the following experiments our main purpose will be to in-
vestigate the tradeoff between the MSE error and mea-
surement cost budget after we have optimized over all pos-
sible allocations of cost over the measurement devices. The error
will be reported as a percentage defined as .
The cost budget is measured in bits by taking logarithms to
base 2. Unless otherwise stated all experiments are made with

and .

Fig. 3. Experiment 1: Error versus cost for � � � � ���� � � ���� � �

����, SNR variable.

Fig. 4. Experiment 1: Error versus cost for � � � � ���� � � ���� � �

����, SNR variable.

Exp. 1: This experiment investigates the effect of SNR on
the tradeoff between and . In this experiment, SNR
was variable, ranging over 0.1, 1, 10, and two different values
of were considered. Figs. 3 and 4 give the curves for low
and high values, respectively. We notice that for both of the
cases is very sensitive to increases in for smaller

. Then it becomes less responsive and eventually saturates
to the error value corresponding to zero measurement noise. For
each value of cost, the error decreases as SNR increases, and for
higher cost values will approach zero as . We see
that when the field is more highly coherent (Fig. 4), we obtain
much better tradeoff curves for all values of SNR than Fig. 3
which represents the highly incoherent extreme. For instance
for , for the highly incoherent field an error of 10%
is obtained at a cost of 400 bits, whereas for the highly coherent
field the same error is achieved at a cost lower than 5 bits. This
point is further investigated in Exp. 2.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on July 06,2010 at 12:08:06 UTC from IEEE Xplore.  Restrictions apply. 



ÖZÇELIKKALE et al.: SIGNAL RECOVERY WITH COST-CONSTRAINED MEASUREMENTS 3613

Fig. 5. Experiment 2: Error versus cost for� �� � ���� � � ������� �

��	� � variable.

Fig. 6. Experiment 2: Error versus cost for� �� � ���� � � ������� �

�� � variable.

Exp. 2: This experiment investigates the effect of degree
of coherence of the unknown field on the tradeoff between

and . Figs. 5 and 6 show the results for two
different SNR values ( and ), for

. Both of the plots show that for low
values of corresponding to lower degrees of coherence, it
is more difficult to achieve low values of error within a given
budget. But as increases, the total uncertainty in the field
decreases, and it becomes a lot easier to achieve lower values
of error. In fact, for high values of and for low values of
budget, the optimal strategy to minimize error turns out to be to
measure the field value at only a few points with more accurate
(and costly) measurement devices, rather than spreading the
cost budget among many measurement points. This observation
is further investigated in Exp. 4.

It is interesting to note that in all of the numerical examples
we have considered, including the incoherent case, it is possible
to reach with an average of 4 bits per component, the same error
level that would be achieved with infinite accuracy (and cost).

Comparing the performances in Figs. 5 and 6 for low and
high values of the cost budget, we see that for low budget values
the effect of degree of coherence of the field can be considered
more pronounced in the high SNR case, whereas for high budget
values this effect is more pronounced in the low SNR case: For
high values of cost budget, it is always possible to obtain very
low values of error regardless of degree of coherence,
when the SNR is high. But when the SNR is low and the cost
budget is high, a substantial performance difference is observed
between the correlated and uncorrelated fields, since it is pos-
sible to effectively cancel the effect of system noise when the
degree of coherence of the field is high, yielding a better perfor-
mance. When the budget is small and the SNR is low, although
highly correlated fields lead to better performance, this improve-
ment is limited by the presence of noise. When the budget is
small but SNR is high, it is possible to obtain very low values
of error when the field is highly correlated, resulting in a
far better performance compared to the uncorrelated case.

Exp. 3: This experiment investigates the effect of SNR on
the relationship between the number of effective measurements

and the budget . We will consider a measurement at
a point to be effectively made if the cost of the measurement
at this point is greater than bits. With this choice
of threshold, it is guaranteed that the total cost of the measure-
ments that are effectively made is higher than . We
use . Measurements with less cost are very noisy mea-
surements and do not contribute much either to the quality of the
estimate or the total cost, so that it does not make much differ-
ence whether we actually perform them or not.

For , we see that one has to do measurements at
all of the measurement points for all values of SNR
and for all values of . This result is plausible since the field
values are nearly uncorrelated in this case, and each point can
be considered to provide new information.

The case of highly coherent fields is more interesting. Fig. 7
shows the results for with . For
low values of SNR, the optimal strategy is to split the budget
relatively broadly among the points. On the other hand, for
high values of SNR, the best strategy is to allocate the budget
to a smaller number of points. To understand this behavior, we
observe that in this experiment the field values are highly cor-
related, hence the points measured carry nearly the same infor-
mation. On the hand the system noise is highly uncorrelated.
Based on these two observations, we can say that measuring a
larger number of points increases the averaging effect and thus
suppression of the system noise. Successively measuring highly
correlated variables normally adds little information [so that one
would prefer fewer but more accurate measurements instead].
However, when there is a lot of noise, the benefits of noise sup-
pression can outweigh this so that a larger number of measure-
ments are preferred.

Although the curves behave as if the number of effective
measurements saturate at an asymptote for high values of cost
budget, this is in fact not true and the number of effective mea-
surements continue to increase as budget increases. This point
is further discussed in the next experiment.

Exp. 4: This experiment investigates the effect of de-
gree of coherence of the unknown field on the rela-
tionship between the number of effective measurements

and the budget . Fig. 8 shows the results for
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Fig. 7. Experiment 3: Effective number of measurements versus cost for � �

� � ���� � � ���� � � ����, SNR variable.

Fig. 8. Experiment 4: Effective number of measurements versus cost for � �

� � ���� � � �����	
 � ���� � variable.

. We see that for
all values of , and for low values of cost budget, the best
strategy is to measure more accurately a relatively smaller
number of points. But as the budget increases, the information
that can be gained by measuring the field at a limited number of
points with greater and greater accuracy saturates and splitting
the budget over a larger number of measurement points become
beneficial. For low values of , this shift in strategy takes place
at lower values of cost budget. For a highly coherent field, the
measurement of the field value at a particular point says much
more about the field values at other points, and the benefit of
measuring some of the field values with greater accuracy is
prevailing.

Comparing this plot with Fig. 5 shows that the increase in the
number of effective measurements for higher values of budget
is not very meaningful since, for these budget values the error
has almost reached its saturation value, but the algorithm being
blind to this fact, increases the number of effective measure-
ments to achieve tiny decreases in error. For instance, with

Fig. 9. Experiment 5: Error versus cost for � � � � ���� � � ���� � �

����, SNR variable. The dotted lines are for optimal cost allocation and the
corresponding solid lines are for uniform cost allocation.

, the error reaches a value of almost zero for a cost budget of
200 bits, and beyond this cost budget any increase in the number
of measurements is made for the sake of a very small perfor-
mance improvement.

We have also repeated the above experiment made for
for other values of SNR. We have observed that as SNR

increases, a similar behavior is observed: the number of effec-
tive measurements again increases with increasing budget for all
values of . But this time the rate of increase of the number of ef-
fective measurements with increasing budget is smaller. Also, at
a given cost budget, the ratio of the number of effective measure-
ments is larger for different values of . Hence, the difference
in the optimum cost allocation strategies for different values of

is more apparent for higher values of SNR.
Exp. 5: This experiment aims to demonstrate how applying

the optimum cost allocation strategy we have employed up to
this point, improves the tradeoff between and com-
pared to a simple uniform cost allocation strategy, where the cost
budget is equally allocated: . We
expect that use of the optimal cost allocation will make a bigger
difference for more highly coherent fields, since Exp. 4 shows
that the optimum cost allocation is drastically different from a
uniform cost allocation scheme. Furthermore, Exp. 3 suggests
this effect should be more pronounced when SNR is high. Fig. 9
compares the tradeoff curves with optimum and uniform cost
allocation schemes with . The
dashed curves and the straight lines show the results for the op-
timum cost allocation scheme and the uniform cost allocation
scheme respectively. As expected, for all values of SNR, the
optimum cost allocation scheme gives significantly better trade-
offs compared to the uniform cost allocation case. For low
values, as SNR increases, the ratio of percentage error corre-
sponding to uniform cost allocation to that corresponding to op-
timum cost allocation increases, showing that when the degree
of coherence is high and the system noise is small, it is more
important to optimize the allocation of the budget to the mea-
surement points.

Exp. 6: This experiment investigates the effect of the frac-
tional Fourier order on the tradeoff between and .
Fig. 10 presents the tradeoff curves with ,
and . The tradeoff curves obtained for different
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Fig. 10. Experiment 6: Error versus cost for � � � � ���� ��� �

��	� � � 	��
� � variable.

values of are very close to each other, although higher values
of yield slightly better curves. We have also repeated this
experiment for different values of and SNR. The resulting
tradeoff curves in these other experiments exhibit even less dif-
ference for different FRT orders. Remembering that is a mono-
tonic increasing function of the distance of propagation in wave
propagation problems, these results show that the MSE is not
critically dependent on how far the measurement devices are
placed along the propagation axis.

Exp. 7: This experiment investigates the effect of making
measurements at a smaller number of points. More specifically,
we will examine the dependence of on for a
fixed . Fig. 11 shows the results for

and .
The measurement locations were chosen as uniformly spaced
subgrids of the full 256-point grid (i.e., the grid for
was a sub-grid of that for which was a sub-grid of
that for , etc.). We see that for and

roughly the same performance with the
case is observed, whereas for other values the performance de-
grades with decreasing . This behavior is related to the ef-
fective number of nonzero eigenvalues. For , the eigen-
values are samples of a Gaussian with standard deviation 256/16
pixels. Assuming the values of a Gaussian beyond its third stan-
dard deviation are negligible, the covariance matrix has about

nonzero eigenvalues. Indeed we observe that
as long as the number of measurements is higher than 48,
the tradeoff curves are similar to the case. But if we
restrict ourselves to do measurements at a smaller number of
points such as , a substantial performance degra-
dation is observed.

VI. CONCLUSION

Motivated by problems related to measurement of propa-
gating wave-fields, we formulated the problem of optimally
measuring observed variables so as to estimate unknown vari-
ables under a total cost constraint. We proposed a measurement
device model where each device has a cost depending on its
resolving power. Based on this cost function we determine the

Fig. 11. Experiment 7: Error versus cost for � � ���� � � ���� � �

	����� � ��� variable.

number of measurement devices and their accuracies that mini-
mize estimation error for given total cost. We produce tradeoff
curves between the error and the cost budget, corresponding
to the optimal measurement strategy. We discuss the effects of
SNR, distance of propagation, and the degree of coherence of
the wave-fields on these tradeoffs.

Specific hardware may deviate from our hardware-indepen-
dent cost-budget model to varying degrees. However, all mea-
surement devices have finite accuracy and in general their cost is
an increasing function of their accuracy. Therefore, we believe
that the nature of the tradeoffs observed and the general con-
clusions and insights will remain useful under a wide variety of
circumstances.

We have seen that making measurements with higher quality
(and cost) measurement devices, should be preferred over
making repeated measurements with lower cost (and quality)
devices. This helps explain why it is better to make a limited
number of high quality measurements when the field is highly
coherent. At the other extreme of coherence, when the fields
are uncorrelated, we noted that the best measurement strategy
is a reverse-water filling scheme.

As expected, in our numerical experiments we observe that
the estimation error decreases with increasing cost budget, and
reaches zero error when there is no system noise. Not surpris-
ingly, with increasing system noise levels (decreasing SNRs),
poorer tradeoffs are observed. The cost-error tradeoff is greatly
degraded by decreasing SNR for relatively incoherent fields,
whereas it can be said to be less sensitive to SNR for coherent
fields.

In general, it is possible to obtain better tradeoff curves for
relatively coherent fields as compared to relatively incoherent
fields for all values of SNR. The difference can be quite sub-
stantial and in the limit of full coherence/incoherence very large.
For instance, for a coherent field, a total cost of a few bits may
be sufficient to obtain a certain error, whereas for an incoherent
field one may need a total cost which is of the order of times as
large as this to achieve the same error. For relatively incoherent
fields the best measurement strategy is to measure a greater
number or most of the field components, whereas for relatively
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coherent light it is better to allocate the cost budget among a
smaller number of field components. How small a number also
depends on the SNR. It is preferable to measure a somewhat
larger number of components when the SNR is low, but still
many of the field components remain effectively unmeasured.
These observations underline the fact that the degree of coher-
ence (correlation) is a fundamental parameter that can have a
significant effect on the results and therefore should be taken
into consideration in order to ensure general applicability.

We also observed that in the wave propagation context the
tradeoff curves are not significantly affected by how far from
the unknown field the measurements are made. This allows us
flexibility to accommodate practical constraints when choosing
the measurement locations.

Finally we briefly discuss the relationship of the problem ad-
dressed in this paper with some earlier works which also in-
volve estimation of desired quantities from measurements made
from multiple sensors transmitting their observations to a deci-
sion center. The design of sensor and fusion center strategies
has been studied in the context of different setups with different
communication, computation, and power constraints [54]–[66].
A number of these works share some of the features of our for-
mulation. In [56] and [59], problems related to wave propaga-
tion are studied with a statistical signal processing approach.
Optimal sensor design has been studied in the form of quantizers
or local encoders; for instance [54] and [55]. The problem of
sensor selection as an estimation problem is considered in [63],
and under given sensor performance and costs as a detection
problem in [64]. The tradeoff between performance and total
bit rate with a special emphasis on quantizer bit rates is studied
in [57] and [58], where the estimation of a single parameter is
considered. Although various aspects of the problem of sensing
of physical fields have been widely studied as estimation prob-
lems, much of this work has loose connections with both the
underlying physical phenomena and the physical aspects of the
sensors employed. There seems to be a disciplinary boundary
between these works and the works cited in Section I. Further
work to bridge these two approaches will help us better under-
stand the information theoretic relationships in physical fields
and their measurement from a broader perspective.
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