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We consider the problem of representation of a finite-energy optical field, with a finite number of bits. The optical
field is represented with a finite number of uniformly spaced finite-accuracy samples (there is a finite number of
amplitude levels that can be reliably distinguished for each sample). The total number of bits required to encode all
samples constitutes the cost of the representation. We investigate the optimal number and spacing of these samples
under a total cost budget. Our framework reveals the trade-off between the number, spacing, and accuracy of the
samples. When we vary the cost budget, we obtain trade-off curves between the representation error and the cost
budget. We also discuss the effect of degree of coherence of the field. © 2012 Optical Society of America
OCIS codes: 070.2025, 070.0070, 110.3055, 030.0030, 100.3020, 350.5730.

In this letter, we consider the problem of representation
of a finite-energy nonstationary optical field, with a finite
number of bits. The optical field f �x� is to be represented
with a finite number of finite-accuracy, equidistant sam-
ples. Our aim is to investigate the relationships between
the goodness and the cost of this representation of the
field, and the accuracies and locations of the samples.
For instance, we would like to learn whether it is better
to use a small number of samples with higher accuracies
or a large number of samples with lower accuracies.
(With high amplitude accuracy, we refer to a high number
of amplitude levels that can be reliably distinguished.)
We introduce a cost budget, which limits howmuch we

can simultaneously increase the number of samples and
the accuracies of the samples. Under a given total budget,
we determine the optimal number of samples and the op-
timal sampling interval. By varying the budget, we obtain
trade-off curves between the representation error and
the cost budget.
Such investigations will yield a better understanding of

the information-theoretical relationships inherent in op-
tical fields: how well the field values at particular points
can represent the whole field has to do with how much
information these values carry about the rest of the field.
Many aspects of the information-theoretical relationships
in optical fields have been studied (for instance, [1–10]).
Our purpose is to contribute to this understanding by
utilizing concepts from signal analysis and information
theory.
Let f �x� be a zero-mean proper complex Gaussian

random field (random process). M finite-accuracy equi-
distant samples of f �x�, with the sampling interval Δx,
will be used to provide a representation of f �x�. The lim-
ited amplitude resolution (finite accuracy) of the samples
is modeled through an additive noise process

si � f �ξi� �mi; (1)

where x � ξ1;…; ξM ∈ R are the equidistant sampling lo-
cations with spacingΔx, and midpoint x0 � 0.5�ξ1 � ξM�.
We assume that the mi’s are independent, zero-mean,
proper complex Gaussian random variables. We further

assume that themi’s are statistically independent of f �x�.
By putting si in vector form, we obtain s � �s1;…; sM �T.

The cost associated with the ith sample is given by
Csi � log2�σsi∕σmi

� and is measured in bits. Here σ2si �
E�jsij2�, σ2mi

� E�jmij2�, and σsi∕σmi
is essentially the ratio

of the spread of the signal to the spread of the uncer-
tainty, which corresponds to the number of distinguish-
able levels (dynamic range). Hence the logarithm of this
number provides a measure of the number of bits needed
to represent this variable. For a field value at a given
location, smaller noise levels (smaller σ2mi

) correspond
to a sample with higher amplitude accuracy and higher
cost. On the other hand, a larger noise level corresponds
to lower amplitude accuracy and lower cost. Further
discussion of this cost function can be found in [11].
Here we will assume that the accuracy and the cost
associated with each sample is the same, that is
Csi � Cs1 , i � 1;…; M . The total cost of the representa-
tion is CT � P

M
i�1 Csi � MCs1 .

The vector s provides a representation of the random
field f �x� in the sense that it is a finite-accuracy finite-
sampled version of f �x�. How accurately does s represent
f �x�? To make this question precise, we can find f̂ �x∣s�,
the minimum mean-square error (MMSE) estimate of
f �x� given s, and examine the error of this estimate,
which will, of course, depend on the given bit budget
CB. For a given CB, our objective is to choose the number
of the samples M and the location of the samples
ξ1;…; ξM , while satisfying CT ≤ CB, with the objective
of minimizing the mean-square error between f �x� and
f̂ �x∣s�. This problem can be stated as one of minimizing
over Δx, x0, and M to determine the error

ε�CB� � min
Δx;x0;M

E
�Z

D
∥f �x� − f̂ �x∣s�∥2dx

�
; (2)

subject to CT ≤ CB. We note that the error is defined be-
tween the continuous field f �x� and the estimate f̂ �x∣s�.
We consider the signal and its estimator in the bounded
region D � �xL; xH �, −∞ < xL ≤ xH < ∞, which may be
taken as large as desired.
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The MMSE estimator in 2 can be written as f̂ �x∣s� �P
M
j�1 hj�x�sj � h�x�s, where h�x� � �h1�x�;…; hM�x��

[12, Chap. 6]. We note that, given a set of samples, the
set of functions h�x� are the optimal functions that
minimize the mean-square error between the actual
field and the reconstructed field. Here h�x� satisfies the
equation Kf s�x� � h�x�Ks where Kf s�x� � E�f �x�s†� �
�E�f �x�s�1 �;…; E�f �x�s�M �� is the cross covariance between
the input field f �x� and the representation vector s, and
Ks � E�ss†� is the autocovariance of s. The symbols � and
† denote complex conjugate and conjugate transpose, re-
spectively. To determine the optimal linear estimator,
one solves this last equation for h�x�. The resulting esti-
mate

PM
j�1 hj�x�sj can be interpreted as the orthogonal

projection of the unknown random field f �x� onto the
subspace generated by the samples sj , with hj�x� being
the projection coefficients.
Signalmodel: In our experiments, we use theGaussian-

Schell model (GSM), a random optical field model with
various applications [13,14]. A GSM source is character-
ized by the covariance function

Kf �x1; x2� � Af exp
�
−
x21 � x22
4σ2I

�
exp

�
−
�x1 − x2�2

2σ2ν

�
:

(3)

Here Af > 0 is an amplitude coefficient and σI > 0 and
σν > 0 determine the width of the intensity profile and
the width of the complex degree of spatial coherence,
respectively. For a GSM source, β � σν∕σI may be consid-
ered as a measure of degree of global coherence of the
field [13,15]. As β increases/decreases, the field becomes
more coherent/incoherent.
Experiments: In our experiments, we work with the

parameters σI and β. To obtain covariance functions cor-
responding to random fields with varying degrees of co-
herence, we use different β values: β � 1∕16, 1∕4, 1. For
simplicity in presentation, in our simulations we focus on
optimizing Δx and M and set the less interesting x0 � 0.
To compute the error expressions and optimize over
the parameters of the representation strategy, we discre-
tize the x space with the spacing Δc. We approximate
the integral in Eq. (2) as

P
k∈DN

∥f �kΔc� − f̂ �kΔc∣s�∥2Δc,
where DN � fk : kΔc ∈ Dg. The estimators are only
calculated at these discrete points: f̂ �kΔc∣s� � h�kΔc�s.
To solve the linear equations determining the optimal
estimator functions h�kΔc�, we solve the equation
Kf s�kΔc� � h�kΔc�Ks for each k ∈ DN . For finding the
optimum sampling intervals, we use a brute force
method, where for a given CB we calculate the error
for varying Δx and M , and choose the ones providing
the best error value. We note that the optimization
variable Δx and the discretization variable Δc are not
the same. Δc is kept constant throughout all the experi-
ments. We report the error as a percentage defined as
100ε�CB�∕ε0, where ε0 �

R
∞
−∞ Kf �x; x�dx � Af

������
2π

p
. We

choose xH � −xL � 5σI .
Trade-offs between the error and the total bit budget:

Figure 1 presents the error versus bit budget curves
for varying β. As expected, the error decreases with

increasing cost budget in all cases. We note that ε�CB�
is very sensitive to increases in CB for smaller CB. Then
it becomes less responsive and eventually saturates. We
observe that for the relatively incoherent fields (low β), it
is more difficult to achieve low values of error within a
total bit budget. But as the field becomes more coherent
(β increases), the field values at different locations
become more correlated with each other, the total uncer-
tainty in the field decreases, and it becomes a lot easier to
achieve lower values of error.

We observe that for all values of β, no matter how small
the error tolerance ε > 0 is, the continuous finite-energy
field can be represented with a finite number of bits. This
observation is not surprising since (i) the number of
modes needed to effectively represent this source is fi-
nite, and (ii) for a given positive error level, the random
variable associated with each mode can be represented
with a sufficiently large but finite number of bits.

Optimal sampling strategies: We now investigate the
relationship between the optimum sampling strategies
and the problem parameters CB and β. We note that in
general the optimum sampling strategies can be inter-
preted in the light of the competition between the
following driving forces: (i) to use as many effectively un-
correlated samples as possible, (ii) to use samples with
variances that are as high as possible, and (iii) to have
samples that are as highly accurate as possible.

The optimum sampling interval Δx and the optimum
number of samples M that achieve the errors given
in Fig. 1 are presented in Figs. 2 and 3 for β � 1∕16
and β � 1. (The values of CB in the figures are
C1 � 10, C2 � 20, C3 � 30, C4 � 40, C5 � 50, C6 � 75,
C7 � 100, C8 � 150, C9 � 200, C10 � 250, C11 � 300,
C12 � 350, and C13 � 400 bits. The observed steps reflect
the finite increments used in scanning the optimization
space. In Fig. 3, the optimal points for C4 and C5 are iden-
tical for the increments used.) We observe that in both
figures, in general, as CB increases, the optimum sam-
pling interval decreases and the number of samples
increases: when we have more bits to spend, we use a
higher number of more closely spaced samples. When
CB is low, the optimal strategy is to use a low number
of more distantly spaced samples so that each sample
has a reasonable accuracy and each of them provides
effectively new information about the field. As allowed
cost increases, we can afford more samples with high
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Fig. 1. Error versus cost budget CB (varying β).
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enough accuracies, and we prefer to use more closely
spaced samples so that we can get more information
about field values we previously had to neglect when
the allowed cost was lower.
Note that in Figs. 2 and 3, the cost (hence the accu-

racy) of a single sample can be found by dividing the cost
value to the number of samples. As the allowed cost bud-
get increases, the optimum number of samples increases.
However, this increase in the number of samples is, in
general, not at the expense of the accuracy of the sam-
ples: with increasing budget, the accuracy of the samples
also increases.
Comparing Figs. 2 and 3, we observe that when the

field is relatively incoherent (Fig. 2), the number of
samples used to represent the field is higher, and the
sampling intervals are smaller. Under an incoherent
GSM source structure, each sample provides information
only about field values within its very close neighbor-
hood, and the total uncertainty of the field is spread

among many effectively uncorrelated samples. This en-
courages us to split the budget over a larger number
of samples instead of using a smaller number of samples
with greater accuracy. It makes sense to choose the spa-
cing of the samples smaller than in a coherent case, since
(i) even close samples are uncorrelated and do provide
effectively new information, and (ii) the intensity of the
field quickly decreases as jxj increases. When the field is
more coherent, the field values at different locations are
more correlated. In this case, knowing the field at fewer
locations with higher accuracy becomes a better strat-
egy. The samples are chosen farther apart compared
to the incoherent case to guarantee that each sample pro-
vides effectively new information.

In the introduction of this letter, we had posed the
question of whether it is better to use a high number of
samples with low accuracy or a low number of samples
with high accuracy. Our results have provided quantita-
tive answers to this question. The answer strongly de-
pends on the degree of coherence of the field to be
represented. When the field is relatively incoherent, it
is better to use a larger number of samples with relatively
low accuracies. As the field becomes more coherent,
using a lower number of samples with higher accuracies
is preferred.
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Fig. 3. Optimum sampling interval versus number of samples
for different cost budgets CB � Ci, β � 1.
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Fig. 2. Optimum sampling interval versus number of samples
for different cost budgets CB � Ci, β � 1∕16.
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