
Chapter 7

Linear Canonical Domains and Degrees

of Freedom of Signals and Systems
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Abstract We discuss the relationships between linear canonical transform (LCT)

domains, fractional Fourier transform (FRT) domains, and the space-frequency

plane. In particular, we show that LCT domains correspond to scaled fractional

Fourier domains and thus to scaled oblique axes in the space-frequency plane. This

allows LCT domains to be labeled and monotonically ordered by the corresponding

fractional order parameter and provides a more transparent view of the evolution

of light through an optical system modeled by LCTs. We then study the number of

degrees of freedom of optical systems and signals based on these concepts. We first

discuss the bicanonical width product (BWP), which is the number of degrees of

freedom of LCT-limited signals. The BWP generalizes the space-bandwidth product

and often provides a tighter measure of the actual number of degrees of freedom

of signals. We illustrate the usefulness of the notion of BWP in two applications:

efficient signal representation and efficient system simulation. In the first application

we provide a sub-Nyquist sampling approach to represent and reconstruct signals

with arbitrary space-frequency support. In the second application we provide a

fast discrete LCT (DLCT) computation method which can accurately compute a

(continuous) LCT with the minimum number of samples given by the BWP. Finally,

we focus on the degrees of freedom of first-order optical systems with multiple

apertures. We show how to explicitly quantify the degrees of freedom of such

systems, state conditions for lossless transfer through the system and analyze the

effects of lossy transfer.
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7.1 Introduction

Optical systems involving thin lenses, sections of free space in the Fresnel approx-

imation, sections of quadratic graded-index media, and arbitrary combinations of

any number of these are referred to as first-order optical systems or quadratic-phase

systems [1–5]. Mathematically, such systems can be modeled as linear canonical

transforms (LCTs), which form a three-parameter family of integral transforms [5,

6]. The LCT family includes the Fourier and fractional Fourier transforms (FRTs),

coordinate scaling, chirp multiplication, and convolution operations as its special

cases.

One of the most important concepts in Fourier analysis is the concept of the

frequency (or Fourier) domain. This domain is understood to be a space where the

frequency representation of the signal lives. Likewise, fractional Fourier domains

are well understood to correspond to oblique axes in the space-frequency plane

(phase space) [5, 7]. By analogy with this concept, the term linear canonical domain

has been used in several papers to refer to the domain of the LCT representation

of a signal [8–16]. Because LCTs are characterized by three independent param-

eters, LCT domains populate a three-parameter space, which makes them hard to

visualize. In this chapter, we discuss the relationships between LCT domains, FRT

domains, and the space-frequency plane. In particular, we show that each LCT

domain corresponds to a scaled FRT domain, and thus to a scaled oblique axis

in the space-frequency plane. Based on this many-to-one association of LCTs with

FRTs, LCT domains can be labeled and monotonically ordered by the corresponding

fractional order parameter, instead of their usual three parameters which do not

directly lend to a natural ordering. This provides a more transparent view of the

evolution of light through an optical system modeled by LCTs.

Another important concept is the number of degrees of freedom. For simplicity

we focus on one-dimensional signals and systems, though most of our results can

be generalized to higher dimensions in a straightforward manner. We first discuss

the bicanonical width product, which is the number of degrees of freedom of

LCT-limited signals. The conventional space-bandwidth product is of fundamental

importance in signal processing and information optics because of its interpretation

as the number of degrees of freedom of space- and band-limited signals [5, 17–32].

If, instead, a set of signals is highly confined to finite intervals in two arbitrary LCT

domains, the space-frequency (phase space) support is a parallelogram. The number

of degrees of freedom of this set of signals is given by the area of this parallelogram,

which is equal to the BWP, which is usually smaller than the conventional space-

bandwidth product. The BWP, which is a generalization of the space-bandwidth

product, often provides a tighter measure of the actual number of degrees of

freedom, and allows us to represent and process signals with fewer samples.

We illustrate the usefulness of the bicanonical width product in two applications:

efficient signal representation and efficient system simulation. First, we show how

to represent and reconstruct signals with arbitrary time- or space-frequency support,

using fewer samples than required by the classical Shannon–Nyquist sampling
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theorem. Although the classical approach is optimal for band-limited signals, it

is in general suboptimal for representing signals with a known space-frequency

support. Based on the LCT sampling theorem, we provide a sub-Nyquist approach

to represent signals with arbitrary space-frequency support. This approach geomet-

rically amounts to enclosing the support with the smallest possible parallelogram,

as opposed to enclosing it with a rectangle as in the classical approach. The number

of samples required for reconstruction is given by the BWP, which is smaller than

the number of samples required by the classical approach.

As a second application, we provide a fast discrete LCT (DLCT) computation

method which can accurately compute a (continuous) LCT with the minimum

number of samples given by the bicanonical width product. Hence the bicanonical

width product is also a key parameter in fast discrete computation of LCTs, and

hence in efficient and accurate simulation of optical systems.

Lastly, we focus on the degrees of freedom of apertured optical systems,

which here refers to systems consisting of an arbitrary sequence of thin lenses

and apertures separated by sections of free space. We define the space-frequency

window (phase-space window) and show how it can be explicitly determined for

such a system. Once the space-frequency window of the system is determined, the

area of the window gives the maximum number of degrees of freedom that can

be supported by the system. More significantly, it specifies which signals can pass

through the system without information loss; the signal will pass losslessly if and

only if the space-frequency support of the signal lies completely within this window.

When it does not, the parts that lie within the window pass and the parts that lie

outside of the window are blocked, a result which is valid to a good degree of

approximation for most systems of practical interest. These intuitive results provide

insight and guidance into the behavior and design of systems involving multiple

apertures and can help minimize information loss.

In the next section, some preliminary material will be reviewed. In Sect. 7.3 we

establish the relationships between LCT domains, FRT domains, and the space-

frequency plane [33, 34]. The relationships between the space-frequency support,

the bicanonical width product, and the number of degrees of freedom of signals

is the subject of Sect. 7.4 [33–35]. We then provide a sub-Nyquist approach to

represent signals with arbitrary space-frequency support in Sect. 7.5, which requires

the number of samples to be equal to the bicanonical width product [33, 34, 36]. In

Sect. 7.6 we review a fast DLCT computation method that works with this minimum

number of samples [35]. Section 7.7 discusses how to explicitly quantify the degrees

of freedom of optical systems with apertures and analyzes lossless and lossy transfer

through them [33, 37]. We conclude in Sect. 7.8.

While in this chapter we usually refer to the independent variable in our signals as

“space” and speak of the “space-frequency” plane due to the development of many

of these concepts in an optical context, virtually all of our results are also valid when

the independent variable is “time” or when we speak of the “time-frequency” plane.



200 F.S. Oktem and H.M. Ozaktas

7.2 Background

In this section we review some preliminary material that will be used throughout the

chapter. This includes the definition and properties of LCTs and FRTs, the Iwasawa

decomposition, space-frequency distributions, and the LCT sampling theorem.

7.2.1 Linear Canonical Transforms

Optical systems involving thin lenses, sections of free space in the Fresnel approx-

imation, sections of quadratic graded-index media, and arbitrary combinations of

any number of these are referred to as first-order optical systems or quadratic-phase

systems. Mathematically, such systems can be modeled as LCTs. The output light

field fT.u/ of a quadratic-phase system is related to its input field f .u/ through [5, 6]

fT.u/ Á .CTf /.u/ Á
Z 1

1
CT.u; u0/f .u0/ du0; (7.1)

CT.u; u0/ Á
r

1

B
ei=4ei. D

B
u22 1

B
uu0C A

B
u02/;

for B ¤ 0, where CT is the unitary LCT operator with parameter matrix T D
ŒA BI C D� with ADBC D 1. In the trivial case B D 0, the LCT is defined simply

as fT.u/ Á
p

D expŒiCDu2� f .Du/. Sometimes the three real parameters ˛ D D=B,

ˇ D 1=B,  D A=B are used instead of the unit-determinant matrix T whose

elements are A, B, C, D. (One of the four matrix parameters is redundant because

of the unit-determinant condition.) These two sets of parameters are equivalent and

either set of parameters can be obtained from the other [5, 6]:

T D
Ä

A B

C D



D
Ä

=ˇ 1=ˇ

ˇ C ˛=ˇ ˛=ˇ



: (7.2)

The transform matrix T is useful in the analysis of optical systems because if several

systems are cascaded, the overall system matrix can be found by multiplying the

corresponding matrices.

The Fourier transform, FRT (propagation through quadratic graded-index me-

dia), coordinate scaling (imaging), chirp multiplication (passage through a thin

lens), and chirp convolution (Fresnel propagation in free space) are some of the

special cases of LCTs.

The ath-order FRT [5] of a function f .u/, denoted by fa.u/, can be defined as

fa.u/ Á .Faf /.u/ Á
Z 1

1
Ka.u; u0/f .u0/ du0; (7.3)
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Ka.u; u0/ Á A ei.cot u22 csc uu0Ccot u02/;

A D
p

1  i cot ;  D a=2

when a ¤ 2k, and Ka.u; u0/ D ı.u  u0/ when a D 4k, and Ka.u; u0/ D ı.u C u0/
when a D 4k ˙ 2, where k is an integer. The FRT operator Fa is additive in index:

Fa2Fa1 D Fa2Ca1 and reduces to the Fourier transform (FT) and identity operators

for a D 1 and a D 0, respectively. The FRT is a special case of the LCT with

parameter matrix

Fa D
Ä

cos.a=2/ sin.a=2/

 sin.a=2/ cos.a=2/



; (7.4)

differing only by an inconsequential factor: CFa f .u/ D eia=4Faf .u/ [5, 6].

Other than the FRT, another special case of the LCT is multiplication with a chirp

function of the form expŒiqu2�, which corresponds to a thin lens in optics. The

corresponding LCT matrix is given by

Qq D
Ä

1 0

q 1



: (7.5)

Yet another special case is convolution with a chirp function of the form

ei=4
p

1=r expŒiu2=r�, which is equivalent to propagation through a section

of free space in the Fresnel approximation. The corresponding LCT matrix is
given by

Rr D
Ä

1 r

0 1



: (7.6)

The last special case we consider is the scaling operation, which maps a function

f .u/ into
p

1=Mf .u=M/ with M > 0. This is often used to model optical imaging.

The transformation matrix is

MM D
Ä

M 0

0 1=M



: (7.7)

7.2.2 Iwasawa Decomposition

An arbitrary LCT can be decomposed into an FRT followed by scaling followed by

chirp multiplication [5, 34]:

T D
Ä

A B

C D



D
Ä

1 0

q 1

 Ä

M 0

0 1
M

 Ä

cos  sin

 sin  cos :



(7.8)
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The three matrices, respectively, correspond to the transformation matrices of

chirp multiplication with parameter q (multiplication by exp .iq u2/), coordinate

scaling with factor M > 0 (mapping of f .u/ into
p

1=Mf .u=M/), and ath order

FRT with  D a=2 (transformation of f .u/ into fa.u/). The decomposition can be

written more explicitly in terms of the LCT and FRT domain representations of the

signal as

fT.u/ D exp


iqu2


r

1

M
fa

 u

M

Á

: (7.9)

This decomposition is a special case of the Iwasawa decomposition [38–40].

(For a discussion of the implications of this decomposition to the propagation

of light through first-order optical systems, see [34, 41]. For a discussion of the

implications for sampling optical fields, see [42, 43].) By appropriately choosing the

three parameters a, M, q, the above equality can be satisfied for any T D ŒA BI C D�

matrix. Solving for a,M, q in (7.8), we obtain the decomposition parameters in terms

of the matrix entries A, B, C, D:

a D
(

2

arctan



B
A



; if A  0

2

arctan



B
A



C 2; if A < 0
(7.10)

M D
p

A2 C B2; (7.11)

q D
(

C
A

 B=A

A2CB2 ; if A ¤ 0

D
B

; if A D 0:
(7.12)

The range of the arctangent lies in .=2; =2�.

7.2.3 Space-Frequency Distributions

The Wigner distribution (WD) Wf .u; / of a signal f .u/ is a space-frequency

(phase-space) distribution that gives the distribution of signal energy over space

and frequency, and is defined as [5, 44–46]:

Wf .u; / D
Z 1

1
f .u C u0=2/f .u  u0=2/ei2  u0

du0: (7.13)

We refer to the space-frequency region for which the Wigner distribution is

considered non-negligible as the space-frequency support of the signal, with the

area of this region giving the number of degrees of freedom [5]. A large percentage

of the signal energy is confined to the space-frequency support.
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All quadratic-phase systems result in an area-preserving geometric transforma-

tion in the u- plane. Explicitly, the WD of fT.u/ can be related to the WD of f .u/

by a linear distortion [5]:

WfT.u; / D Wf .Du  B; Cu C A/: (7.14)

The Jacobian of this coordinate transformation is equal to the determinant of the

matrix T, which is unity. Therefore, this coordinate transformation will geometri-

cally distort the support region of the WD but the support area (hence the number

of degrees of freedom) will remain unchanged.

7.2.4 LCT Sampling Theorem

Just as the LCT is a generalization of the Fourier transform, the LCT sampling

theorem [9, 47, 48] is an extension of the classical sampling theorem. According to

the LCT sampling theorem, if a function f .u/ has an LCT with parameter T which

has a compact support such that fT.u/ is zero outside the interval ŒuT=2; uT=2�,

then the function f .u/ can be reconstructed from its samples taken at intervals

ıu Ä 1=.jˇjuT/. The reconstruction formula, which we will refer to as the LCT

interpolation formula, is given by

f .u/ D ıu jˇj uT eiu2
1

X

nD1
f .n ıu/ ei.n ıu/2

sinc.ˇ uT.u  n ıu//: (7.15)

This reduces to the classical sampling theorem, and to the FRT sampling theo-

rem [49–54] when the parameter matrix T is replaced with the associated matrices

of the FT and FRT operations.

The background material presented in this section employs dimensionless vari-

ables and parameters, for simplicity and purity. We assume that a dimensional

normalization has been performed and that the coordinates appearing in the defini-

tions of the FRT, LCT, Wigner distribution, etc., are all dimensionless quantities [5].

In Sect. 7.7, however, we will prefer to employ variables with real physical

dimensions. There, we will present dimensional counterparts of the background

material that we will need. The reader will be able to employ these to obtain

dimensional counterparts of other results in this chapter, should the need arise.

7.3 LCT Domains

Because LCTs are characterized by three independent parameters, LCT domains

populate a three-parameter space, which makes them hard to visualize. In this

section, we discuss the relationships between LCT domains, FRT domains, and the
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space-frequency plane. In particular, we show that each LCT domain corresponds

to a scaled FRT domain, and thus to a scaled oblique axis in the space-frequency

plane. This provides a more transparent view of the evolution of light through an

optical system modeled by LCTs.

7.3.1 Relationship of LCT Domains

to the Space-Frequency Plane

One of the most important concepts in Fourier analysis is the concept of the

frequency (or Fourier) domain. This domain is understood to be a space where the

frequency representation of the signal lives. Likewise, fractional Fourier domains

are well understood to correspond to oblique axes in the space-frequency plane

(phase space) [5, 7], since the FRT has the effect of rotating the space-frequency

(phase space) representation of a signal. More explicitly, the effect of ath-order

fractional Fourier transformation on the Wigner distribution of a signal is to rotate

the Wigner distribution by an angle  D a=2 [7, 55, 56]:

Wfa.u; / D Wf .u cos    sin ; u sin  C  cos /: (7.16)

The Radon transform operator RDN  , which takes the integral projection of the

Wigner distribution of f .u/ onto an axis making an angle  with the u axis, can be

used to restate this property in the following manner [5]:

fRDN ŒWf .u; /�g.ua/ D jfa.ua/j2; (7.17)

where ua denotes the axis making angle  D a=2 with the u axis. That is,

projection of the Wigner distribution of f .u/ onto the ua axis gives jfa.ua/j2, the

squared magnitude of the ath order FRT of the function. Hence, the projection axis

ua can be referred to as the ath-order fractional Fourier domain (see Fig. 7.1) [7, 55].

The space and frequency domains are merely special cases of the continuum of

fractional Fourier domains.

Fig. 7.1 The ath-order

fractional Fourier

domain [34]

μ

u

ua

μa

φ
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Fractional Fourier domains are recognized as oblique axes in the space-frequency

plane [5–7]. By analogy with this concept, the term linear canonical domain has

been used in several papers to refer to the domain of the LCT representation of

a signal [8–16]. However, it is not immediately obvious from these works where

these LCT domains exist and how they are related to the space-frequency plane; in

other words, while the effect of an LCT on the space-frequency representation of a

signal is well understood as a linear geometrical distortion, it is not immediate how

members of the three-parameter family of LCT domains are related to the space-

frequency plane, or how we should visualize them. LCTs are characterized by three

independent parameters, and hence LCT domains populate a three-parameter space,

which makes them hard to visualize. Below, we explicitly relate LCT domains to

the space-frequency plane [33, 34]. We show that each LCT domain corresponds

to a scaled FRT domain, and thus to a scaled oblique axis in the space-frequency

plane. Based on this many-to-one association of LCTs with FRTs, LCT domains can

be labeled and monotonically ordered by an associated fractional order parameter,

instead of their usual three parameters which do not directly lend to a natural

ordering.

We use the Iwasawa decomposition to relate the members of the three-parameter

family of LCT domains to the space-frequency plane. As given in (7.9), any arbitrary

LCT can be expressed as a chirp multiplied and scaled FRT. Thus, in order to

compute the LCT of a signal, we can first compute the ath-order FRT of the signal,

which transforms the signal to the ath-order fractional Fourier domain. Secondly,

we scale the transformed signal. Because scaling is a relatively trivial operation, we

need not interpret it as changing the domain of the signal, but merely a scaling of

the coordinate axis in the same domain. Finally, we multiply the resulting signal

with a chirp to obtain the LCT. Multiplication with a function is not considered an

operation which transforms a signal to another domain, but which alters the signal

in the same domain. (For instance, when we multiply the Fourier transform of a

function with a mask, the result is considered to remain in the frequency domain.)

Therefore, only the FRT part of the LCT operation corresponds to a genuine domain

change, and the linear canonical transformed signal essentially lives in a scaled

fractional Fourier domain. In other words, LCT domains are essentially equivalent

to scaled fractional Fourier domains. That is, despite their three parameters, LCT

domains do not constitute a richer family of domains than FRT domains. By using

the well-known relationship of FRT domains to the space-frequency plane, we can

state a similar relationship for the LCT domains as follows:

In the space-frequency plane, the LCT domain uT with parameter matrix T D ŒA BIC D�

corresponds to a scaled oblique axis making angle arctan .B=A/ with the u axis (or equiva-

lently, having slope B=A), and scaled with the parameter M where M D
p

A2 C B2 [33, 34].

Note that any LCT domain is completely characterized by the two parameters A and

B (or equivalently by a and M, or by  and ˇ) instead of all three of its parameters.

We also note that the relation in (7.17) can be rewritten for the LCT of a signal as

1

M
fRDN ŒWf .u; /�g

 u

M

Á

D jfT.u/j2; (7.18)
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by using (7.17) and (7.9) (with s D 1). This is another way of interpreting scaled

oblique axes in the space-frequency plane as the LCT domain with parameter T.

7.3.2 Essentially Equivalent Domains

Observe that LCTs with the same value of B=A (or equivalently the same value of  )

will have the same value of a in the decomposition in (7.10), and therefore will be

associated with the same FRT domain. We refer to such LCT domains as well as

their associated FRT domain as essentially equivalent domains [33, 34]. Note that

if a signal has a compact support in a certain LCT domain, then the signal will also

have compact support in all essentially equivalent domains.

The concept of essentially equivalent domains we introduce allows many earlier

observations and results to be seen in a new light, making them almost obvious

or more transparent. For instance, it has been stated that if a particular LCT of

a signal is bandlimited, then another LCT of the signal cannot be bandlimited

unless B1=A1 D B2=A2 [10]. Since we recognize the domains associated with

two LCTs satisfying this relation to be essentially equivalent, this result becomes

obvious. Although we will not further elaborate, other results regarding the com-

pactness/bandlimitedness of different LCTs of a signal [57] can be likewise easily

understood in terms of the concept of essentially equivalent domains. As a final

example, we consider the LCT sampling theorem, according to which if the LCT

of a signal has finite extent uT, then we should sample it with spacing u Ä
jBj=uT. Such a sampling scheme collapses when B D 0. It is easy to understand

why if we note that B D 0 implies that the LCT domain in question is essentially

equivalent to the a D 0th FRT domain; that is, the domain in which the signal is

specified to have finite extent is essentially equivalent to the domain in which we

are attempting to sample the signal.

7.3.3 Optical Interpretation

Let us now optically interpret the equivalence of LCT domains to FRT domains.

Consider a signal that passes through an arbitrary quadratic-phase system. Since the

light field at any plane within the system is related to the input field through an

LCT, the signal will incrementally be transformed through different LCT domains.

Because the three parameters of the consequential LCT domains are not sequenced,

it is not easy to give any interpretation or visualize the nature of the transformation

of the optical field. However, if we think of the LCT domains as being equivalent

to scaled FRT domains, it becomes possible to interpret every location along the

propagation axis as an FRT domain of specific order, which is equivalent to an
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oblique axis in the space-frequency plane. Moreover, it has been shown that if we

take the fractional order a to be equal to zero at the input of the system, then a

monotonically increases as a function of the distance along the optical axis [41, 58].

In other words, propagation through a quadratic-phase system can be understood as

passage through a continuum of scaled FRT domains of monotonically increasing

order, instead of passage through an unsequenced plethora of LCT domains [34].

To see that the FRT parameter a is monotonically increasing along the z axis,

observe from Eq. (7.10) that a / arctan.B=A/, so that a increases with B=A. Passage

through a lens involves multiplication with the matrix given in Eq. (7.5) which

does not change B=A. Passage through an incremental section of free space involves

multiplication with the matrix given in Eq. (7.6) which always results in a positive

increment in a. This is because r is proportional to the distance of propagation,

and the derivative of the new value of B=A with respect to r is always positive,

which implies that B=A always increases with r. A similar argument is possible

for quadratic graded-index media. A more precise development may be found in

[41, 58].

Therefore, the distribution of light is continually fractional Fourier transformed

through scaled fractional Fourier domains of increasing order, which we know

are oblique axes in the space-frequency plane. This understanding of quadratic-

phase systems yields much more insight into the nature of how light is transformed

as it propagates through such a system, as opposed to thinking of it in terms of

going through a series of unsequenced LCT domains whose whereabouts we cannot

visualize. For example, based on this understanding we show in Sect. 7.7 how to

explicitly quantify the degrees of freedom of optical systems with apertures and

give conditions for lossless transfer.

7.4 Degrees of Freedom of Signals and the Bicanonical

Width Product

The conventional space-bandwidth product is of fundamental importance in signal

processing and information optics because of its interpretation as the number of

degrees of freedom of space- and band-limited signals [5, 17–32]. In this section,

we discuss the bicanonical width product (BWP), which is the number of degrees

of freedom of LCT-limited signals. The bicanonical width product generalizes the

space-bandwidth product and often provides a tighter measure of the actual number

of degrees of freedom of signals [33–35].
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7.4.1 Space-Bandwidth Product: Degrees of Freedom

of Space- and Band-Limited Signals

Consider a family of signals whose members are approximately confined to an

interval of length u in the space domain and to an interval of length  in

the frequency domain in the sense that a large percentage of the signal energy is

confined to these intervals. The space-bandwidth product N is then defined [5, 28] as

N Á u; (7.19)

and is always greater than or equal to unity because of the uncertainty relation.

The notion of space-bandwidth product, as degrees of freedom of space- and

band-limited signals, can be established in a number of different ways. Here we

provide two constructions: one based on Fourier sampling theorem, another based

on space-frequency analysis.

7.4.1.1 Construction Based on Fourier Sampling Theorem

The conventional space-bandwidth product is the minimum number of samples

required to uniquely identify a signal out of all possible signals whose energies

are approximately confined to space and frequency intervals of length u and

. This argument is based on the Shannon–Nyquist sampling theorem, which

requires that the spacing between samples (in the space domain) not be greater than

ıu D 1=, so that the minimum number of samples over the space extent u is

given by u=ıu D u. Alternatively, if we sample the signal in the frequency

domain, the spacing between samples should not be greater than ı D 1=u, so

that the minimum number of samples over the frequency extent  is given by

=ı D u. The minimum number of samples needed to fully characterize

an approximately space- and band-limited signal can be interpreted as the number

of degrees of freedom of the set of signals. This number of samples turns out to be

the same whether counted in the space or frequency domain, and is given by the

space-bandwidth product.

7.4.1.2 Construction Based on Space-Frequency Analysis

Another line of development involves space-frequency analysis. When the approxi-

mate space and frequency extents are specified as above, this amounts to assuming

that most of the energy of the signal is confined to a u   rectangular region in

the space-frequency plane, perpendicular to the space-frequency axes (Fig. 7.2). In

this case, the area of this rectangular region, which gives the number of degrees of

freedom, is equal to the space-bandwidth product.
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Fig. 7.2 Rectangular

space-frequency support with

area equal to the

space-bandwidth product

u [34]

μ

uΔμ

Δu

More generally, the number of degrees of freedom is given by the area of the

space-frequency support (phase space support), regardless of its shape [5, 30]. When

the space-frequency support is not a rectangle perpendicular to the axes, the actual

number of degrees of freedom will be smaller than the space-bandwidth product of

the signal [5, 30].

7.4.1.3 Discussion

The space-bandwidth product is a notion originating from the simultaneous spec-

ification of the space and frequency extents. Although this product is commonly

seen as an intrinsic property, it is in fact a notion that is specific to the Fourier

transform and the frequency domain. It is also possible to specify the extents in

other FRT or LCT domains. The set of signals thus specified will in general exhibit

a nonrectangular space-frequency support. (For example, we will next show that

when two such extents are specified, the support will be a parallelogram [33, 34].)

In all cases, the area of the support will correspond to the number of degrees of

freedom of the set of signals thus defined. If we insist on characterizing this set of

signals with conventional space and frequency extents, the space-bandwidth product

will overstate the number of degrees of freedom (see Fig. 7.3).

Obviously, specifying a finite extent in a single LCT domain does not define a

family of signals with a finite number of degrees of freedom, just as specifying a

finite extent in only one of the conventional space or frequency domains does not.

However, specifying finite extents in two distinct LCT domains allows us to define a

family of signals with a finite number of degrees of freedom. The number of degrees

of freedom will depend on both the specified LCT domains and the extents in those

domains.
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Fig. 7.3 Parallelogram shaped space-frequency support with area equal to the bicanonical width

product uT1 uT2 jˇ1;2j, which is smaller than the space-bandwidth product u [34]

7.4.2 Bicanonical Width Product: Degrees of Freedom of

LCT-Limited Signals

We first define the space-canonical width product, which gives the number of

degrees of freedom of signals that are approximately confined to a finite interval

u in the conventional space domain and to a finite interval uT in some other

LCT domain [33–35]:

N Á uuTjˇj: (7.20)

This is always greater than or equal to unity because of the uncertainty relation

for LCTs [5, 6, 10, 15]. Here T represents the three parameters of the LCT, where

ˇ is one of these three parameters. The space-canonical width product constitutes

a generalization of the space-bandwidth product, and reduces to it when the LCT

reduces to an ordinary Fourier transform, upon which uT reduces to  and

ˇ D 1.

In the above, one of the two domains is chosen to be the conventional space

domain. More generally, the two LCT domains can both be arbitrarily chosen. In

this case, we use the more general term bicanonical width product (BWP) to refer

to the product [33–35]

N Á uT1uT2 jˇ1;2j; (7.21)

where uT1 and uT2 are the extents of the signal in two LCT domains and ˇ1;2 is

the parameter of the LCT between these two domains (the LCT which transforms
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the signal from the first LCT domain to the second). Note that the bicanonical width

product is defined with respect to two specific LCT domains.

The notion of bicanonical width product as the degrees of freedom of LCT-

limited signals can also be established in two ways [34]: based on the LCT sampling

theorem, and based on space-frequency analysis. Before establishing this, we note

that if ˇ D 1 in (7.20) or ˇ1;2 D 1 in (7.21), then the product N will not be finite

and hence the number of degrees of freedom will not be bounded. This is because

when this parameter is infinity (that is, B D 0), the two domains are related to each

other simply by a scaling or chirp multiplication operation. But as discussed before,

domains related by such operations are essentially equivalent. Thus, specification of

the extent in two such domains does not constrain the family of signals more than

the specification of the extent in only one domain, which, as noted, is not sufficient

to make the number of degrees of freedom finite.

7.4.2.1 Construction Based on LCT Sampling Theorem

The space-canonical width product is the minimum number of samples required

to uniquely identify a signal out of all possible signals whose energies are

approximately confined to a space interval of u and a particular LCT interval of

uT. (This many number of samples can be used to reconstruct the signal.) This

argument can be justified by the use of the LCT sampling theorem. According

to the LCT sampling theorem, the space-domain sampling interval for a signal

that has finite extent uT in a particular LCT domain should not be larger than

ıu D 1=.jˇjuT/. If we sample the space-domain signal at this rate, the total

number of samples over the extent u will be given by u=ıu D uuTjˇj,
which is precisely equal to the space-canonical width product. Alternatively, if

we sample in the LCT-domain, the sampling interval should not be larger than

ıuT D 1=.jˇju/. Sampling at this rate, the total number of samples over the LCT

extent uT is given by uT=ıuT D uuTjˇj, which once again is the space-

canonical width product.

The derivation above can be easily replicated for the more general bicanonical

width product defined in (7.21). Therefore, the bicanonical width product can also

be interpreted as the minimum number of samples required to uniquely identify a

signal out of all possible signals whose energies are approximately confined to finite

intervals in two specified LCT domains, and therefore as the number of degrees of

freedom of this set of signals [33–35].

7.4.2.2 Construction Based on Space-Frequency Analysis

Another line of development involves space-frequency analysis. Here we show that

when the extents are specified in two LCT domains as above, the space-frequency

support becomes a parallelogram (see Fig. 7.4), and the area of this parallelogram,
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which gives the number of degrees of freedom, is equal to the bicanonical width

product [33, 34].

This result follows from the established relationship of LCT domains to the

space-frequency plane. Let us consider a set of signals, whose members are app-

roximately confined to the intervals ŒuT1=2; uT1=2� and ŒuT2=2; uT2=2�

in two given LCT domains, uT1 and uT2 . We want to investigate the space-frequency

support of this set of signals. Since LCT domains are equivalent to scaled fractional

Fourier domains, each finite interval in an LCT domain will correspond to a

scaled interval in the equivalent FRT domain. To see this explicitly, we again refer

to (7.9), which implies that if fT.u/ is confined to an interval of length uT, so is

fa.u=M/. Therefore, the extent of fa.u/ in the equivalent ath-order FRT domain is

uT=M. Thus, the set of signals in question is approximately limited to an extent of

uT1=M1 in the a1th order FRT domain, and an extent of uT2=M2 in the a2th order

FRT domain, where a1, a2 and M1, M2 are related to T1, T2 through Eqs. (7.10)

and (7.11).

It is well known that if the space-, frequency- or FRT-domain representation of

a signal is identically zero (or negligible) outside a certain interval, so is its Wigner

distribution [5, 59]. As a direct consequence of this fact, the Wigner distribution of

our set of signals is confined to corridors of width uT1=M1 and uT2=M2 in the

directions orthogonal to the a1th order FRT domain ua1 , and the a2th order FRT

domain ua2 , respectively. (With the term corridor we are referring to an infinite

strip in the space-frequency plane perpendicular to the oblique ua axis. The corridor

makes an angle .a C 1/=2 with the u axis (see Fig. 7.5).) Now, if we intersect the

two corridors defined by each extent, we obtain a parallelogram, which gives the

space-frequency support of the signals (see Fig. 7.4). The area of the parallelogram

is equal to the bicanonical width product of the set of signals in question. This result

will be formally stated as follows:

Consider a set of signals, whose members are approximately confined to finite

extents uT1 and uT2 in the two LCT domains uT1 and uT2 , respectively. Let

ˇ1;2 denote the ˇ parameter of the LCT which transforms signals from the first

LCT domain to the second. Then, the space-frequency support of these signals

is given by a parallelogram defined by these extents (Fig. 7.4), and the area

Fig. 7.4 The

space-frequency support

when finite extents are

specified in two LCT

domains. The area of the

parallelogram is equal to

uT1 uT2 jˇ1;2j [34]

μ

u

ua1

ua2

ΔuT1

M1
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of the parallelogram-shaped support is equal to the bicanonical width product

uT1uT2 jˇ1;2j of the set of signals [33, 34].

Proof. The two heights of the parallelogram defined by the extents uT1 and uT2 ,

are uT1=M1 and uT2=M2, corresponding to the widths of the corridors. Moreover,

the angle between the corridors is 2  1. Then, the area of the parallelogram is

Area D uT1

M1

uT2

M2

j csc.2  1/j (7.22)

D uT1uT2

M1M2j sin 2 cos 1  cos 2 sin 1j (7.23)

D uT1uT2

jA1B2  B1A2j (7.24)

D uT1uT2

jˇ1ˇ2j
j1  2j (7.25)

D uT1uT2 jˇ1;2j; (7.26)

where the third and fourth equality follows from (7.8) and (7.2), respectively. The

final result can be obtained from the parameter matrixT2T
1
1 which transforms from

the first LCT domain to the second domain. ut
Since the number of degrees of freedom of a set of signals is given by the

area of their space-frequency support, this result provides further justification for

interpreting the bicanonical width product as the number of degrees of freedom of

LCT-limited signals.

Fig. 7.5 Illustration of a

space-frequency corridor [37]
μ

u

ua

ΔuT

M

aπ/2
(a + 1)π/2
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7.4.2.3 Discussion

When confronted with a space-frequency support of arbitrary shape, it is quite

common to assume the number of degrees of freedom to be equal to the space-

bandwidth product, without regard to the shape of its space-frequency support. In

reality, this is a worst-case approach which encloses the arbitrary shape within

a rectangle perpendicular to the axes, and overstates the number of degrees of

freedom.

The bicanonical width product provides a tighter measure of the number of

degrees of freedom than the conventional space-bandwidth product, and allows

us to represent and process the signals with a smaller number of samples, since

it is possible to enclose the true space-frequency support more tightly with a

parallelogram of our choice, as compared to a rectangle perpendicular to the axes,

or indeed any rectangle. In applications where the underlying physics involves LCT

type integrals (as is the case with many wave propagation problems and optical

systems), parallelograms may be excellently, if not perfectly, tailored to the true

space-frequency supports of the signals. In the next section, we illustrate how these

ideas are useful for representing and reconstructing signals with arbitrary time-

or space-frequency support, using fewer samples than required by the Shannon–

Nyquist sampling theorem. The developed approach geometrically amounts to

enclosing the support with the smallest possible parallelogram, as opposed to

enclosing it with a rectangle as in the classical approach.

Another important feature of the bicanonical width product is that it is invariant

under linear canonical transformation. The fact that LCTs model an important

family of optical systems, makes the bicanonical width product a suitable invariant

measure for the number of degrees of freedom of optical signals. On the other hand,

the space-bandwidth product, which is the area of the smallest bounding perpendic-

ular rectangle, may change significantly after linear canonical transformation. This

has an important implication in DLCT computation as will be discussed in Sect. 7.6.

With this computation method, we can accurately compute an LCT with a minimum

number of samples given by the bicanonical width product, so that the bicanonical

width product is also a key parameter in fast discrete computation of LCTs, and

hence in efficient and accurate simulation of optical systems [35].

Given the fundamental importance of the conventional space-bandwidth product

in signal processing and information optics, it is not surprising that the bicanonical

width product can also play an important role in these areas. In a later section, we

discuss how the bicanonical width product is useful for efficiently and accurately

simulating optical systems based on an elegant and natural formulation of DLCT

computation. Finally we note that the bicanonical width product has been originally

introduced in the context of LCTs [33, 35]. However, since the equivalence between

FRT and LCT domains has been shown [34], we can also speak of the bifractional

width product in the context of FRT domains.
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7.5 Sub-Nyquist Sampling and Reconstruction of Signals

In this section, we show how to represent and reconstruct signals with arbitrary time-

or space-frequency support, using fewer samples than required by the Shannon–

Nyquist sampling theorem [33, 36]. The classical Shannon–Nyquist sampling

theorem allows us to represent band-limited signals with samples taken at a

finite rate. Although the classical approach is optimal for band-limited signals, it

is in general suboptimal for representing signals with a known space-frequency

support. Application of the classical approach to signals with arbitrarily given space-

frequency support amounts to enclosing the support with a rectangle perpendicular

to the space and frequency axes. The number of samples is given by the area of

the rectangle and equals the space-bandwidth product, which may be considerably

larger than the area of the space-frequency support and hence the actual number

of degrees of freedom of the signals. When the space-frequency support is not a

rectangle perpendicular to the axes, it is possible to represent and reconstruct the

signal with fewer samples than implied by the space-bandwidth product. Light fields

propagating through optical systems is one example of an application where non-

rectangular supports are commonly encountered [37].

The FRT is a generalization of the Fourier transform and the FRT sampling

theorem [49–51] is an extension of the classical sampling theorem (while a special

case of the LCT sampling theorem). Based on this generalized sampling theorem,

here we provide a sub-Nyquist approach to represent signals with arbitrary space-

frequency support [33, 34, 36]. This approach reduces to the geometrical problem

of finding the smallest parallelogram enclosing the space-frequency support. The

area of the parallelogram given by the bicanonical width product is the number

of samples needed and the reconstruction is given by an explicit formula. This

allows us to represent signals with fewer samples than with the classical approach,

since it is possible to enclose the true space-frequency support more tightly with

a parallelogram of our choice, than with a rectangle perpendicular to the axes. A

Wigner-based approach to related problems has been given in [47, 60].

7.5.1 Constrained Signal Representation

Our goal is to determine the minimal sampling rate when the space-frequency

support is given and to show how to reconstruct the signal from those samples.

First we consider the (constrained) case where the signal needs to be sampled in a

specific domain, say the space domain u. In other words, we are not free to choose

the domain in which to sample the signal and must sample it in the specified domain.

Without loss of generality, suppose the specified domain is the space domain. In the

classical approach, the sampling rate in the space domain is determined by the extent

in the frequency domain. If we denote this extent by , then the spacing between

space-domain samples must not be greater than ıu D 1=, so that the minimum
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number of samples over the space extent u is given by u=.1=/ D u,

which is the space-bandwidth product. (The space extent u is the projection of the

space-frequency support onto the u axis.) This classical approach is geometrically

equivalent to enclosing the support with a rectangle perpendicular to the space and

frequency axes and having sides of length u and . Its area equals u and

gives the number of samples required for interpolating the continuous signal in the

Nyquist–Shannon sense (Fig. 7.6).

For efficient sampling, it is desirable to approach the minimum number of

samples possible given by the area of the space-frequency support. When we use

the FRT sampling theorem, the sampling rate can be determined by the extent in the

FRT domain which minimizes the required number of the samples. Since signals

that are extent limited in two FRT domains have parallelogram shaped supports

(see Fig. 7.7), determining the optimal value of a is equivalent to the problem of

finding the smallest parallelogram enclosing the space-frequency support, under

the constraint that two sides of the parallelogram must be perpendicular to the

u axis (Fig. 7.6). (This constraint arises because the signal must be sampled

specifically in the space domain.) The minimum number of samples needed for

reconstruction (based on the FRT sampling theorem) is given by the area of this

enclosing parallelogram, which is equal to the bicanonical width product for the

two FRT domains orthogonal to the sides of the parallelogram. Reconstruction of

the continuous signal is possible through the interpolation formula associated with

the FRT sampling theorem, which is a special case of the LCT interpolation formula

in (7.15) [33, 34, 36].

This approach is illustrated in Fig. 7.6, where the shaded region shows the space-

frequency support. In the classical approach, we would be finding the smallest

rectangle perpendicular to the axes that encloses the space-frequency support of the

signal. With the proposed approach, we find the smallest enclosing parallelogram

with two sides perpendicular to the space axis. Since the FRT includes the ordinary

Fourier transform as a special case (and parallelograms include rectangles), the

proposed approach will never require more samples than the classical approach. On

the other hand, the freedom to optimally choose a can result in a fewer number of

samples being necessary [33, 34, 36]. (That is, the area of the fitting parallelogram

will be always less than or equal to the area of the fitting rectangle.)

Fig. 7.6 The smallest

enclosing parallelogram

(solid) and rectangle

(dashed), both under the

constraint that two sides be

perpendicular to the space

axis u. The shaded region is

the space-frequency

support [33, 36]
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Fig. 7.7 The

space-frequency support of

f .u/ (left) and fT.u/ (right)

for space- and LCT-limited

signals. The area of both

parallelograms are equal to

uuTjˇj [34]
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7.5.2 Unconstrained Signal Representation

In some applications we may have the freedom to process the analog signal prior

to sampling and hence to sample the signal at a domain of our choice. In this case

the number of samples can be further reduced [33]. This involves computing the

FRT of the analog signal prior to sampling. Such computations may involve chirp

modulators for time-domain signals and lenses for space-domain signals [5]. After

sampling, if necessary we can return back to the original domain in  N logN time

since discrete FRTs can be computed in this amount of time [35].

The FRT sampling theorem allows us to work with any two arbitrary domains

(the sampling domain and the domain where the extent determines the sampling

rate) since any such domains can be related through the FRT; hence, we are free to

determine the sampling rate from the extent in any FRT domain of our choice. This

allows us to further reduce the number of samples by enclosing the support with an

arbitrary parallelogram, instead of a rectangle. This approach reduces to a simple

geometrical problem which requires us to find the minimum-area parallelogram

enclosing the given space-frequency support. In contrast to the constrained case,

having the flexibility of sampling in any FRT domain removes the requirement that

the two sides of the parallelogram be perpendicular to the space domain, and allows

us to fit an arbitrary parallelogram. The number of samples required is given by

the area of the parallelogram, which is equal to the bicanonical width product. The

signal can be represented optimally through its samples at either of the two FRT

domains that are orthogonal to the sides of the best-fitting parallelogram. Note that

this approach gives us two optimal FRT domains in which the signal should be

sampled. It is also possible to represent the signal in any essentially equivalent LCT

domain, with the same sampling efficiency [33, 34].
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7.6 Efficient Discrete LCT Computation for System

Simulation

We now review how the bicanonical width product is useful for the efficient and

accurate simulation of optical systems, based on a natural formulation of discrete

LCT (DLCT) computation [35, 61]. It has been recently shown that if the number

of samples N is chosen to be at least equal to the bicanonical width product,

the DLCT can be used to obtain a good approximation to the continuous LCT,

limited only by the fundamental fact that a signal cannot have strictly finite extent

in more than one domain [35, 61]. The exact relation between the discrete and

continuous LCT precisely shows the approximation involved and demonstrates how

the approximation improves with increasing N [35]. Because this exact relation

generalizes the corresponding relation for Fourier transforms [62], the DLCT

defined in [63] approximates the continuous LCT in the same sense that the DFT

approximates the continuous Fourier transform, provided the number of samples and

the sampling intervals are chosen based on the LCT sampling theorem as specified

in [35, 61].

We also note that this DLCT can be efficiently computed in O.N logN/ time

by successively performing a chirp multiplication, a fast Fourier transform (FFT),

and a second chirp multiplication, by taking advantage of the simple form of

the DLCT [35, 52, 63]. This straightforward fast computation approach does not

require sophisticated algorithms or space-frequency support tracking for accurately

computing the continuous LCT, as opposed to other LCT computation methods

[64–69]. To summarize, a simple fast computation method, a well-defined rela-

tionship to the continuous LCT, and unitarity make this definition of the DLCT

an important candidate for being a widely accepted definition of the discrete version

of the LCT [35].

Note that in order to use any DLCT definition in practice, to approximately

compute the samples of the LCT of a continuous signal, it is necessary to know how

to choose the number of samples and the sampling intervals, based on some prior

information about the signal. The described computation approach (first discussed

in [61], and then independently developed in [35]) meets precisely this demand

and allows us to accurately compute LCTs with the minimum possible number

of samples. In this formulation, the extents of the signal in the input and output

LCT domains (the original space domain and the target LCT domain) are assumed

to be specified as prior information. This is equivalent to assuming an initial

parallelogram-shaped space-frequency support [33, 34, 70]. The minimum number

of samples required for accurate computation is then determined from the LCT

sampling theorem. This minimum number of samples is equal to the bicanonical

width product, which is also the area of the parallelogram support [33, 35]. The

DLCT defined in [63] works with this minimum number of samples without

requiring any oversampling at the intermediate stages of the computation, in contrast

to previously given approaches [66, 67] for the same DLCT. On the other hand, use

of the Shannon–Nyquist sampling theorem instead of the LCT sampling theorem, as
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in [66, 67], leads to problems such as the need to use a greater number of samples,

different sampling rates at intermediate stages of the computation, or different

numbers of samples at the input and output domains.

This natural DLCT computation method has been revisited in [70], where an

interpretation of the method has been given through phase-space diagrams. This

allows us to see from yet another perspective how this elegant and accurate LCT

computation method [35, 61] works with the minimum number of samples, without

requiring interpolation. The DLCT computation presented in [35, 61] and the phase-

space illustrations in [70, 71] assume that the extent of the signal is known at the

input and output of the system to be simulated. We now discuss how to optimally

simulate optical systems by using this DLCT computation method when the space-

frequency support of the input signal is specified [36] (rather than its extents in the

input and output domains). Different assumptions about the initial space-frequency

support have been made in the literature to explore efficient DLCT computation

[65–69, 72, 73]. Hence here we explore a unified method that works with any

initial support while still ensuring the minimality of the number of samples [36].

The idea is to find the number of samples by fitting a parallelogram to the given

space-frequency support, such that two opposing sides are perpendicular to the

u axis (the input domain) and the other sides are perpendicular to the oblique

axis corresponding to the output LCT domain. The area of the smallest fitting

parallelogram gives the number of samples that needs to be used for an accurate

DLCT computation [36]. Then the samples of the continuous signal at the output of

the optical system can be obtained by sampling the input signal at this rate and then

computing its DLCT as described in [35].

This elegant DLCT formulation is mainly achieved through the property that

the bicanonical width product is an invariant measure for the number of degrees

of freedom of signals under linear canonical transformation [33, 34]. To see this,

suppose a finite extent has been specified in the space domain and in some other

LCT domain. The corresponding space-frequency support is shown in Fig. 7.7a.

If we transform to precisely the same LCT domain in which the extent has been

specified, the new space-frequency support becomes as shown in Fig. 7.7b. Here

M and M0 are the scaling parameters associated with the LCT and inverse LCT

operations, respectively. Note that in both parts of the figure, the support is bounded

by a vertical corridor, perpendicular to the space domain in part a, and to the

LCT domain in part b. We are not surprised that the transformed support is

again a parallelogram, since the linear geometric distortion imparted by an LCT

always maps a parallelogram to another parallelogram. Moreover, the areas of both

parallelograms are equal to each other and given by the bicanonical width product

uuTjˇj, so that the number of degrees of freedom as measured by the bicanonical

width product remains the same after the LCT. This does not surprise us either, since

LCTs are known not to change the support area in phase space. The fact that LCTs

model an important family of optical systems makes the bicanonical width product

a suitable invariant measure for the number of degrees of freedom of optical signals.
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On the other hand, the space-bandwidth product, which is the area of the

smallest bounding perpendicular rectangle, may change significantly after linear

canonical transformation, and quadratic-phase optical systems. (This is the reason

why the number of samples must be increased at some intermediate stages of certain

previously proposed FRT and LCT algorithms which rely on the space-bandwidth

product either as the measure of the number of degrees of freedom or as the

minimum number of samples required [65–69, 72, 73]. In contrast, fast computation

of LCTs based on the results presented in [35, 61] allows us to work with the

same number of samples in both domains without requiring any oversampling. This

number of samples is the minimum possible for both domains based on the LCT

sampling theorem, and is given by the bicanonical width product [35].) This factor

makes the conventional space-bandwidth product undesirable as a measure of the

number of degrees of freedom, which we expect to be an intrinsic and conserved

quantity under invertible unitary transformations.

The so-called generalized space-bandwidth product, which essentially removes

the requirement that the rectangular support be perpendicular to the axes, has been

proposed [74] as an improvement over the conventional space-bandwidth product.

A related approach has also been studied [60]. It has been noted that this entity

is invariant under the FRT operation (rotational invariance), but it has also been

emphasized that “further research is required in obtaining other forms of generalized

space-bandwidth products that are invariant under a more general area preserving

space-frequency operations: the symplectic transforms” [74]. The bicanonical width

product meets precisely this demand and allows us to compute LCTs with the

minimum possible number of samples without requiring any interpolation or

oversampling at intermediate stages of the computation [35].

7.7 Degrees of Freedom of Optical Systems

We now discuss how to explicitly quantify the degrees of freedom of first-order

optical systems with multiple apertures, and give explicit conditions for lossless

transfer [33, 37]. In particular, we answer the following questions about apertured

optical systems, which here refers to systems consisting of an arbitrary sequence of

thin lenses and apertures separated by sections of free space:

• Given the space-frequency support of an input signal and the parameters of an

apertured optical system, will there be any information loss upon passage through

the system?

• Which set of signals can pass through a given apertured system without any

information loss? In other words, what is the largest space-frequency support

that can pass through the system without any information loss?

• What is the maximum number of spatial degrees of freedom that can be supported

by a given apertured system?
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The space-frequency support (phase-space support) of a set of signals may be

defined as the region in the space-frequency plane (phase space) in which a large

percentage of the total energy is confined [5, 30]. The number of degrees of

freedom is given by the area of the space-frequency support. We also define the

space-frequency window (phase-space window) of a system [33, 37] as the largest

space-frequency support that can pass through the system without any information

loss. Here we develop a simple method to find the space-frequency window of

a given system in terms of its parameters. Once the space-frequency window of

the system is determined, it specifies the set of all signals that can pass through

the system without information loss: the optical system preserves the information

content of signals whose space-frequency supports lie inside the system window. All

we need to do is to compare the space-frequency support of the input signal with the

space-frequency window of the system. If the signal support lies completely inside

the system window, the signal will pass through the system without any information

loss. Otherwise, information loss will occur.

The number of degrees of freedom of the set of signals which can pass through

a system can be determined from the area of the space-frequency window of the

system. Although the space-frequency window may in general have different shapes

[5, 30], it is often assumed to be of rectangular shape with the spatial extent

determined by a spatial aperture in the object or image plane, and the frequency

extent determined by an aperture in a Fourier plane. (Again, we consider one-

dimensional signals and systems for simplicity.) If these apertures are of length x

and x respectively, then the number of degrees of freedom that can be supported

by the system is given by xx. More generally, for space-frequency windows of

different (non-rectangular) shapes, the number of degrees of freedom is given by the

area of the space-frequency window [33, 37].

Physical systems which carry or process signals always limit their spatial extents

and bandwidths to certain finite values. A physical system cannot allow the existence

of frequencies outside a certain band because there is always some limit to the

resolution that can be supported. Likewise, since all physical events of interest

have a beginning and an end, or since all physical systems have a finite extent, the

temporal duration or spatial extent of the signals will also be finite. For example,

in an optical system the sizes of the lenses will limit both the spatial extent of the

images that can be dealt with and their spatial bandwidths. More generally, we may

say that they will limit the signal to a certain region in the space-frequency plane.

We refer to this region as the space-frequency window of the system. It is these

physical limitations that determine the space-frequency support of the signals and

thus their degrees of freedom. Just as these may be undesirable physical limitations

which limit the performance of the system, they may also be deliberate limitations

with the purpose of limiting the set of signals we are dealing with. When a signal

previously represented by a system with larger space-frequency window is input

into a system with smaller space-frequency window, information loss takes place.

The conventional space-bandwidth product has been of fundamental importance

because of its interpretation as the number of degrees of freedom [5, 17–23, 25–28,

30–32, 75, 76]. In most works, the space-bandwidth product, as its name implies, is
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the product of a spatial extent and a spatial-frequency extent. This implies the

assumption of a rectangular space-frequency region. However, the set of input

signals may not exhibit a rectangular space-frequency support, and even if they do,

this support will not remain rectangular as it propagates through the system [33–35].

Likewise, the space-frequency windows of multi-component optical systems, as we

will see in this section, do not in general exhibit rectangular shapes. This possibility

and some of its implications were discussed in [30]. In [33, 37] we made concrete

the hypothetical concept of a non-rectangular space-frequency window, and showed

how it can be actually computed for a broad class of optical systems, as will be

discussed here. (To prevent possible confusion, we underline that we are dealing

with systems with sequentially cascaded apertures, and not systems with multiple

parallel apertures.)

We also note that the phase-space window has been referred to by different

names, such as the space-bandwidth product of the system (in short SWY)

[30, 77, 78], the system transmission range [77], and the Wigner or space-bandwidth

chart of the system [77, 78]. Also, the concept of degrees of freedom can be related

to other concepts such as Shannon number and information capacity of an optical

system [76], geometrical etendue [79], dimensionality, and so on.

In order to treat systems with real physical parameters, we first revisit some of the

background material discussed in Sect. 7.2, and translate them to their dimensional

counterparts. We then discuss how to find the phase-space window of an optical

system. Next, we treat the cases of lossless and lossy transfer separately, and finally

conclude with a discussion of applications.

7.7.1 Scale Parameters and Dimensions

Dimensionless variables and parameters were employed in the previous sections for

simplicity and purity (see Sect. 7.2). In this section, we will employ variables with

real physical dimensions. For this, we need to revisit a number of earlier definitions

and results. When dealing with FRTs, the choice of scale and dimensions must

always be noted, as this has an effect on the fractional order observed at a given

plane in the system [5, pp. 320–321]. Using x to denote a dimensional variable

(with units of length), the ath-order FRT [5] of a function Of .x/, denoted by Ofa.x/,
can be defined as

Ofa.x/ Á . OFaOf /.x/ Á
Z 1

1
OKa.x; x

0/Of .x0/ dx0; (7.27)

OKa.x; x
0/ Á A

s
e
i



cot

s2
x22

csc

s2
xx0C cot

s2
x02

Á

:

Here s is an arbitrary scale parameter with dimensions of length. The scale

parameter s serves to convert the dimensional variables x and x0 inside the FRT

integral to dimensionless form. A hat over a function or kernel shows that it takes
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dimensional arguments [5, pp. 224–227]. The FRT definition above reduces to the

pure mathematical FRT definition with dimensionless arguments if we define the

dimensionless variables u D x=s and u0 D x0=s, or simply if we set s D 1 in

our measurement unit (meters, etc.). The choice s D 1 unit makes the expressions

simpler, but we feel that this merely hides the essential distinction between

dimensional and dimensionless variables and would actually be a disservice to the

reader.

We will denote the LCT of a function Of .x/ with the dimensional parameter matrix
OT D Œ OA OBI OC OD� as Of OT.x/:

Of OT.x/ Á . OC OTOf /.x/ Á
Z 1

1
OC OT.x; x0/Of .x0/ dx0; (7.28)

OC OT.x; x0/ Á
s

1

OB
ei=4e

i


OD
OB
x22 1

OB
xx0C OA

OB
x02

Á

;

for OB ¤ 0. A hat over a parameter shows that it is the dimensional counterpart of the

same parameter without the hat. Any LCT can be decomposed into a (dimensional)

FRT followed by scaling followed by chirp multiplication [5, 37]:

OT D
Ä OA OB

OC OD



D
Ä

1 0

 q

s2 1

 Ä

M 0

0 1
M

 Ä

cos  s2 sin

 sin

s2 cos



: (7.29)

The three matrices, respectively, correspond to the transformation matrices of

chirp multiplication with parameter q (multiplication by exp .i q

s2 x
2/), coordinate

scaling with factor M > 0 (mapping of Of .x/ into
p

1=MOf .x=M/), and ath

order dimensional FRT with  D a=2 (transformation of Of .x/ into Ofa.x/). The

decomposition can be written more explicitly in terms of the LCT and FRT domain

representations of the signal Of .x/ as

Of OT.x/ D exp


i
q

s2
x2

Á

r

1

M
Ofa

 x

M

Á

: (7.30)

This is the dimensional version of the Iwasawa decomposition in (7.9).

By appropriately choosing the three parameters a, M, q, the above equality can

be satisfied for any OT D Œ OA OBI OC OD� matrix. Solving for a, M, q in (7.8), we obtain

the decomposition parameters in terms of the matrix entries OA, OB, OC, OD:

a D

8

<

:

2

arctan



1
s2

OB
OA

Á

; if OA  0

2

arctan



1
s2

OB
OA

Á

C 2; if OA < 0
(7.31)

M D
q

OA2 C . OB=s2/2; (7.32)



224 F.S. Oktem and H.M. Ozaktas

q D

8

<

:

s2 OC
OA  1

s2

OB= OA
OA2C. OB=s2/2

; if OA ¤ 0

s2 OD
OB ; if OA D 0:

(7.33)

The range of the arctangent lies in .=2; =2�.

7.7.2 Phase-Space Window of Optical Systems

We now describe how to find the phase-space window (space-frequency window) of

an apertured optical system [33, 37]. Such systems consist of arbitrary concatena-

tions of apertures with quadratic-phase systems (which in turn consist of an arbitrary

number of lenses, sections of free space and quadratic graded-index media). Also

note that a lens with a finite aperture can be viewed as an ideal lens followed by a

finite aperture. Although beyond the scope of the present discussion, these results

can be extended to more general systems involving occlusions [80], prisms and

gratings [78], and bends and shifts of the optical axis.

Let us first introduce the notation. The input and output planes are defined along

the optical axis z at z D 0 and z D d, where d is the length of the system. If

the apertures did not exist, the amplitude distribution at any plane perpendicular

to the optical axis could be expressed as an LCT of the input. Hence each z plane

corresponds to an LCT domain. Let L denote the total number of apertures in the

system. zj and j denote the location and extent of the jth aperture in the system,

where j D 1; 2; : : : ;L. The matrix OTj is used to denote the parameter matrix of the

system from the input to the position of the jth aperture; that is, the system lying

between 0 and zj excluding the apertures. The matrix OTj can be readily calculated

using the matrices for lenses, sections of free space, quadratic graded-index media,

and the concatenation property [5]. The matrix elements of OTj is denoted by OAj, OBj,
OCj, ODj. The associated Iwasawa decomposition parameters is denoted by aj, Mj, qj,

which can be computed from OAj, OBj, OCj, ODj by using the formulas (7.31), (7.32),

(7.33). The FRT order in the Iwasawa decomposition begins from 0 at the input of

the system, and then monotonically increases as a function of distance [5, 34].

For lossless transfer through the system, the extent of the signal just before each

aperture must lie inside the aperture. For simplicity we assume that both the aperture

and the signal extents are centered around the origin. Then, the following must be

satisfied for j D 1; 2; : : : ;L:

x OTj
Ä j; (7.34)

where x OTj
denotes the extent of the signal in the x OTj

domain, which corresponds to

the LCT domain at the z D zj plane, where the jth aperture is situated.

As we have showed before, LCT domains are equivalent to scaled FRT domains

and thus to scaled oblique axes in the space-frequency plane [34]. Based on this
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equivalence, each finite interval in an LCT domain will correspond to a scaled

interval in the equivalent FRT domain. To see this explicitly in the dimensional case,

we refer to (7.30), which implies that if the linear canonical transformed signal Of OT.x/

is confined to an interval of length x OT, so is Ofa.x=M/. Therefore, the extent of the

fractional Fourier transformed signal Ofa.x/ in the equivalent FRT domain is x OT=M.

Thus, the condition in (7.34) can be reexpressed as

xaj Ä j=Mj; (7.35)

where xaj denotes the extent of the signal in the ajth order (dimensional) FRT

domain.

FRT domains are often visualized in the dimensionless space-frequency plane

where the coordinates are scaled such that the space and frequency axes are

dimensionless. This is achieved by introducing the scaling parameter s and the

dimensionless scaled coordinates u D x=s and  D sx. The condition for lossless

information transfer then becomes

xaj=s Ä j=Mjs; (7.36)

where xaj=s denotes the extent of the signal in the ajth order (dimensionless) FRT

domain (along the oblique axis making angle aj=2 with the u D x=s axis). In other

words, for every j D 1; 2; : : : ; L, the signal must be confined to the normalized

aperture extent of j=Mjs along the oblique axis with angle aj=2.

It is well known that if the space-, frequency-, or FRT-domain representation of

a signal is identically zero (or negligible) outside a certain interval, so is its Wigner

distribution [5, 59]. As a direct consequence of this fact, the condition in (7.36)

defines a corridor of width j=Mjs in the direction orthogonal to the ajth order FRT

domain uaj . (With the term “corridor” we are referring to an infinite strip in the

space-frequency plane perpendicular to the oblique uaj axis.) The corridor makes

an angle .aj C 1/=2 with the u D x=s axis in the dimensionless space-frequency

plane (see Fig. 7.5). Now, if we intersect the corridors defined by each aperture,

we obtain a bounded region in the space-frequency plane, which has the form of

a centrally symmetrical convex polygon (see Fig. 7.8 for L D 2 and Fig. 7.9 for

L D 4). We refer to this convex polygon defined by the normalized aperture extents

as the space-frequency window of the system [37].

The space-frequency window specifies the set of all signals that can pass through

the system without any loss: the optical system preserves the information content

of all signals whose supports lie inside the space-frequency window. The area

of the space-frequency window gives the number of degrees of freedom that can

pass through the system. This is also the minimum number of samples required to

faithfully represent an arbitrary signal at the output of the system.

We can summarize the steps for finding the phase-space window (space-

frequency window) as follows [37]:
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1. Compute the parameter matrix OTj for each aperture j D 1; 2; : : : ;L using the

matrices for lenses, sections of free space and quadratic graded-index media, and

the concatenation property. Recall that OTj was defined as the parameter matrix of

the system lying between the input plane and the location of the jth aperture.

2. Compute the corresponding Iwasawa decomposition parameters aj and Mj (the

fractional order and the magnification) by inserting the matrix entries OAj, OBj, OCj,
ODj into the formulas (7.31) and (7.32).

3. In the dimensionless space-frequency plane, draw a corridor of width j=Mjs

making angle .aj C 1/=2 with the x=s axis, for each j (see Fig. 7.9). The

corridor is explicitly defined by the following two lines: y D  cot.aj=2/x ˙
j

2Mjs
csc.aj=2/.

4. Intersect the corridors from all apertures to determine the region lying inside all

the corridors. This is the phase-space window at the input plane z D 0.

5. Scale the horizontal and vertical coordinates by s and 1=s, respectively, to obtain

the phase-space window in the dimensional space-frequency plane x-x.

A few remarks are in order at this point. First, the area of the window and

hence the number of degrees of freedom of the system remains the same whether

Fig. 7.8 Space-frequency

window of a system with two

apertures [37]
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Fig. 7.9 Space-frequency window of a system with four apertures [37]
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it is computed in dimensional or dimensionless space. Second, choice of the scale

parameter s is arbitrary and the system window in the dimensional space-frequency

plane is independent of the choice of s. However, choice of s does affect the value

of a as a function of z. Some choices better utilize the range of a (as in Fig. 7.10),

whereas poor choices lead to a changing too quickly over a short range of z and

then saturating [5, pp. 320–321, 377–378]. One approach is to choose s such that

the space and frequency extents in the dimensionless space-frequency plane are

comparable to each other. Third, the system window is computed with respect to

a chosen reference plane. Above, we compute it with respect to the input plane,

so that we can directly compare the input signal support with the system window.

The phase-space window at the input plane can be shortly referred to as the input

phase-space window of the system. If one desires to visualize the system window

with respect to a different reference plane, it can be transformed to the new plane

using the LCT transformation from the input plane to the new reference plane [37].

(More explicitly, if the ith corner of the system window is expressed as .x.i/;
.i/
x /,

then after LCT transformation with matrix OT, the new corner will be described by

the coordinates OTŒx.i/
.i/
x �T , where T is the transpose operation [33, 65].)

We now illustrate the method on a sample system. Figure 7.10a shows a system

consisting of several apertures and lenses, whose aperture sizes and focal lengths are

given right above them. The fractional transform order a and the scale parameter M

of the system are plotted in Fig. 7.10 as functions of distance z. The emphasis in this

paper is on computing aj and Mj at the aperture locations, since these allow us to

determine the system window. However, these quantities can also be computed for

all values of z in the system, revealing their continual evolution as we move along

the optical axis, as illustrated in Fig. 7.10b, c. We can compute a.z/ and M.z/ by

expressing OA; OB; OC; OD in terms of z and using them in Eqs. (7.31)–(7.33) [5, 41].

Figure 7.11a and c show the system window at the input plane z D 0. This region

defines the set of all input signals that can pass through the system without any

information loss. Input signals whose space-frequency support lies wholly inside

this region will not experience any loss. Similarly, Fig. 7.11b and d show the system

window at the output plane z D d. This region defines the set of all signals that

can be observed at the output of the system. The region in Fig. 7.11b is just a

propagated version of the region in Fig. 7.11a through the entire optical system.

This can be obtained by applying the concatenated LCT matrix OTL : : : OT2
OT1 to the

space-frequency window at the input plane, to take into account the linear distortion

due to the entire optical system (by multiplying the coordinates of each corner of

the window with the LCT matrix, as described before).

Just as the concatenation property of transformation matrices allows us to

represent the cumulative action of all optical elements present with a single entity,

the system window is an equivalent aperture that appropriately transforms and

combines the effects of all individual apertures in different domains, into a single

space-frequency aperture [37].

The space-frequency (phase-space) window of the system in Fig. 7.10a is

determined only by the 1st, 5th, 7th, and 8th apertures. The other apertures do
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Fig. 7.10 (a) An apertured

optical system with input

plane at z D 0 and output

plane at z D 2 m [37]. The

horizontal axis is in meters.

The lens focal lengths fj in

meters and the aperture sizes

j in centimeters are given

right above them. (b) and (c)

Evolution of a.z/ and M.z/ as

functions of z.  D 0:5 �m

and s D 0:3 mm [5, 41]
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not affect or limit the space-frequency window of the system and therefore can be

considered as redundant from the system’s viewpoint. (Removing the redundant

apertures from the system or replacing them with apertures of greater size will have

negligible effect on the behavior of the system, for any given input signal.)

It is also worth noting that the information loss caused by an aperture will depend

not only on the actual physical size of the aperture, but also the magnification of the

signal at that location. If the magnification at the aperture location is small, there

will be less or no information loss. For example, although the aperture sizes are the

same for the 2nd, 6th, and 8th apertures, only the 8th aperture limits the system

window (M.1:8/  2:5 whereas M.0:5/  1:2 and M.1:4/  1). This illustrates

that the magnification in the plane of the aperture is as important as the size of

the aperture in limiting the system window. If we have some flexibility during the
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Fig. 7.11 The space-frequency window of the system at the input plane in the dimensionless (a)

and dimensional spaces (c). The space-frequency window of the system at the output plane in the

dimensionless (b) and dimensional spaces (d) [37]

design of the optical system, careful choice of lens and aperture locations can help

information losses to be minimized, a process which will be aided by the space-

frequency approach and the graphs for M.z/ we have discussed.

7.7.3 Necessary and Sufficient Condition for Lossless Transfer

An input signal will pass through the system without any information loss if and only

if its space-frequency support is fully contained in the input space-frequency (phase-

space) window of the system. That is, if the signal support does not lie completely

inside the system window, information loss will occur [37].

Proof. LCT domains correspond to oblique axes in the space-frequency plane.

Consider corridors of varying width, orthogonal to such an oblique axis. The extent

of the signal in a given LCT domain can be determined from the space-frequency

support of the signal, by finding the width of the narrowest orthogonal corridor

enclosing the space-frequency support. First, let us consider an input signal whose

space-frequency support lies completely inside the input space-frequency window

of the system. This guarantees that along any oblique axis in the space-frequency
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plane corresponding to some LCT domain in which an aperture resides, the extent

of the signal will be smaller than the width of the aperture at that LCT domain,

and hence the signal will pass through that aperture unhindered. Repeating this

for all apertures, the input signal will pass through the whole system without

any information loss. (Recall that the space-frequency window is defined by the

intersection of the corridors defined by the apertures. If the extent of the signal was

larger than the width of the aperture at that LCT domain, the orthogonal corridor

enclosing the space-frequency support would have been wider than the corridor

defined by the aperture, so that the space-frequency support of the signal could not

lie within the space-frequency window of the system.)

Conversely, consider an input signal which passes through the system without

any loss. This implies that the signal extent was smaller than the aperture width for

each aperture, since otherwise irreversible information loss would occur. Recall that

each aperture defines a corridor perpendicular to the LCT domain in which it resides.

For any of these LCT domains, the space-frequency support of the signal must lie

within this corridor, since if not, the extent of the signal in that domain would not lie

within that aperture, leading to information loss and hence a contradiction. Since this

argument must be true for all apertures, it follows that the signal space-frequency

support must lie inside the region defined by the intersection of the corridors, which

is the space-frequency window of the system. This completes the proof. ut
A straightforward but lengthy way to determine whether information loss will

take place would be to trace the space-frequency support of the signal as it passes

through the whole system [33]. When the signal arrives at the first aperture, there

will have taken place a linear distortion on the initial space-frequency support of the

signal. After this linear distortion, if the extent of the signal in that LCT domain is

less than the aperture size, then the signal will pass through this aperture without any

information loss. Then another linear distortion will take place as the signal travels

to the next aperture. Again, we will determine whether there is any information

loss by comparing the extent in this domain to the aperture size. Repeating this

procedure throughout the system, we can determine whether the signal passes

through the system losslessly. This lengthy way of determining whether there will

be information loss is specific to a certain input signal and its support. On the other

hand, our method is general in the sense that, once the space-frequency window

of the system is determined, it specifies the set of all signals that can pass through

the system without information loss. The optical system preserves the information

content of all signals whose space-frequency support lies inside the space-frequency

window of the system.

7.7.4 Lossy Transfer

If the space-frequency window does not enclose the space-frequency support of

the input signal completely, then we would intuitively expect the following: The
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information contained within the intersection of the space-frequency support of the

signal and the space-frequency window of the system will be preserved, and the

rest will be lost (Fig. 7.12). This indeed turns out to be approximately true in most

cases [37]. In other words, just as a spatial aperture passes certain parts of a signal

and blocks the rest, the space-frequency window acts like an aperture in phase-

space, passing certain parts and blocking others. In particular, if the set of input

signals has a greater number of degrees of freedom than the number of degrees of

freedom the system can support, information loss will take place, since a region with

larger area can never possibly lie completely within a region with smaller area.

Given an arbitrary space-frequency support at the input, one can obtain the space-

frequency support at any position in the system by tracing the support throughout

the system [33, 65]. Whenever an aperture narrower than the signal extent is

encountered, the outlying parts of the signal will be truncated. The effect of this

truncation on the space-frequency support of the signal will be to likewise truncate

the regions of the support lying outside the corridor defined by the aperture. If this

were the only effect of the aperture in the space-frequency plane, then the statements

made above would be exact (rather than being approximate) and the space-frequency

support observed at the output could simply be found as follows: (a) Find the

intersection of the input space-frequency support and the system space-frequency

window at the input plane, (b) Propagate this space-frequency region to the output

plane. However, this simple and intuitive result is not exact because each aperture

that actually cuts off the outlying parts of the signal will also cause a broadening of

the support of the signal along the orthogonal domain, due to the Fourier uncertainty

relation.

We now argue that the broadening effects are generally negligible for most real

physical signals and systems, so that the simple and intuitive result above is usually

valid [37]. The effect of an aperture corresponds to multiplication with a rectangle

function. Let j denote the size of the aperture. Firstly, if the signal extent before

the aperture is already smaller than j, then the windowing operation will affect
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Fig. 7.12 (a) The signal support is wholly contained within the system window so there is no loss

of information. (b) The part of the signal support lying within the system window will pass, and

the parts lying outside will be blocked [37]
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neither the signal nor its space-frequency support. However, if the signal extent

in that domain is larger than j, then the signal will be truncated and the space-

frequency support will also be affected. Because windowing involves multiplication

with a rectangle function, it implies convolution of the Wigner distribution of the

signal with the Wigner distribution of the rectangle function along the orthogonal

direction [44, 59]. (An expression for the Wigner distribution, OWrect.x; x/ of the

rectangle function rect.x=j/ is known [5, 56] but its exact form is not necessary

for our argument.) This operation will cause compaction of the Wigner distribution

of the signal to a corridor of width j. Moreover, convolving the Wigner distribution

of the signal with that of the rectangle function along the orthogonal direction will

result in broadening of the Wigner distribution by an amount that is comparable with

the extent of OWrect in that direction. This extent is approximately 1=j, and thus the

spread in the orthogonal direction after windowing will be  1=j [56].

For simplicity, consider a rectangular region in the space-frequency plane, in

which case the space-bandwidth product can be taken as a measure of the number of

degrees of freedom. Let us denote the space-bandwidth product as N D xx  1,

where x ve x denote the spatial and frequency extents. Noting that the apertures

can be modeled as rectangle functions, the frequency extent associated with the

rectangle function will approximately be the reciprocal of its spatial extent: 1=j.

Let us assume that the aperture extent is a fraction Ä of the signal extent; that is

j D Äx where Ä < 1. After the aperture, the new space-domain signal extent

will be given by x0 D Äx. Moreover, since multiplication in the space-domain

implies convolution in the frequency domain, the new extent in the frequency

domain will be approximately the sum of the spectral extents of the signal and the

aperture. The frequency extent of the signal is x D N=x and the frequency

extent of the window is  1=j D 1=Äx D x=ÄN. Then, the new extent

in the frequency domain will be x
0  x C x=ÄN D x.1 C 1=ÄN/.

Therefore, the space-bandwidth product of the signal after the aperture will be

x0x
0  xx.Ä C 1=N/. Here, the first term corresponds to the reduced

space-frequency support resulting from the truncation inflicted by the aperture, and

the second term corresponds to the increase arising from the broadening in the

orthogonal direction. However, if Ä  1=N, or equivalently N  1=Ä, then we can

neglect the term 1=N in comparison with Ä. Thus, we can neglect the broadening

effect if N  1=Ä. This condition will hold for most real physical signals and

systems. For a physical signal that contains any reasonable amount of information,

such as an image, the number of degrees of freedom will be much larger than unity

and also much larger than 1=Ä, as long as Ä is not very close to 0. The case where Ä

is very close to 0 is not very likely either, since apertures with very small Ä truncate

nearly all of the signal. For instance, consider a window that allows only 0:1 of

the extent of the signal to pass. Even in this case, N  10 will be sufficient and

most information bearing signals will satisfy this condition easily. Therefore, the

broadening effect will be usually negligible when we are dealing with images and

other information bearing signals. This in turn means that it is fairly accurate to say

that when the space-frequency support of the signal does not wholly lie within the

system window, the part that does lie within will pass, and the remaining parts will
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be lost. On the other hand, this simple result will not hold for some signals that

do not exhibit too much spatial structure, such as a laser beam, and the broadening

effect must be taken into account.

7.7.5 Discussion and Applications

We considered optical systems consisting of an arbitrary sequence of lenses and

apertures separated by arbitrary lengths of free space (or quadratic graded-index

media). We defined the space-frequency window (phase-space window) and showed

how it can be explicitly determined for such a system. The area of the window gives

the maximum number of degrees of freedom that can be supported by the system.

More significantly, the window specifies which signals can pass through the system

without information loss; we showed that the signal will pass losslessly if and only

if the space-frequency support of the signal lies completely within this window.

A precondition for lossless passage is of course that the area of the space-frequency

support (and thus the number of degrees of freedom) of the set of input signals must

be smaller than the area of the space-frequency window (and thus the number of

degrees of freedom the system can support). We further saw that when the space-

frequency support does not lie completely within the space-frequency window, the

parts that lie within the window pass and the parts that lie outside of the window

are blocked. While the last result is not exact, we showed that it is valid to a good

degree of approximation for many systems of practical interest [33, 37].

These results are very intuitive and provide considerable insight and guidance

into the behavior and design of systems involving multiple apertures. They can help

designing systems in a manner that minimizes information loss, for instance by

ensuring that the magnifications are as small as possible at aperture locations. An

advantage of this approach is that it does not require assumptions regarding the

input signals during analysis or design, since the concept of a system window is

signal-independent.

Being able to determine the space-frequency window as a function of the system

parameters as we have shown, and the possibility of tailoring and optimizing it

has potential applications in areas including optical superresolution [77, 78, 81–85],

holographic imaging [75, 80, 86–89], optical encryption systems [90], analysis and

design of recording devices [76, 79], and comparison between different implemen-

tations of a particular system [91], where apertured optical systems are involved.

The system window approach can yield new perspectives and rigorous approaches

for such applications and other previously considered problems in the literature.

A potentially important area of application is optical superresolution and space-

bandwidth product adaptation [92]. In this area the goal is to adapt the space-

frequency support of the input signal to the space-frequency window of the system

based on available a priori information about the signals. In most work in this area,

the system window is commonly assumed to be, or approximated as, a rectangular

shape or some other simple shape. Being able to precisely calculate the system
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window for a quite broad class of optical systems will make this superresolution

approach more accurate, efficient, and widely applicable.

Moreover, in optical encryption [90], the system window can be used to investi-

gate the optimal design of the encryption system, the most efficient representation

of encrypted signals, and determination of the number of degrees of freedom that

can be encrypted.

Yet another application of the results of this paper is the selection and optimiza-

tion of recording devices. The system window at the output plane is of special

use for this purpose, since it describes the largest space-frequency support that

can be observed at the output of the system. This gives the position, maximum

spatial extent, maximum frequency bandwidth (or in general the maximum extent

in any LCT domain), and maximum space-bandwidth product (or more generally

the bicanonical width product) that can be observed at the output of the system.

The spatial extent of the system window should be matched to the location and

width of the detector to ensure the recording of the entire output. The number of

pixels required can be determined by fitting a rectangle to the system window and

computing its area. This gives the number of samples needed to reconstruct any

output signal from its Nyquist samples. Once the detector width and the number of

pixels are determined, the pixel size is also revealed. Such an approach constitutes

a new way of analyzing the optical efficiency of detectors [79]. Moreover, if

specifications of the detector are pre-determined by some design limitations (such

as limited spatial resolution), then the system can be adapted to work as best as it

can with the specified detector [60].

The system window can also be useful in comparing alternative implementa-

tions of an optical system. One can choose among different implementations by

investigating which implementation supports more degrees of freedom and hence

causes less information (or power) loss due to the apertures (by comparing the

areas of the system windows). Alternatively, the design goal can be to find the

system window that is more compatible with the given detector limitations. Such

approaches have been pursued, for example, for comparing different holographic

systems [89] and different implementations of optical FRTs [91]. However, these

previous approaches are either highly dependent on the input signal considered,

involve many simplifications to make the analysis feasible, or yield only limited

numerical results.

As a final note, we have mostly used the terms space-frequency window or phase-

space window to distinguish these entities living in the space-frequency plane, from

the physical apertures that act on signals in various LCT (or equivalently FRT)

domains. However, since we have seen that these windows block or pass the space-

frequency support of the signal in a manner very similiar to how apertures block or

pass the physical signals, we can also speak of space-frequency apertures or phase-

space apertures.
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7.8 Conclusion

We discussed the relationships between LCT domains, FRT domains, and the space-

frequency plane. In particular, we showed that LCT domains correspond to scaled

fractional Fourier domains and thus to scaled oblique axes in the space-frequency

plane. This allows LCT domains to be labeled and monotonically ordered by the

corresponding fractional order parameter and provides a more transparent view of

the evolution of light through an optical system modeled by LCTs.

We then studied the number of degrees of freedom of optical systems and

signals based on these concepts. We first discussed the bicanonical width product,

which is the number of degrees of freedom of LCT-limited signals. The bicanonical

width product generalizes the space-bandwidth product and often provides a tighter

measure of the actual number of degrees of freedom of signals. We illustrated the

usefulness of the notion of bicanonical width product in two applications: efficient

signal representation and efficient system simulation. In the first application we

provided a sub-Nyquist sampling approach to represent and reconstruct signals

with arbitrary space-frequency support. This approach geometrically amounts to

enclosing the support with the smallest possible parallelogram, as opposed to

enclosing it with a rectangle as in the classical approach. In the second application

we provided a fast DLCT computation method which can accurately compute a

(continuous) LCT with the minimum number of samples given by the bicanonical

width product. Thus the bicanonical width product is also a key parameter in

fast discrete computation of LCTs, and hence in efficient and accurate simulation

of optical systems. Given the fundamental importance of the conventional space-

bandwidth product in signal processing and information optics, we believe the

bicanonical width product will find other applications in these areas as well.

Finally, we focused on the degrees of freedom of optical systems consisting of

an arbitrary sequence of lenses and apertures separated by arbitrary lengths of free

space (or quadratic graded-index media). We defined the space-frequency window

(phase-space window) and showed how it can be explicitly determined for such

a system in terms of the system parameters. The area of the window gives the

maximum number of degrees of freedom that can be supported by the system.

More significantly, the window specifies which signals can pass through the system

without information loss; we showed that the signal will pass losslessly if and only

if the space-frequency support of the signal lies completely within this window.

A precondition for lossless passage is of course that the area of the space-frequency

support (and thus the number of degrees of freedom) of the set of input signals must

be smaller than the area of the space-frequency window (and thus the number of

degrees of freedom the system can support). We further saw that when the space-

frequency support does not lie completely within the space-frequency window, the

parts that lie within the window pass and the parts that lie outside of the window

are blocked. While the last result is not exact, we showed that it is valid to a good

degree of approximation for many systems of practical interest.

Thus, just as the concatenation property of transformation matrices allows us

to represent the cumulative action of all optical elements with a single entity, the
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system window is an equivalent aperture that appropriately transforms and combines

the effects of all individual apertures in different domains, into a single space-

frequency aperture. These results are very intuitive and provide considerable

insight and guidance into the behavior and design of systems involving multiple

apertures. For example, they can help designing systems in a manner that minimizes

information loss, with the advantage that no assumptions regarding the input signals

is required, since the system window is a signal-independent entity. We briefly

discussed some potential application areas where the system window approach can

yield new perspectives. These include optical superresolution, optical encryption,

holographic imaging, design and optimization of recording devices, and comparison

of alternative implementations of apertured optical systems.
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43. H. Ozaktas, S. Arık, T. Coşkun, Fundamental structure of Fresnel diffraction: longitudinal

uniformity with respect to fractional Fourier order. Opt. Lett. 37(1), 103–105 (2012)

44. L. Cohen, Integral Time-Frequency Analysis (Prentice-Hall, Englewood Cliffs, 1995)

45. M.J. Bastiaans, Applications of the Wigner distribution function in optics, in The Wigner

Distribution: Theory and Applications in Signal Processing (Elsevier, Amsterdam, 1997),

pp. 375–426

46. G. Forbes, V. Maniko, H. Ozaktas, R. Simon, K. Wolf, Wignerdistributions and phase space in

optics. J. Opt. Soc. Am. A 17(12), 2274–2274 (2000)

47. A. Stern, Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421–1425

(2006)

48. J.J. Ding, Research of fractional Fourier transform and linear canonical transform. Ph.D.

thesis, National Taiwan University, Taipei, 2001

49. X.-G. Xia, On bandlimited signals with fractional Fourier transform. IEEE Signal Process.

Lett. 3(3), 72–74 (1996)

50. A. Zayed, On the relationship between the Fourier and fractional Fourier transforms. IEEE

Signal Process. Lett. 3(12), 310–311 (1996)

51. C. Candan, H.M. Ozaktas, Sampling and series expansion theorems for fractional Fourier and

other transforms. Signal Process. 83, 1455–1457 (2003)

52. T. Erseghe, P. Kraniauskas, G. Carioraro, Unified fractional Fourier transform and sampling

theorem. IEEE Trans. Signal Process. 47(12), 3419–3423 (1999)

53. R. Torres, P. Pellat-Finet, Y. Torres, Sampling theorem for fractional bandlimited signals:

A self-contained proof application to digital holography. IEEE Signal Process. Lett. 13(11),

676–679 (2006)

54. R. Tao, B. Deng, W.-Q. Zhang, Y. Wang, Sampling and sampling rate conversion of band

limited signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 56(1),

158–171 (2008)

55. O. Aytur, H.M. Ozaktas, Non-orthogonal domains in phase space of quantum optics and their

relation to fractional Fourier transforms. Opt. Commun. 120(3–4), 166–170 (1995)

56. H.M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, Convolution, filtering, and multiplexing

in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc.

Am. A 11(2), 547–559 (1994)

57. J.J. Healy, J.T. Sheridan, Cases where the linear canonical transform of a signal has compact

support or is band-limited. Opt. Lett. 33(3), 228–230 (2008)

58. H.M. Ozaktas, D. Mendlovic, Fractional Fourier optics. J. Opt. Soc. Am. A 12(4), 743–751

(1995)

59. L. Cohen, Time-frequency distributions-a review. Proc. IEEE 77(7), 941–981 (1989)

60. A. Stern, B. Javidi, Sampling in the light of Wigner distribution. J. Opt. Soc. Am. A 21(3),

360–366 (2004)

61. A. Stern, Why is the linear canonical transform so little known?, in AIP Conference Proceed-

ings (2006), pp. 225–234

62. A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1977)

63. S.-C. Pei, J.-J. Ding, Closed-form discrete fractional and affine Fourier transforms. IEEE Trans.

Signal Process. 48(5), 1338–1353 (2000)

64. B.M. Hennelly, J.T. Sheridan, Fast numerical algorithm for the linear canonical transform.

J. Opt. Soc. Am. A 22(5), 928–937 (2005)

65. B.M. Hennelly, J.T. Sheridan, Generalizing, optimizing, and inventing numerical algorithms

for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5),

917–927 (2005)

66. J.J. Healy, B.M. Hennelly, J.T. Sheridan, Additional sampling criterion for the linear canonical

transform. Opt. Lett. 33(22), 2599–2601 (2008)

67. J.J. Healy, J.T. Sheridan, Sampling and discretization of the linear canonical transform. Signal

Process. 89, 641–648 (2009)

68. H.M. Ozaktas, A. Koç, I. Sari, M.A. Kutay, Efficient computation of quadratic-phase integrals

in optics. Opt. Lett. 31(1), 35–37 (2006)



7 Linear Canonical Domains and Degrees of Freedom 239

69. A. Koc, H.M. Ozaktas, C. Candan, M.A. Kutay, Digital computation of linear canonical

transforms. IEEE Trans. Signal Process. 56(6), 2383–2394 (2008)

70. J.J. Healy, J.T. Sheridan, Reevaluation of the direct method of calculating Fresnel and other

linear canonical transforms. Opt. Lett. 35(7), 947–949 (2010)

71. J.J. Healy, J.T. Sheridan, Fast linear canonical transforms. J. Opt. Soc. Am. A 27(1), 21–30

(2010)

72. H. Ozaktas, O. Arikan, M. Kutay, G. Bozdagi, Digital computation of the fractional Fourier

transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996)

73. A. Koc, H. Ozaktas, L. Hesselink, Fast and accurate computation of two-dimensional non-

separable quadratic-phase integrals. J. Opt. Soc. Am. A 27(6), 1288–1302 (2010)

74. L. Durak, O. Arikan, Short-time Fourier transform: two fundamental properties and an optimal

implementation. IEEE Trans. Signal Process. 51(5), 1231–1242 (2003)

75. A.W. Lohmann, The space-bandwidth product, applied to spatial filtering and holography,

Research Paper RJ-438, IBM San Jose Research Laboratory, San Jose, 1967

76. A. Stern, B. Javidi, Shannon number and information capacity of three-dimensional integral

imaging. J. Opt. Soc. Am. A 21(9), 1602–1612 (2004)

77. D. Mendlovic, A. Lohmann, Space–bandwidth product adaptation and its application to

superresolution: fundamentals. J. Opt. Soc. Am. A 14(3), 558–562 (1997)

78. Z. Zalevsky, D. Mendlovic, A. Lohmann, Understanding superresolution in Wigner space. J.

Opt. Soc. Am. A 17(12), 2422–2430 (2000)

79. P. Catrysse, B. Wandell, Optical efficiency of image sensor pixels. J. Opt. Soc. Am. A 19(8),

1610–1620 (2002)

80. J. Maycock, C. McElhinney, B. Hennelly, T. Naughton, J. McDonald, B. Javidi, Reconstruction

of partially occluded objects encoded in three-dimensional scenes by using digital holograms.

Appl. Opt. 45(13), 2975–2985 (2006)

81. D. Mendlovic, A. Lohmann, Z. Zalevsky, Space–bandwidth product adaptation and its

application to superresolution: examples. J. Opt. Soc. Am. A 14(3), 563–567 (1997)

82. K. Wolf, D. Mendlovic, Z. Zalevsky, Generalized Wigner function for the analysis of

superresolution systems. Appl. Opt. 37(20), 4374–4379 (1998)

83. Z. Zalevsky, N. Shamir, D. Mendlovic, Geometrical superresolution in infrared sensor:

experimental verification. Opt. Eng. 43(6), 1401–1406 (2004)

84. Z. Zalevsky, V. Mico, J. Garcia, Nanophotonics for optical super resolution from an information

theoretical perspective: a review. J. Nanophotonics 3(1), 032502–032502 (2009)

85. J. Lindberg, Mathematical concepts of optical superresolution. J. Opt. 14(8), 083001 (2012)

86. L. Xu, X. Peng, Z. Guo, J. Miao, A. Asundi et al., Imaging analysis of digital holography. Opt.

Express 13(7), 2444–2452 (2005)

87. M. Testorf, A. Lohmann, Holography in phase space. Appl. Opt. 47(4), A70–A77 (2008)

88. U. Gopinathan, G. Pedrini, B. Javidi, W. Osten, Lensless 3D digital holographic microscopic

imaging at vacuum UV wavelength. J. Disp. Technol. 6(10), 479–483 (2010)

89. D. Claus, D. Iliescu, P. Bryanston-Cross, Quantitative space-bandwidth product analysis in

digital holography. Appl. Opt. 50(34), H116–H127 (2011)

90. B. Hennelly, J. Sheridan, Optical encryption and the space bandwidth product. Opt. Commun.

247(4), 291–305 (2005)

91. J. Healy, J. Sheridan, Bandwidth, compact support, apertures and the linear canonical transform

in ABCD systems, in Proceedings of the SPIE, vol. 6994 (2008), p. 69940W

92. Z. Zalevsky, D. Mendlovic, Optical Superresolution (Springer, New York, 2004)


