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In this article we consider the representation of a finite-energy non-stationary random field with a
finite number of samples. We pose the problem as an optimal sampling problem where we seek the
optimal sampling interval under the mean-square error criterion, for a given number of samples. We
investigate the optimum sampling rates and the resulting trade-offs between the number of samples and
the representation error. In our numerical experiments, we consider a parametric non-stationary field
model, the Gaussian–Schell model, and present sampling schemes for varying noise levels and for sources
with varying numbers of degrees of freedom. We discuss the dependence of the optimum sampling
interval on the problem parameters. We also study the sensitivity of the error to the chosen sampling
interval.
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1. Introduction

In this article we investigate certain trade-offs in the repre-
sentation of random fields. We consider the representation of a
finite-energy non-stationary random field with a finite number of
samples. We study the optimum sampling rates and the trade-offs
between the number of samples and the representation error.

We may summarize our general framework as follows: We con-
sider equidistant sampling of non-stationary signals with finite
energy. We are allowed to take only a finite number of samples.
We investigate the optimal representation of the field with these
finite number of samples under the mean-square error criterion.
We seek the optimal sampling interval for a given number of sam-
ples. We deal with questions such as “At least how many samples
should we take to achieve a given level of error?”, “What is the
minimum error that can be achieved with a given number of sam-
ples?”, and “How sensitive is the error to the sampling interval?”.
We are not able to offer complete analytical solutions to these
problems, but we design sampling schemes that provide insight
into the answers of such questions.

An important aspect of our formulation is the restriction of the
total number of samples to be finite. Although several aspects of
the sampling of random fields are well understood (mostly for sta-
tionary fields and also for non-stationary fields), most studies deal
with the case where the number of samples per unit time is finite
(and the total number of samples are infinite).
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We now review a number of representative works related to
sampling of a random signal. A fundamental result in this area
states that the Shannon–Nyquist sampling theorem, which is gen-
erally given for deterministic signals, can be generalized to wide-
sense stationary (WSS) signals: A band-limited WSS signal can be
reconstructed in the mean-square sense from its equally-spaced
samples taken at the Nyquist rate [1]. In [2] a generalization of this
result is provided for multiband signals. Generalizations of this re-
sult where the samples differ from ordinary Nyquist samples have
also been considered: [3,4] offer various conditions under which
error-free recovery is possible. [5,6] show how much each sample
point may be shifted before error-free recovery is no longer pos-
sible. A formal treatment of this subject in a general framework
may be found in [6]. Methods for spectral analysis of nonuniformly
sampled data are reviewed in [7]. In [8], the truncation error as-
sociated with the sampling expansion is studied. An average sam-
pling theorem for band-limited random signals is presented in [9].
[10] further generalizes the Shannon–Nyquist sampling theorem to
non-stationary random fields; [11] clarifies the conditions in [10].
[12,13] consider sampling of varying classes of non-stationary sig-
nals using Loève bifrequency spectrum. [14] reviews results related
to cyclostationarity in both deterministic and random frameworks.
Recovery of random signals from observations of a noisy or fil-
tered version of the unknown signal is also considered; such as
[15] which focuses on interpolation of the input signal from sam-
ples of the output, and [16] which focuses on a noisy measurement
scenario with a total bit constraint.

Another important aspect of our framework is the non-station-
ary signal model. A broad class of physical signals may be bet-
ter represented with non-stationary models rather than station-
ary models, which has resulted in increasing interest in these
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models [17]. Although some aspects of the sampling of non-
stationary fields are understood, such as the sampling theorem
of [10], our understanding of non-stationary fields falls short of
our understanding of stationary fields. Our purpose is to contribute
to a better understanding of the trade-offs in the representation of
non-stationary random fields.

In Section 2, we present the mathematical model of the prob-
lem considered in this article. The signal model we use in our
experiments, Gaussian–Schell model, is discussed in Section 3. In
Section 4 we present the numerical experiments. We conclude in
Section 5.

2. Problem formulation

In the specific measurement scenario under consideration in
this paper, a signal corrupted by noise is sampled to provide a
representation of the signal with finite number of samples. More
precisely, the sampled signal is of the form

g(x) = f (x) + n(x), (1)

where x ∈ R, f :R → C is the unknown proper Gaussian ran-
dom field (random process), n :R → C is the proper Gaussian
random field denoting the inherent noise, and g :R → C is the
proper Gaussian random field to be sampled in order to estimate
f (x). We assume that f (x) and n(x) are statistically independent
zero-mean random fields. We consider all signals and estimators
in the bounded region −∞ < xL � x � xH < ∞. Let D = [xL, xH ]
and D2 = [xL, xH ] × [xL, xH ]. Let K f (x1, x2) = E[ f (x1) f ∗(x2)],
and Kn(x1, x2) = E[n(x1)n∗(x2)] denote the covariance functions
of f (x) and n(x), respectively. Here ∗ denotes complex conju-
gation. We assume that f (x) is a finite-energy random field,∫ ∞
−∞ K f (x, x)dx < ∞, and Kn(x, x), x ∈ D is bounded.

M samples of g(x) are taken equidistantly with the sam-
pling interval � at x = ξ1, . . . , ξ M ∈ R, with � = ξ i+1 − ξ i ,
i = 1, . . . , M − 1. Hence we have gi ∈ C observed according to the
model gi = g(ξ i), for i = 1, . . . , M . By putting the sampled values
in vector form, we obtain g = [g(ξ1), . . . , g(ξ M)]T. Let Kg = E[gg†]
be the covariance matrix of g, † denotes the conjugate transpose.

We note that contrary to standard textbook formulations of
sampling, here the unknown signal is not modeled as a deter-
ministic function. Rather, we consider a stochastic framework, and
would like to estimate the signal f (x), x ∈ D , which is interpreted
as a realization of a random field. Hence for each x, f (x) is a
random variable whose probability distribution function depends
on x. Thus, for a given ξ , each sample g(ξ) is also a random vari-
able. Therefore, for a given set of sampling locations ξ1, . . . , ξ M ,
the problem of recovering f (x), x ∈ D is an estimation problem,
where given a vector of random variables g = [g(ξ1), . . . , g(ξ M)]T,
we would like to estimate f (x), for each x ∈ D . An introduction to
these types of stochastic estimation formulations can be found in
[18, Ch. 5].

The vector g provides a representation of the random field
f (x). We do not have access to the true field f (x) but we can
find f̂ (x | g), the minimum mean-square error (MMSE) estimate of
f (x) given g. For a given maximum allowed number of sampling
points Mb , our objective is to choose the location of the samples
(ξ1, . . . , ξ M ∈ R, M � Mb), so that the MMSE between f (x) and
f̂ (x | g) is minimum. This problem can be stated as one of deter-
mining

ε(Mb) = min
�,x0

E

[∫
D

∣∣ f (x) − f̂ (x | g)
∣∣2

dx

]
, (2)

subject to M � Mb . Here the samples are taken around the mid-
point x0 = 0.5(ξ1 + ξ M), which along with � we allow to be op-
timally chosen. We now discuss certain features of Eq. (2). Further
discussion will be given in Section 4.

Noting that the observed values are in vector form, the linear
estimator for (2) can be written as [18, Ch. 6]

f̂ (x | g) =
M∑

j=1

h j(x)g j (3)

= h(x)g (4)

where the function h(x) = [h1(x), . . . ,hM(x)] satisfies the equation

K f g(x) = h(x)Kg, (5)

where K f g(x) = E[ f (x)g†] = [E[ f (x)g∗
1], . . . , E[ f (x)g∗

M ]] is the
cross covariance between the input field f (x) and the measure-
ment vector g. To determine the optimal linear estimator, one
should solve (5) for h(x).

The error can be written more explicitly as

E

[∫
D

∣∣ f (x) − f̂ (x | g)
∣∣2

dx

]

= E

[∫
D

∣∣ f (x) − h(x)g)
∣∣2

dx

]
(6)

=
∫
D

E
[∣∣ f (x) − h(x)g)

∣∣2]
dx (7)

=
∫
D

(
K f (x, x) − 2K f g(x)h(x)† + h(x)Kgh(x)†)dx (8)

=
∫
D

(
K f (x, x) − K f g(x)h(x)†)dx. (9)

Before leaving this section, we would like to discuss a few as-
pects of our formulation. We note that we do not assume that the
fields are stationary and our formulation covers the general case
including non-stationary fields. The covariance function of a sta-
tionary field depends only on the distance between two points.
Here, however, such assumptions regarding the covariance func-
tion are not made; hence our formulation covers the general case
including non-stationary fields. In sampling problems, a common
approach is to assume that the field is stationary and effectively
bandlimited, and use approaches based on the classical Nyquist
sampling theorem. In that approach, interpolation formulas involv-
ing sinc functions are traditionally used; that is, the interpolating
functions in Eq. (3) are assumed to be sinc functions, and the
whole formulation is based on this assumption. Here we do not
restrict ourselves to this case, and the estimators can be more gen-
eral.

We note that the assumption of Gaussian fields makes the
MMSE estimator and the error analytically tractable, which could
be nonlinear and difficult to obtain for an arbitrary probability
distribution. Nevertheless, even for an arbitrary distribution, the
best linear mean-square error estimator is the same as the MMSE
estimator for a Gaussian field when the mean and covariance func-
tions are the same. (The estimator is called linear if f (x|g) is a
linear function of g, and the best linear estimator is the one that
minimizes the mean-square error over all such estimators.) Hence
our formulation covers the case of non-Gaussian random fields as
well. We also note that classical truncated sinc interpolation, being
linear, is a special case of our formulation.

We now comment on the contribution to the error introduced
by estimating the signal only in a bounded region. For notational
convenience let f̂ (x | g) be denoted as f̂ (x). Let us define f̂ D(x) as
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f̂ D(x) = f̂ (x) for x ∈ D and f̂ D(x) = 0 for x /∈ D . Then, the error of
representing f (x) with f̂ D(x) can be expressed as

E

[ ∞∫
−∞

∣∣ f (x) − f̂ D(x)
∣∣2

dx

]

= E

[ ∫
x/∈D

∣∣ f (x) − f̂ D(x)
∣∣2

dx +
∫

x∈D

∣∣ f (x) − f̂ D(x)
∣∣2

dx

]
(10)

= E

[ ∫
x/∈D

∣∣ f (x)
∣∣2

dx +
∫

x∈D

∣∣ f (x) − f̂ D(x)
∣∣2

dx

]
(11)

= E

[ ∫
x/∈D

∣∣ f (x)
∣∣2

dx

]
+ E

[ ∫
x∈D

∣∣ f (x) − f̂ D(x)
∣∣2

dx

]
(12)

=
∫

x/∈D

K f (x, x)dx + ε(Mb). (13)

Hence (13) states the following fact: The total error in represent-
ing the signal with f̂ (x) in x ∈ D without trying to estimate signal
outside the region D , can be expressed as the sum of two terms:
(1) a term denoting the total energy of the signal outside the inter-
val D , (2) a term denoting the estimation error for the signal in the
interval D . Since we have

∫ ∞
−∞ K f (x, x)dx < ∞, the first term can

be made sufficiently small by taking a bounded but large enough
region D so that ε(Mb) becomes a good measure of representation
performance over the entire line.

3. Gaussian–Schell model

Although the independent variable of the unknown signal in
our problem may be time or some other variable, in this pa-
per we choose our examples from optics, where the independent
variable is often space. In our experiments we use a parametric
non-stationary signal model known as the Gaussian–Schell model
(GSM). This model is widely used in the study of random optical
fields [19–21]. GSM beams have been investigated with emphasis
on different aspects such as their coherent mode decomposition
[22,19], or their imaging and propagation properties [21,23–26].
Our results will shed some light on sampling trade-offs in the rep-
resentation of these fields.

A Schell model source is characterized by the covariance func-
tion

K f (x1, x2) = I(x1)
0.5 I(x2)

0.5ν(x1 − x2), (14)

where I(x) is called the intensity function and ν(x1 − x2) is called
the complex degree of spatial coherence in the optics literature.
For a Gaussian–Schell model, both of these functions are Gaussian
shaped

I(x) = A f exp

(
− x2

2σ 2
I

)
(15)

ν(x1 − x2) = exp

(
− (x1 − x2)

2

2σ 2
ν

)
(16)

where A f > 0 is an amplitude coefficient and σI > 0 and σν > 0
determine the width of the intensity profile and the width of the
complex degree of spatial coherence, respectively. Hence the co-
variance function of a Gaussian–Schell model source takes the form

K f (x1, x2) = A f exp

(
− x2

1 + x2
2

4σ 2
I

)
exp

(
− (x1 − x2)

2

2σ 2
ν

)
. (17)

We note that as a result of the Gaussian shaped intensity profile;
as we move away from the x = 0, the variances of the random
variables decay according to a Gaussian function. We also note
that ν(x1 − x2) is simply the correlation coefficient function which

may be defined as ν(x1 − x2) = ρ f (x1 − x2) = K f (x1,x2)

K f (x1,x1)0.5 K f (x2,x2)0.5 .

Hence, as a result of the Gaussian shaped complex degree of spa-
tial coherence function, the correlation coefficient between two
points decays according to a Gaussian function as the distance be-
tween these two points increases.

K f (x1, x2) may be represented in the form

K f (x1, x2) =
∞∑

k=0

λkφk(x1)φ
∗
k (x2) (18)

where λk are the eigenvalues and φk(x) are the orthonormal eigen-
functions of the integral equation

∫
K f (x1, x2)φk(x1)dx1 = λkφk(x2)

[22,19]. Here we assume that the eigenvalues are indexed in de-
creasing order as λ0 � λ1, . . . , λk � λk+1, . . . , k ∈ Z+ . In signal
processing, this representation is known as the Karhunen–Loève
expansion [27]. In statistical optics it is referred to as the coher-
ent mode decomposition, where every eigenfunction is considered
to correspond to one fully coherent (fully correlated) mode.

The eigenfunctions φk(x) for GSM sources are Hermite polyno-
mials, whose exact form may be found in [19]. Since the eigen-
value distribution will play a crucial role in our investigations we
will discuss them in detail. The ratio of the eigenvalue λn to the
lowest eigenvalue λ0 is given by [19]

λn

λ0
=

(
1

β2 + 1 + β[(β/2)2 + 1]0.5

)n

(19)

where β is defined as

β = σν

σI
. (20)

Here β may be considered as a measure of the number of sig-
nificant eigenvalues, hence the effective number of degrees of free-
dom (DOF) of the source. The effective DOF of a family of signals
may be defined as the effective number of uncorrelated random
variables needed to characterize a random signal from that fam-
ily. The concept of the number of degrees of freedom is central
to several works, such as [28–32]. It is known that the random
variables that provide the best characterization of the source un-
der the mean-square error criterion are the random variables with
variances given by the eigenvalues associated with the Karhunen–
Loève expansion. Hence the spread of eigenvalues can be used
to define the DOF of the signals. One can say that the DOF is
lower when the eigenvalue distribution is more concentrated, and
that the DOF is higher when the eigenvalue distribution is more
uniformly spread. This definition may be made more precise by
defining the effective DOF D(δ) as the smallest number satisfy-
ing

∑D
i=1 λi � δε0, where δ ∈ (0,1] and ε0 = ∫ ∞

−∞ K f (x, x)dx =∑
k�0 λk < ∞.
Returning to the Gaussian–Schell model, we note that as β in-

creases, the eigenvalues decay faster according to (19), so that the
number of modes required to effectively represent the source de-
creases. Similarly, as β decreases, the eigenvalues decay slower,
and the number of modes required to effectively represent the
source increases.

Before leaving this section, we would like to make a few re-
marks about the existence of the expansion in (18) for the GSM
source. We note that, in general, sources defined on the infinite
line do not have expansions with discrete eigenvalue spectrum.
To obtain such an expansion, one usually considers the source on
a compact region (which in our case corresponds to a bounded
region). Then the existence of such a representation is guaran-
teed by Mercer’s Theorem, see for example [33, Ch. 7]. In [19],
an expansion with discrete eigenvalue spectrum is investigated for
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Fig. 1. Correlation coefficient as a function of distance for different values of β .

the GSM source on the infinite line without discussing the ex-
istence of such a decomposition in detail. Nevertheless, we here
note that such an expansion is possible for the GSM source due
to [34, Thm. 1]. This result states that along with continuity, hav-
ing

∫ ∞
−∞ K f (x, x)dx < ∞ and K f (x, x) → 0 as |x| → ∞ is sufficient

to ensure such a representation. We note that both of these condi-
tions are plausible in a physical context: the first one is equivalent
to the finite-energy assumption and the second one requires the
intensity of the field to vanish as |x| increases, properties one com-
monly expects from physically realizable fields. As can be seen
from (17), the covariance function of a GSM source satisfies these
properties. Hence an expansion with a discrete eigenvalue spec-
trum as in (18) is possible for GSM sources.

4. Experiments

We now investigate the trade-off between the error and the
number of samples, and the optimum sampling intervals associ-
ated with different sampling scenarios.

In our experiments, we choose to work with the equivalent pa-
rameters σI and β , instead of σI and σν . Under fixed β , this choice
has the advantage of allowing the results for a given σI value to
be found by using the results for another σI value, by appropri-
ately scaling the coordinate space. Hence in our experiments we
fix σI = 1 without loss of generality.

To obtain covariance functions corresponding to random fields
with varying DOF, we use different β values: β = 1/16,1/4,1,4.
As stated in Section 3, σν = βσI determines the width of the cor-
relation function, which is a Gaussian function. We present the
correlation function ρ(τ ) for these values of β in Fig. 1.

We choose the noise model similar to the signal model,
but with a flat intensity distribution: In(x) = An , νn(x1 − x2) =
exp(− (x1−x2)2

2σ 2
ν,n

), where σν,n = βnσI , βn = 1/32. We consider dif-

ferent noise levels parameterized according to the signal-to-noise
ratio, defined as the ratio of the peak signal and noise levels:

SNRp = A f
An

. We consider the values SNRp = 0.1,1,10,∞ to cover
a wide range of situations.

For simplicity in presentation, in our simulations we focus on
� and set the less interesting x0 = 0. We choose the interval D
equal to [xL, xH ] = [−5σI ,+5σI ]. With this choice of D , most of
the energy of the signal falls inside the interval and the error
arising from the fact that only signal values in the region D are
estimated is very small (� 10−10), so that the first term in (13)
Fig. 2. Error vs number of samples, β = 0.0625 (varying SNRp ).

can be ignored. We discretize the x space to compute the er-
ror expressions involving integrals over x. To solve (5) for h(x),
we discretize (5) and approximate the solutions hi(x) as h̄i(x) =∑N

j=1 h ji sinc(x − μ j) where h ji = hi(x = μ j). Substitution of the

approximate solution h̄(x) = [h̄1(x), . . . , h̄M(x)] into the right-hand
side of (5) gives an expression that, in general, is not exactly equal
to the left-hand side. We determine the parameters h ji by requir-
ing (5) to hold exactly at N selected points νi . Hence (5) becomes
a system of equations with N × M unknowns, Kf̄g = HKg , where

H(i, j) = hij , Kf̄g = E{f̄gT}, and f̄ = [ f (ν1), . . . , f (νM)].
To find the optimum sampling intervals, we use a brute force

method, where for a given Mb we calculate the error for varying
�, and choose the one providing the best error value. This simple
approach has the advantage of enabling us to investigate the effect
of � on the error, and hence the sensitivity of the performance to
choosing � different from the optimal values.

We report the error as a percentage defined as 100ε(Mb)/ε0
where ε0 = ∫ ∞

−∞ K f (x, x)dx = A f
√

2π .

4.1. Trade-offs between the error and the number of samples

In the following experiments we will investigate the trade-off
between the MSE error ε(Mb) and Mb , the number of measure-
ments we are allowed to make.

4.1.1. Variable noise level
We first investigate the effect of noise level on the trade-off

between ε(Mb) and Mb . Here SNRp takes the values SNRp =
[0.1,1,10,∞] and two different values of β = [1/16,1] are con-
sidered. Figs. 2 and 3 correspond to β = 1/16 (high effective DOF)
and β = 1 (low effective DOF), respectively. As expected, the error
decreases with Mb for both cases. We note that for both of cases,
ε(Mb) is very sensitive to increases in Mb for smaller Mb . Then it
becomes less responsive and eventually saturates. For each value of
Mb , the error decreases as SNRp increases, and for higher Mb val-
ues approaches zero as SNRp → ∞. We see that when the field has
low effective DOF (Fig. 3), we obtain much better trade-off curves
for all values of SNRp than Fig. 2, which represents the relatively
high effective DOF case. For instance for SNRp = ∞, for the high
DOF case an error of 20% is obtained when the number of sam-
ples is around 30, whereas for the field with low DOF a smaller
error value is achieved with only 5 samples. This point is further
investigated in the next section.
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Fig. 3. Error vs number of samples, β = 1 (varying SNRp ).

Fig. 4. Error vs number of samples, SNRp = ∞ (varying β).

4.1.2. Variable Effective DOF
We now investigate the effect of the DOF of the unknown field

on the trade-off between Mb and ε(Mb). Here β is varied over
β = [1/16,1/4,1,4] and two different values of SNRp = [0.1,∞]
are considered. Figs. 4 and 5 show the results for SNRp = ∞ and
SNRp = 0.1, respectively. Both of the plots show that for lower
values of β (corresponding to higher DOF), it is more difficult to
achieve low values of error within a given number of samples. But
as β increases, the total uncertainty in the field decreases, and it
becomes a lot easier to achieve lower values of error.

In Fig. 4, we observe that for all values of β , effectively zero
error is obtained as Mb is increased; the field can be represented
with effectively 0 error with a finite number of samples. This is
not surprising, since the effective DOFs of the signal sources under
consideration are finite.

Comparing the performances in Figs. 4 and 5 for low and high
values of the cost budget, we see that the effect of DOF is more
pronounced for different SNRp values for different regions of Mb:
for low Mb values, the effect of DOF is more strong in the high
SNRp case; for high Mb values, the effect of DOF is more strong
in the low SNRp case. For low Mb values, for the high SNRp case
there is a drastic performance difference between different values
Fig. 5. Error vs number of samples, SNRp = 0.1 (varying β).

of DOF; for the lower DOF values it is possible to obtain very low
values of error (≈ 0), a far better performance compared to the
higher DOF case. As Mb increases, the difference in performance
for different values of DOF decreases, and effectively zero error is
obtained for all values of DOF. For high Mb values, the effect of
DOF is more pronounced in the low SNRp case: the error curves
for fields with different DOFs saturate at different values. When
the noise level is high, it is not possible to wash out the effect of
system noise by taking more samples if the fields have high DOF,
hence the curves saturate at relatively high error values. On the
other hand, the effect of noise can be canceled out if the field has
relatively low DOF, hence these curves saturate at relatively low
values.

4.2. Trade-offs and the optimum sampling interval

In this section we will investigate the relationship between the
optimum sampling interval � and the problem parameters Mb , β ,
SNRp .

In general, the optimum policy under a given number of sam-
ples can be informally interpreted in the light of two driving
forces. The first one is to collect as many effectively uncorrelated
samples as possible, so that every sample we have will provide
as much new information as possible about the field. The other
one is to avoid samples with low variances, since a sample with
a low variance is worse than a sample that has higher variance
and has the same correlation coefficient with the field values at
other points (so that the amount of uncertainty reduction for the
other field values due to observation of this sample will be the
same). We note that for a GSM source the function that determines
the correlation of a field value at a particular point with the field
values at other points is the same for a field value at any given lo-
cation (given by ν(x1, x2)), and it is a decreasing function of the
distance between the points. Hence when we take a sample at a
particular point, we also obtain some information about the field
values around that point, but not so much about the field values
that are far away. Due to the GSM source structure, low variance
samples have relatively low variance neighbors, and hence the de-
crease in the uncertainty due to observation of field values at these
points will be relatively low. This further encourages us to avoid
samples with low variances.

4.2.1. Optimum sampling interval
Here we investigate the dependence of the optimum sampling

interval on β , SNRp and Mb .
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Fig. 6. Optimum sampling interval vs number of samples, β = 1/16 (varying SNRp ).

Fig. 7. Optimum sampling interval vs number of samples, β = 1 (varying SNRp ).

Figs. 6 and 7 give the optimum sampling intervals versus num-
ber of samples for β = 1/16 and β = 1, respectively. We observe
that in general the optimum sampling interval decreases with in-
creasing number of samples. When the number of samples one is
allowed is low, one tries to obtain as much independent informa-
tion as possible by choosing the samples apart. As Mb increases
and we are allowed to use more samples, one can afford to choose
the samples closer so that field values that were considered to give
enough information about each other in the former case can be
also observed and lower values of error can be obtained.

For a given β and Mb , the sampling interval increases with
increasing SNRp . As SNRp increases, observing the field at a par-
ticular point allows one to estimate the value of the field at this
point and its neighbors better. Therefore, to ensure that each sam-
ple provides new information, one should increase the sampling
interval.

Comparing Figs. 6 and 7, we observe that the optimum sam-
pling intervals are smaller for the high DOF case (Fig. 6). As DOF
increases, that is, the number of uncorrelated random variables re-
quired to effectively represent the field increases, and also given
the GSM correlation structure, the field value at each point be-
comes less correlated with its neighboring points. Hence the re-
duction in the uncertainty of the field values at the neighbors of
Fig. 8. Error vs sampling interval, β = 1, SNRp = 0.1 (varying number of samples).

Fig. 9. Error vs sampling interval, β = 1, SNRp = 10 (varying number of samples).

a given point due to the observation of the field at a this point is
smaller. This, together with the fact that the variances of field val-
ues decrease as the samples are placed further away from x = 0
point, encourages us to take samples more closely, so that all the
effectively uncorrelated samples with high variances can be col-
lected.

4.2.2. Sensitivity of performance to the sampling interval
In this section we investigate the sensitivity of the performance

to the sampling interval. For this purpose we look at the error
versus sampling interval curves and observe how much the error
deviates from its optimum value as the sampling interval deviates
from the optimum sampling interval.

Figs. 8, 9, 10 and 11 present the error versus sampling interval
curves for β = 1, SNRp = 0.1, and β = 1, SNRp = 10, and β = 1/16,
SNRp = 10, and β = 1/16, SNRp = 0.1, respectively. We note that
in all figures, as M increases, data for fewer numbers of sampling
points are plotted. This is due to the fact that we only allow the
samples to be taken in the bounded domain D , and as M increases,
larger sampling intervals become impermissible.
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Fig. 10. Error vs sampling interval, β = 1/16, SNRp = 10 (varying number of sam-
ples).

Fig. 11. Error vs sampling interval, β = 1/16, SNRp = 0.1 (varying number of sam-
ples).

We observe that in all of these figures, for a given M the er-
ror first decreases as we increase the sampling interval, and after
reaching the optimum sampling interval it starts to increase again.
This behavior may be interpreted in view of the following obser-
vation: We expect that the optimum policy will be the one that
takes as many uncorrelated samples with high variances as possi-
ble. If we take the samples too close, we acquire random variables
close to each other whose correlation will be relatively strong due
to the nature of the GSM model. Hence the error will be relatively
high, since the samples are spent on obtaining redundant infor-
mation. On the other hand, if we take the samples far apart from
each other, we may be missing some of the random variables that
contain effectively uncorrelated information with the samples we
take. Moreover, we may waste our sample budget on random vari-
ables that have relatively low variance (the ones that are outside
the main lobe of the Gaussian intensity function). Hence the error
may again be relatively high.

While commenting on the sensitivity, we focus on the differ-
ences in absolute error in different scenarios. We observe that,
for a given β and SNRp , as M increases, the achievable error
values become more sensitive to the sampling interval. For in-
stance, in Fig. 8 for M = 10, any sampling interval in the range
[0.1 0.25] provides approximately the same error (≈ 60%); whereas
for M = 70, a similar range of sampling intervals around the opti-
mum sampling interval (such as [0.02 0.15]) produce error values
in the range of ≈ 35–50%. When we are allowed a small number
of samples, taking samples with a high enough sampling inter-
val can easily provide effectively uncorrelated samples; avoiding
samples with low variances is not a serious issue that requires sen-
sitive design, choosing the sampling interval smaller than a given
value is enough. Hence any sampling interval between these lower
and higher bounds produces effectively the same error level with
the optimum interval. On the other hand, when a larger number
of samples are allowed, one has to design the locations of the
samples more carefully to find the best trade-off between collect-
ing relatively uncorrelated samples and avoiding samples with low
variances.

We observe that when DOF is low, the error may be considered
to be more sensitive to the sampling interval for low SNRp values.
For instance, for β = 1, SNRp = 10, and M = 10, any sampling in-
terval in the range [0.3 0.6] provide approximately the same error
with the optimal sampling strategy (≈ 5%). On the other hand, for
β = 1, SNRp = 0.1, in order to have approximately the same error
with the optimal strategy (≈ 60%), only sampling intervals in the
range [0.1 0.25] are allowed. We note that the length of [0.1 0.25]
is half of the length of [0.3 0.6]. On the other hand, when DOF is
high, the error is more sensitive to the sampling interval for high
SNRp values. We remind that in these comparisons we consider
the variation in absolute error for different scenarios. For instance,
for β = 1/16, SNRp = 0.1, and Mb = 10, in order to obtain an error
that is not worser than the error obtained with the optimal strat-
egy by more than 5% percent (≈ 93–98%), it is sufficient to use any
sampling interval in the range of [0.01 0.7]. On the other hand, for
β = 1/16, SNRp = 10, in order to obtain an error that is not worser
than the error obtained with the optimal strategy by more than 5%
percent, (≈ 60–65%), it is necessary to use a sampling interval in
the range of [0.1 0.2], a significantly smaller range.

Similar comparisons can be made for the other cases as well:
When SNRp is high/low, the sensitivity of the error to the sampling
interval increases with increasing/decreasing DOF. All of these re-
sults concerning the sensitivity can be interpreted in the light of
the following observation: In general, we observe that the error
becomes more sensitive to our choice of sampling interval when
the effect of different problem parameters on the optimum sam-
pling interval conflict: One of the problem parameters requires us
to take the samples closer to each other, while the other requires
us to take them farther apart. For instance, low DOF requires us to
take the samples apart whereas low SNRp requires us to take the
samples closer. Hence for low DOF, as SNRp decreases, the error
becomes more sensitive to the sampling interval. Taking a closer
look, we observe that when DOF is low, the field values are highly
correlated with each other, and for high values of SNRp the field
values to be observed contain low levels of noise. Hence the sam-
ples carry essentially the same information, making the choice of
the sampling interval relatively unimportant. As SNRp decreases,
a compromise between the two conflicting forces is required, mak-
ing this choice more important: taking samples close enough so
that the noise is effectively washed out, and taking samples suf-
ficiently apart from each other so that each sample brings new
information.

5. Conclusions

We have considered the representation of a finite-energy non-
stationary random field with a finite number of samples. By
considering a parametric non-stationary field model, namely the
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Gaussian–Schell model, we obtained the trade-offs between the
number of samples and the representation error, for varying noise
levels and for sources with varying degrees of freedom (DOF).
We have discussed the optimum sampling intervals, and their de-
pendence on the problem parameters. We have observed that in-
creases in either of (i) the number of allowed samples, (ii) DOF,
or (iii) the noise level, results in a decrease in the optimum sam-
pling interval. We have also investigated the sensitivity of the error
to the chosen sampling interval. We have observed that the error
is more sensitive to sampling interval when (i) the number of al-
lowed samples is high, (ii) DOF is high and the noise level is low,
or (iii) DOF is low and the noise level is high.
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H.M. Ozaktas acknowledges partial support of the Turkish Academy
of Sciences.

References

[1] A. Balakrishnan, A note on the sampling principle for continuous signals, IRE
Trans. Inf. Theory 3 (2) (1957) 143–146.

[2] S.P. Lloyd, A sampling theorem for stationary (wide sense) stochastic processes,
Trans. Am. Math. Soc. 92 (1) (1959) 1–12.

[3] F.J. Beutler, Sampling theorems and bases in a Hilbert space, Inf. Con-
trol 4 (2–3) (1961) 97–117.

[4] F.J. Beutler, Error-free recovery of signals from irregularly spaced samples, SIAM
Rev. 8 (3) (1966) 328–335.

[5] M.I. Kadec, The exact value of the Paley–Wiener constant, Dokl. Akad. Nauk
SSSR 155 (1964) 1253–1254.

[6] R.M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press,
New York, 1980.

[7] P. Babu, P. Stoica, Spectral analysis of nonuniformly sampled data – a review,
Digit. Signal Process. 20 (2) (2010) 359–378.

[8] E. Masry, On the truncation error of the sampling expansion for stationary ban-
dlimited processes, IEEE Trans. Signal Process. 42 (10) (1994) 2851–2853.

[9] Z. Song, W. Sun, X. Zhou, Z. Hou, An average sampling theorem for bandlimited
stochastic processes, IEEE Trans. Inf. Theory 53 (12) (2007) 4798–4800.

[10] W.A. Gardner, A sampling theorem for nonstationary random processes, IEEE
Trans. Inf. Theory 18 (6) (1972) 808–809.

[11] F. Garcia, I. Lourtie, J. Buescu, L2(R) nonstationary processes and the sampling
theorem, IEEE Signal Process. Lett. 8 (4) (2001) 117–119.

[12] A. Napolitano, Sampling theorems for Doppler-stretched wide-band signals,
Signal Process. 90 (7) (2010) 2276–2287.

[13] A. Napolitano, Sampling of spectrally correlated processes, IEEE Trans. Signal
Process. 59 (2) (2011) 525–539.

[14] W.A. Gardner, A. Napolitano, L. Paura, Cyclostationarity: Half a century of re-
search, Signal Process. 86 (4) (2006) 639–697.

[15] T. Michaeli, Y. Eldar, High-rate interpolation of random signals from nonideal
samples, IEEE Trans. Signal Process. 57 (3) (2009) 977–992.

[16] A. Özçelikkale, H.M. Ozaktas, E. Arıkan, Signal recovery with cost constrained
measurements, IEEE Trans. Signal Process. 58 (7) (2010) 3607–3617.

[17] P. Flandrin, A. Napolitano, H.M. Ozaktas, D.J. Thomson, Recent advances in the-
ory and methods for nonstationary signal analysis, Special Issue of EURASIP J.
Adv. Signal Process. (2011).

[18] H.L. Van Trees, Detection, Estimation and Modulation Theory, Part I, Wiley,
New York, 2001.
[19] A. Starikov, E. Wolf, Coherent-mode representation of Gaussian–Schell model
sources and of their radiation fields, J. Opt. Soc. Am. A 72 (7) (1982) 923–928.

[20] A.T. Friberg, R.J. Sudol, The spatial coherence properties of Gaussian–Schell
model beams, Opt. Act. 30 (8) (1983) 1075–1097.

[21] A.T. Friberg, J. Turunen, Imaging of Gaussian–Schell model sources, J. Opt. Soc.
Am. A 5 (5) (1988) 713–720.

[22] F. Gori, Collett–Wolf sources and multimode lasers, Opt. Commun. 34 (3)
(1980) 301–305.

[23] H. Yoshimura, T. Iwai, Properties of the Gaussian–Schell-model source field in
a fractional Fourier plane, Opt. Act. 14 (12) (1997) 3388–3393.

[24] Q. Lin, Y. Cai, Fractional Fourier transform for partially coherent Gaussian–
Schell model beams, Opt. Lett. 27 (19) (2002) 1672–1674.

[25] T. Shirai, A. Dogariu, E. Wolf, Directionality of Gaussian–Schell-model beams
propagating in atmospheric turbulence, Opt. Lett. 28 (8) (2003) 610–612.

[26] Y. Dan, S. Zeng, B. Hao, B. Zhang, Range of turbulence-independent propaga-
tion and Rayleigh range of partially coherent beams in atmospheric turbulence,
J. Opt. Soc. Am. A 27 (3) (2010) 426–434.

[27] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed.,
McGraw-Hill, 1991.

[28] W. Lukozs, Optical systems with resolving powers exceeding the classical limit,
J. Opt. Soc. Am. 56 (11) (1966) 1463–1472.

[29] G. Toraldo di Francia, Degrees of freedom of an image, J. Opt. Soc. Am. 59 (7)
(1969) 799–804.

[30] F. Gori, in: R.J. Marks II (Ed.), Advanced Topics in Shannon Sampling and Inter-
polation Theory, Springer-Verlag, New York, 1993, pp. 37–83, Ch. 2.

[31] A. Poon, R. Brodersen, D. Tse, Degrees of freedom in multiple-antenna chan-
nels: a signal space approach, IEEE Trans. Inf. Theory 51 (2) (2005) 523–536.

[32] R. Kennedy, P. Sadeghi, T. Abhayapala, H. Jones, Intrinsic limits of dimensional-
ity and richness in random multipath fields, IEEE Trans. Signal Process. 55 (6)
(2007) 2542–2556.

[33] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[34] J. Buescu, Positive integral operators in unbounded domains, J. Math. Anal.

Appl. 296 (1) (2004) 244–255.

Ayça Özçelikkale received the B.S. degree from Middle East Technical
University, Ankara, in 2004, and the M.S. degree and the Ph.D. degree from
Bilkent University, Ankara, in 2006, and in 2012, respectively. Her current
research interests are in the area of signal processing and communications.

Haldun M. Ozaktas received the B.S. degree from Middle East Technical
University, Ankara, in 1987 and the Ph.D. degree from Stanford Univer-
sity, Stanford, California, in 1991. He joined Bilkent University, Ankara, in
1991, where he is presently a Professor of electrical engineering. In 1992,
he was at the University of Erlangen-Nuremberg, Bavaria as an Alexan-
der von Humboldt Foundation Postdoctoral Fellow. During summer 1994,
he worked as a Consultant at Bell Laboratories, Holmdel, New Jersey. He
is the author of over 100 refereed journal articles, over 12 book chap-
ters, and over 110 conference presentations and papers, over 45 of which
have been invited. He is also author of the book The Fractional Fourier
Transform (Wiley, 2001) and edited the book Three-Dimensional Televi-
sion (Springer, 2008). His academic interests include signal and image
processing, optical information processing, and optoelectronic and opti-
cally interconnected computing systems. Dr. Ozaktas has a total of over
4800 citations to his work recorded in the Science Citation Index (ISI).
He is the recipient of the 1998 ICO International Prize in Optics and one
of the youngest recipients ever of the Scientific and Technical Research
Council of Turkey (TUBITAK) Science Award (1999), among other awards
and prizes. He is also one of the youngest-elected members of the Turkish
Academy of Sciences and a Fellow of the OSA and the SPIE.

http://refhub.elsevier.com/S1051-2004(13)00115-2/bib42616C616B726973686E616E5F31393537s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib42616C616B726973686E616E5F31393537s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4C6C6F79645F31393539s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4C6C6F79645F31393539s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib426575746C65725F31393631s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib426575746C65725F31393631s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib426575746C65725F31393636s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib426575746C65725F31393636s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4B616465635F31393634s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4B616465635F31393634s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib62596F756E67s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib62596F756E67s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib426162755F32303130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib426162755F32303130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4D617372795F31393934s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4D617372795F31393934s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib536F6E675F32303037s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib536F6E675F32303037s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib476172646E65725F31393732s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib476172646E65725F31393732s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib6761726369614C6F75727469654275657363755F32303031s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib6761726369614C6F75727469654275657363755F32303031s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4E61706F6C6974616E6F5F32303130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4E61706F6C6974616E6F5F32303130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4E61706F6C6974616E6F5F32303131s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4E61706F6C6974616E6F5F32303131s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib476172646E65725F32303036s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib476172646E65725F32303036s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib456C6461725F32303039s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib456C6461725F32303039s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib617963615F49454545535032303130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib617963615F49454545535032303130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib6F7A616B7461735F6E6F6E73746174696F6E617279s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib6F7A616B7461735F6E6F6E73746174696F6E617279s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib6F7A616B7461735F6E6F6E73746174696F6E617279s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib56616E54726565735F32303031626F6F6Bs1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib56616E54726565735F32303031626F6F6Bs1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib53746172696B6F763A3832s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib53746172696B6F763A3832s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib667269626572673A31393833s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib667269626572673A31393833s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib667269626572673A31393838s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib667269626572673A31393838s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib476F72695F31393830s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib476F72695F31393830s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib796F7368696D7572613A3937s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib796F7368696D7572613A3937s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4C696E3A3032s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4C696E3A3032s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib5368697261693A3033s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib5368697261693A3033s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib44616E3A3130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib44616E3A3130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib44616E3A3130s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib5061706F756C69735F31393931626F6F6Bs1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib5061706F756C69735F31393931626F6F6Bs1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4C756B6F737A5F31393636s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4C756B6F737A5F31393636s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib546F72616C646F5F3639s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib546F72616C646F5F3639s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib676F72695F31393933696E626F6F6Bs1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib676F72695F31393933696E626F6F6Bs1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib506F6F6E42726F64657273656E5473655F32303035s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib506F6F6E42726F64657273656E5473655F32303035s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4B656E6E6564795361646567686941626861796170616C614A6F6E65735F32303037s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4B656E6E6564795361646567686941626861796170616C614A6F6E65735F32303037s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4B656E6E6564795361646567686941626861796170616C614A6F6E65735F32303037s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib62486F726E4A6F686E736F6E5F31393930s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4275657363755F32303034s1
http://refhub.elsevier.com/S1051-2004(13)00115-2/bib4275657363755F32303034s1

	Optimal representation of non-stationary random ﬁelds with ﬁnite numbers of samples: A linear MMSE framework
	1 Introduction
	2 Problem formulation
	3 Gaussian-Schell model
	4 Experiments
	4.1 Trade-offs between the error and the number of samples
	4.1.1 Variable noise level
	4.1.2 Variable Effective DOF

	4.2 Trade-offs and the optimum sampling interval
	4.2.1 Optimum sampling interval
	4.2.2 Sensitivity of performance to the sampling interval


	5 Conclusions
	Acknowledgments
	References


