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a b s t r a c t 

Linear canonical transforms (LCTs) are extensively used in many areas of science and engineering with 

many applications, which requires a satisfactory discrete implementation. Recently, hyperdifferential op- 

erators have been proposed as a novel way of defining the discrete LCT (DLCT). Here we first focus on 

improving the accuracy of this approach by considering alternative discrete coordinate multiplication and 

differentiation operations. We also consider canonical decompositions of LCTs and compare them with 

the originally proposed Iwasawa decomposition. We show that accuracy of the approximation of the con- 

tinuous LCT with the DLCT can be drastically improved. The advantage and elegance of this approach lie 

in the fact that it reduces the problem of defining sophisticated discrete transforms to merely defining 

discrete coordinate multiplication and differentiation operations, by reducing the transforms to these op- 

erations. As a result of systematic investigation of possible parameters and design choices, we achieve a 

DLCT that is both theoretically satisfying and highly accurate. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The family of linear canonical transforms (LCTs) generalizes sev- 

ral important transforms and operations such as the fractional 

ourier transform (FRFT), chirp multiplication (CM), chirp convo- 

ution (CC), and scaling [1–5] , which are special cases of the LCT 

3] . Two-dimensional (2D) and complex-parametered extensions of 

CTs have also been studied [6–9] . Other important transforms 

uch as the gyrator transform, the bilateral Laplace transforms, the 

argmann transform, the Gauss-Weierstrass transform, the frac- 

ional Laplace transform, and complex-ordered FRFTs [1,10–18] , are 

ll special cases of complex and/or 2D-LCTs. 

Sometimes referred by other names such as generalized Huy- 

ens integrals [19] , generalized Fresnel transforms [20,21] , spe- 

ial affine Fourier transforms [22,23] , extended fractional Fourier 

ransforms [24] , and Moshinsky-Quesne transforms [1] , the class 

f LCTs are important in signal processing [3] , computational and 

pplied mathematics [25,26] , optics [27–29] , and quantum me- 

hanics [1,3,30–32] . Prominent signal processing applications in- 

lude fast and efficient optimal filtering [33] , radar signal process- 

ng [34,35] , speech processing [36] , and image representation, en- 

ryption and watermarking [37–40] . LCTs are known as quadratic- 

hase integrals or quadratic-phase systems [28,29] in optics and 
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ave propagation applications and they have also been well stud- 

ed in these contexts [2,19,28,41–44] . 

The deployment of LCTs in the aforementioned applications re- 

uires a concrete framework for discretization and development of 

igital computation methods. Methods for discretization and dig- 

tal computation have been proposed [29,45–60] . These previous 

pproaches either directly map the samples of the continuous in- 

ut signal to the samples of the output signal by digitally comput- 

ng the continuous integral, or first define a discrete LCT (DLCT) 

nd then use it to approximate the continuous LCT (analogous to 

rst defining the discrete Fourier transform (DFT) and then using 

t to approximate the continuous Fourier transform (FT)). Further 

eview of the literature can be found in [3,26,61] . There are also 

orks [56,57] that focus on developing efficient numerical compu- 

ation algorithms based on a previously-defined DLCT. One of the 

ost important special cases of LCTs is the FRFT, for which dis- 

rete definitions and digital computation methods are also present 

n the literature, [62–75] . 

Recently, hyperdifferential operators have been used to define 

he DLCT [61] . This definition uses discrete versions of the simple 

uilding blocks of coordinate multiplication, differentiation and the 

T in a way that is totally consistent with the established defini- 

ion of the DFT. The approach presented in [61] has emphasized 

he preservation of the general structural symmetry between co- 

rdinate multiplication and differentiation operations. That work 

mphasizes mathematical consistency and structural analogy with 

he continuous transform family, more than focusing on numeri- 

al accuracy. Accuracy increases with increasing number of sample 

https://doi.org/10.1016/j.sigpro.2021.108291
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2021.108291&domain=pdf
mailto:aykut.koc@bilkent.edu.tr
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oints N, as with most transforms, but maximizing accuracy for 

 given value of N is not the focus of that paper. Since increas- 

ng N brings computational, transmission, and storage burdens, in 

his paper we examine alternatives to the straightforward numeri- 

al implementations of the basic buildings blocks in search of more 

ccurate implementations, and show that significant improvements 

n accuracy are possible. Moreover, in [61] , only the Iwasawa de- 

omposition is considered in defining the hyperdifferential opera- 

or based DLCT. In this paper we also consider other decomposi- 

ions and examine their effects on performance. Thus, we build on 

61] in two ways: 

i) considering the use of Canonical Decompositions Type I and 

Type II and comparing them with the originally-proposed Iwa- 

sawa Decomposition, 

ii) proposing several alternative discrete coordinate multiplication 

and differentiation definitions to improve accuracy. 

We report a large accuracy improvement for the operator 

heory-based DLCT by deploying alternative coordinate multipli- 

ation and differentiation definitions. Also, all major widely-used 

CT decompositions are exhaustively compared. Thus, as a result of 

ystematic investigation of possible parameters and design choices, 

e achieve a DLCT that is both theoretically satisfying and highly 

ccurate. Another contribution of this paper is to demonstrate that 

he operator theory approach reduces the complicated problem of 

efining a DLCT to simply choosing the definition of fundamental 

perations such as discrete coordinate multiplication and discrete 

ifferentiation. This choice is the primary factor that determines 

he accuracy of the approach, whereas the choice of decomposi- 

ion has relatively little effect. 

The organization of the paper is as follows: Section 2 gives 

he preliminaries and the definition and important properties of 

CTs. Section 3 describes the decompositions of LCTs. In Section 4 , 

e review the hyperdifferential operator based approach to DLCT 

efinition and present our proposed DLCT. In Section 5 , numeri- 

al examples and comparisons are provided. Lastly, we conclude in 

ection 6 . 

. Preliminaries 

LCTs are unitary transforms specified by a 2 × 2 parameter ma- 

rix L = [ A B ;C D ] with the constraint that the determinant of L is

qual to 1 and A , B , C and D are all real. The definition of LCTs as

inear integral transforms is given below: 

 L f (u ) = 

1 √ 

B 
e −iπ/ 4 

∫ ∞ 

−∞ 

exp 

[
i 2 π( 

D 

2 B 
u 2 − 1 

B 
uu ′ + 

A 

2 B 
u ′ 2 ) 

]
f (u ′ ) du ′ , 

(1) 

here C L denotes the LCT operator and where the subscript L de- 

otes the 2 × 2 parameter matrix. 

The following operations are important special cases of 

CTs. Scaling operation is defined by C L M f (u ) = M M 

f (u ) =
 

1 /M f ( u/M ) and its parameter matrix is L M 

= [ M 0 ; 0 1 /M] . The

ractional Fourier transform (FRFT), as denoted by F 

a , is the gener- 

lization of the FT with the following definition [2] : 

F 

a f (u ) = 

∫ ∞ 

−∞ 

A θ exp 

[
iπ(u 2 cot θ − 2 uu ′ csc θ + u ′ 2 cot θ ) 

]
f ( u ′ ) du ′ , 

 θ = 

exp (−iπsgn ( sin θ ) / 4 + iθ/ 2) 

| sin θ | 1 / 2 . (2) 

he parameter matrix of FRFT is given by L F a 
lc 

= 

 cos θ sin θ ;− sin θ cos θ ] where θ = πa/ 2 and a is the 

ractional order. When a = 1 , the FRFT reduces to the FT. 

t should be noted that there is an inconsequential differ- 

nce between F 

a 
lc 

and the more commonly used definition 
2 
 

a of the FRFT, [2] . Chirp multiplication (CM) is defined as 

 Q q f (u ) = Q q f (u ) = exp (−iπqu 2 ) f (u ) with the following parame-

er matrix L Q q = [1 0 ; −q 1] . Chirp convolution (CC) is expressed

y C R r f (u ) = R r f (u ) = f (u ) ∗ e −
π
4 

√ 

1 /r exp 

(
iπu 2 /r 

)
with the

arameter matrix L R r = [1 r; 0 1] . 

. Decompositions of LCTs 

The LCT operator C L can be expressed as combinations of other 

impler operators. Using scaling M M 

, chirp multiplication Q q , chirp 

onvolution R r and fractional Fourier F 

a 
lc 

operators, we are able to 

onstruct any LCT. The decompositions utilized in this paper are 

 L = Q q M M 

F 

a 
lc , (3) 

 L = R r 2 Q q R r 1 , (4) 

 L = Q q 2 R r Q q 1 . (5) 

3) is known as the Iwasawa decomposition. (4) and (5) are the CC- 

M-CC and CM-CC-CM decompositions, also known as Canonical 

ecompositions Type I and Type II, respectively. a is the order of 

RFT and q , r, and M are the parameters of chirp multiplication, 

hirp convolution, and scaling operations. How these parameters 

re determined is given below. 

.1. The iwasawa decomposition 

Using scaling M M 

, chirp multiplication Q q and fractional 

ourier F 

a 
lc 

operators, it is possible to construct any LCT operator 

 L . The Iwasawa breaks down an arbitrary LCT into a FRFT followed 

y a scaling followed by a chirp multiplication. When each opera- 

or is characterized by their 2 × 2 LCT parameter matrix, the de- 

omposition looks like 

 = 

[
A B 

C D 

]
= 

[
1 0 

−q 1 

][
M 0 

0 1 /M 

][
cos aπ/ 2 sin aπ/ 2 

− sin aπ/ 2 cos aπ/ 2 

]

(6) 

here q = −(AC + BD ) / (A 

2 + B 2 ) , M = 

√ 

A 

2 + B 2 , and a must satisfy

os (aπ/ 2) = A/M and sin (aπ/ 2) = B/M. 

.2. Canonical decomposition type I (CC-CM-CC) 

Canonical decomposition Type I breaks down an arbitrary LCT 

nto a chirp convolution followed by a chirp multiplication fol- 

owed by a second chirp convolution. When each operator is char- 

cterized by their 2 × 2 LCT parameter matrix, the decomposition 

hen looks like 

 = 

[
A B 

C D 

]
= 

[
1 r 2 
0 1 

][
1 0 

−q 1 

][
1 r 1 
0 1 

]
. (7) 

he decomposition parameters are computed using the following 

qualities: r 1 = (D − 1) /C, q = −C and r 2 = (A − 1) /C. 

.3. Canonical decomposition type II (CM-CC-CM) 

Being the dual of Type I, Canonical decomposition Type II 

reaks down an arbitrary LCT into a chirp multiplication followed 

y a chirp convolution followed by a second chirp multiplication. 

hen each operator is characterized by their 2 × 2 LCT parameter 

atrix, the decomposition then looks like 

 = 

[
A B 

C D 

]
= 

[
1 0 

−q 2 1 

][
1 r 
0 1 

][
1 0 

−q 1 1 

]
, (8) 

here the decomposition parameters are q 1 = (1 − A ) /B , r = B and

 = (1 − D ) /B . 
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. The discrete linear canonical transforms 

In [61] , hyperdifferential operators and the Iwasawa decompo- 

ition have been used to define a DLCT. Building upon this frame- 

ork, we propose to use other decompositions to define improved 

yperdifferential operator based DLCT variants. The general ap- 

roach is to decompose LCTs into simpler building blocks, find dis- 

rete versions of these blocks by using operator theory, and then 

ultiply them to obtain the final DLCT matrix. We start with pre- 

enting the hyperdifferential forms of the simple building blocks. 

.1. The hyperdifferential forms 

The term hyperdifferential refers to having differential opera- 

ors in an exponent. In the LCT context, we only have second or- 

er coordinate multiplication and differentiation operators in the 

xponent. Operators representing an arbitrary LCT or all of its spe- 

ial cases can be generated by exponentiating these second order 

perators and these constitute the hyperdifferential forms of these 

ransforms. There is correspondence among the integral trans- 

orms, hyperdifferential operators and the 2 × 2 parameter matri- 

es that are given in the preliminaries section. An LCT can be rep- 

esented by any one of these mathematical objects [61] . More de- 

ails can be found in [1] . 

Chirp multiplication operator Q q , chirp convolution operator R r , 

caling operator M M 

, and fractional Fourier transform operator F 

a 
lc 

an all be written in hyperdifferential forms as follows: [1,2] : 

 q = exp 

(
−i 2 πq 

U 

2 

2 

)
, (9) 

 r = exp 

(
−i 2 π r 

D 

2 

2 

)
, (10) 

 M 

= exp 

(
−i 2 π ln (M) 

UD + DU 

2 

)
, (11) 

 

a 
lc = exp 

(
−iaπ2 U 

2 + D 

2 

2 

)
, (12) 

here U and D are the coordinate multiplication and differentia- 

ion operators, respectively. We see that all three of the operators 

e are working with can be expressed in terms of these two build- 

ng blocks, whose continuous manifestations are: 

f (u ) = u f (u ) (13) 

f (u ) = 

1 

i 2 π

df (u ) 

du 

, (14) 

here the (i 2 π) −1 is included so that U and D are precisely 

ourier duals (the effect of either in one domain is its dual in the 

ourier domain). This duality can be expressed as follows: 

 = FDF 

−1 . (15) 

.2. The discrete linear canonical transform definitions based on 

ecompositions 

Our approach is based on requiring that, to the extent possi- 

le, all the discrete entities we define observe the same structural 

elationships as they do in abstract operator form. We want a dis- 

rete definition that is as analogous to the continuous definition as 

ossible. To ensure this, we define the DLCT and its special cases as 

he discrete manifestations of the decompositions Eqs. (3) –(5) with 

he abstract operators being replaced by matrix operators. This can 

e written as follows: 

 L = Q q M M 

F a lc , (16) 
3 
 L = R r 2 Q q R r 1 , (17) 

 L = Q q 2 R r Q q 1 . (18) 

imilarly, the special cases can also be written in matrix form as 

 q = exp 

(
−i 2 πq 

U 

2 

2 

)
, (19) 

 r = exp 

(
−i 2 π r 

D 

2 

2 

)
, (20) 

 M 

= exp 

(
−i 2 π ln ( M ) 

UD + DU 

2 

)
, (21) 

 

a 
lc = exp 

(
−iaπ2 U 

2 + D 

2 

2 

)
, (22) 

here exp () in the above equations denote matrix exponentials. By 

ubstituting Eqs. (19) –(22) into Eqs. (16) –(18) , one can write three 

ifferent DLCT matrices as: 

 L = exp 

(
−i 2 πq 

U 

2 

2 

)
×

xp 

(
−i 2 π ln (M) 

UD + DU 

2 

)
exp 

(
−iaπ2 U 

2 + D 

2 

2 

)
, (23) 

 L = exp 

(
−i 2 π r 2 

D 

2 

2 

)
exp 

(
−i 2 πq 

U 

2 

2 

)
exp 

(
−i 2 π r 1 

D 

2 

2 

)
, 

(24) 

 L = exp 

(
−i 2 πq 2 

U 

2 

2 

)
exp 

(
−i 2 π r 

D 

2 

2 

)
exp 

(
−i 2 πq 1 

U 

2 

2 

)
. 

(25) 

To obtain the DLCT of a function of a discrete variable, we 

ust need to write it as a column vector and then multiply it 

ith the DLCT matrix. In mathematical terms, the LCT of a sig- 

al x = [ x [1] , x [2] , . . . , x [ n ]] T of length N is given by C L x , yielding

n N × 1 output. Since C L is an N × N matrix, the operation does 

ot change the number of samples of the input signal. 

At this point, the only ingredients missing are the matrices cor- 

esponding to each elementary operator. The proposed DLCT ma- 

rices will be defined as the matrix product of three of the follow- 

ng matrices: FRFT, scaling, and chirp multiplication or convolution, 

ll of which are defined in terms of only two matrices: U and D .

herefore, it is seen that all rest on the definition of the differ- 

ntiation and coordinate multiplication matrices D and U . The op- 

rator based framework reduces the task of defining a DLCT into 

efining discrete forms of the relatively basic operations of coordi- 

ate multiplication and differentiation. Actually, since as a conse- 

uence of the duality relation these two simple operations can be 

btained from one another, it is actually necessary to only define 

ne of them, upon which the other will have been automatically 

efined. Once we choose the definition of U (or D ), everything else 

s handled by the requirement of maintaining structural analogy 

ith the continuous definition. Of course, with so much resting on 

he definition of U and D , making the right choice becomes more 

ritical. Making the best choice possible is the purpose of this pa- 

er. So, we move to elaborate on procedures to obtain the U and 

 matrices. 
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Fig. 1. Example vocal signal ‘laughter.wav’. Sampling rate: 8192 Hz. 
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.3. Alternative definitions of U and D matrices 

.3.1. Structurally analogous U and D matrices 

The first alternative we consider is the theoretically derived U 

nd D matrices that were originally proposed in [61] . The theo- 

etical derivation begins with the definition of finite differencing 

s an approximation to the derivative of a continuous function. By 

sing operator theory, the finite difference operation is derived as 

 function of the continuous D operator. Then, to preserve struc- 

ural symmetry between the two domains, the discrete version of 

he coordinate multiplication operator is also written in terms of 

he continuous U operator exactly in the same functional form as 

or finite differencing. Finally, the dualiy relation can be used to 

elate these two main building blocks. Further details are given in 

61] . The result is the following matrix elements for U : 

 mn = 

{√ 

N 
π sin 

(
π
N 

n 

)
, for m = n 

0 , for m � = n 

, (26) 

here m, n = 0 , 1 , . . . , N − 1 and N is the number of samples. The

iscrete version of the duality relation given in Eq. (15) can be 

sed to define the matrix D in terms of U by using 

 = F −1 UF , (27) 

n which F is the matrix representing the N-point unitary discrete 

ourier transform, with elements F mn being W N = exp (− j2 π/N) as 

 mn = 

1 √ 

N 
W 

mn 
N 

. 

.3.2. Formally analogous U and D matrices 

Here we consider the most straightforward and formal way of 

iscretizing the continuous coordinate multiplication operator to 

btain U matrix. We simply form a diagonal matrix with the diago- 

al entries being equal to the coordinate values, in order to mimic 

he appearance of the continuous case. Let us have N samples and 

ample over an extent 
√ 

N with sampling interval h = 1 / 
√ 

N . Then, 

f (u ) = u f (u ) can be discretized as nh f (nh ) = n/ 
√ 

N f [ n ] where

 = nh and n = 0 , 1 , . . . , N − 1 . So we have 

 mn = 

{
n √ 

N 
, for m = n 

0 , for m � = n 

, (28) 

here m, n = 0 , 1 , . . . , N − 1 . It is also interesting to observe that

his corresponds to the limit of Eq. (26) as N → ∞ . Again, since

e want U and D to be Fourier duals of each other in order to

reserve the dual structure of the definition, we use the discrete 

ersion of the duality relation given in Eq. (27) to obtain D matrix. 

.3.3. Numerical analysis inspired U and D matrices 

The third alternative we will study is highly accurate numeri- 

al forms of U and D from the numerical computation literature 

specifically, spectral methods [76] , that are advanced numerical 

echniques from scientific computing primarily used for numeri- 

ally solving differential equations). 

Different from the first two approaches where we first defined 

 and then obtained D from the duality, here we start with first 

efining discrete differentiation and then using the duality relation 

o obtain discrete coordinate multiplication. 

We use the discrete first-order differentiation matrix D from 

76] . This matrix is obtained using spectral methods and defined 

or even N as: 

 mn = 

{
0 , for m = n 

1 
2 
(−1) m −n cot 

(
(m −n ) π

N 

)
, for m � = n 

(29) 

here m, n = 0 , . . . , N − 1 . Also, note that a version of the above

efinition for odd N also exists but, for simplicity, we keep our 

ramework for the case of even N, which is usually the case. If 

eeded, extension to the odd N case is also possible. 
4 
Then, by using the duality relation ( U = FD F −1 ), one can easily 

btain the discrete coordinate multiplication matrix U . By replac- 

ng the numerically obtained U and D matrices in Eqs. (23) –(25) , 

e reach versions of the proposed DLCT definitions for all of the 

hree decomposition cases. 

To sum up, for each of three decompositions with each of three 

 and D matrix pairs, we present a total of nine variations for find- 

ng the DLCT matrix. 

. Numerical results and comparisons 

.1. Input functions and transforms 

In this section, we numerically explore how well the DLCT def- 

nitions obtained by combinations of the presented decomposi- 

ions and alternative U and D definitions, approximates the con- 

inuous LCT. Recall that we have three methods of defining U 

nd D matrices: (1) Structurally analogous matrices (called “Struc- 

ural”); (2) Formally analogous matrices as defined the limits of 

ase 1 (called “Formal”); (3) Numerical analysis inspired matrices 

called “Numerical”). We also consider three different decomposi- 

ions used: Iwasawa, Canonical Decompositions Type I and Type II 

called “Type I” and “Type II”, respectively). We carried out exten- 

ive experiments for all combinations of these two sets of alterna- 

ives. Moreover, we also performed experiments with the method 

n [49] , which is a digital numerical computation algorithm which 

rovides an accurate approximation in O (N log N) time. 

We consider the following example input functions: the chirped 

ulse function exp (−πu 2 − iπu 2 ) , denoted by F1, the trapezoidal 

unction 1 . 5 tri (u/ 3) − 0 . 5 tri (u ) , denoted by F2 ( tri (u ) = rect (u ) ∗
ect (u ) ), the damped sine function exp (−2 | u | ) sin (3 πu ) , denoted

y F3, and the binary sequence 01101010 adjusted for the number 

f samples N, denoted by F4, are used. 

We also considered a non-synthetic vocal signal, ‘laughter.wav’, 

hich is one of MATLAB’s built-in audio signals. Plotted in Fig. 1 , 

laughter’ is a vocal signal sampled with a rate of 8.192 kHz. With 

2,634 samples, it has a total duration of 6.425 s. 

We performed experiments with six transforms, denoted by T1, 

2, T3, T4, T5, and T6, with parameters (α, β, γ ) = (−3 , −2 , −1) ,

2 . 1 , −1 . 7 , 0 . 02) , (−0 . 8 , 3 , 1) , (0 . 6 , 1 . 1 , −0 . 4) , (−1 . 8 , −1 . 75 , −1 . 3) ,

−2 . 5 , 3 , 0 . 1) , respectively. As a reference, we employed a highly

nefficient brute force numerical approach and calculated mean 

quared errors (MSEs) of the proposed DLCT outputs as well as the 

aseline method in [49] with respect to this reference for F1 to 

4. Since the baseline method is not a definition for the discrete 

CT, but rather an algorithm for digital numerical computation, it 

ay modify the sampling structure. To ensure fair and controlled 

omparisons, results of the baseline method are interpolated such 

hat the coordinate structure of the samples are aligned with the 

eference. Since ‘laughter’ is a real signal, it does not have an ana- 

ytical expression that can be used to calculate a reference that will 
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Table 1 

Percentage MSE errors for function F2 (TRAPEZOID) and transform T1 for different 

decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 4.31 3.14 1 . 21 × 10 1 

512 1.20 1 . 04 4 . 30 

1024 3 . 15 × 10 −1 3 . 23 × 10 −1 1 . 29 

Formal 256 9 . 87 × 10 −5 6 . 88 × 10 −5 6 . 88 × 10 −5 

512 1 . 08 × 10 −5 8 . 04 × 10 −6 8 . 04 × 10 −6 

1024 6 . 16 × 10 −6 5 . 17 × 10 −6 5 . 17 × 10 −6 

Numerical 256 9 . 75 × 10 −5 6 . 88 × 10 −5 6 . 88 × 10 −5 

512 1 . 05 × 10 −5 8 . 04 × 10 −6 8 . 04 × 10 −6 

1024 5 . 91 × 10 −6 5 . 17 × 10 −6 5 . 17 × 10 −6 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 4 . 88 × 10 −5 

512 7 . 50 × 10 −6 

1024 3 . 90 × 10 −6 

Table 2 

Percentage MSE errors for function F2 (TRAPEZOID) and transform T3 for different 

decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 1 . 06 × 10 1 9 . 71 × 10 1 5 . 61 × 10 1 

512 3.24 8 . 05 × 10 1 3 . 62 × 10 1 

1024 8 . 68 × 10 −1 5 . 95 × 10 1 1 . 83 × 10 1 

Formal 256 4 . 21 × 10 −4 8 . 96 × 10 −1 6 . 68 × 10 −4 

512 3 . 79 × 10 −5 2 . 06 × 10 −5 1 . 99 × 10 −5 

1024 1 . 58 × 10 −5 4 . 82 × 10 −6 6 . 45 × 10 −6 

Numerical 256 4 . 06 × 10 −4 1 . 12 7 . 67 × 10 −4 

512 4 . 07 × 10 −5 2 . 07 × 10 −5 2 . 19 × 10 −5 

1024 1 . 38 × 10 −5 4 . 82 × 10 −6 6 . 46 × 10 −6 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 1 . 44 × 10 −3 

512 3 . 43 × 10 −5 

1024 5 . 71 × 10 −6 
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Table 3 

Percentage MSE errors for function F3 (DAMPED SINE) and transform T2 for differ- 

ent decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 1 . 78 × 10 1 1 . 43 × 10 2 1 . 89 × 10 1 

512 4.87 9 . 03 × 10 1 7 . 52 

1024 1 . 28 3 . 85 × 10 1 2 . 74 

Formal 256 3 . 48 × 10 −4 1 . 54 × 10 −3 3 . 32 × 10 −4 

512 4 . 86 × 10 −5 2 . 04 × 10 −4 4 . 83 × 10 −5 

1024 7 . 00 × 10 −6 2 . 91 × 10 −5 6 . 99 × 10 −6 

Numerical 256 3 . 48 × 10 −4 1 . 54 × 10 −3 3 . 32 × 10 −4 

512 4 . 86 × 10 −5 2 . 04 × 10 −4 4 . 83 × 10 −5 

1024 7 . 00 × 10 −6 2 . 91 × 10 −5 6 . 99 × 10 −6 

N Digital Numerical Computation 

Method 

from [49] 

256 4 . 94 × 10 −4 

512 6 . 94 × 10 −5 

1024 1 . 00 × 10 −5 

Table 4 

Percentage MSE errors for function F3 (DAMPED SINE) and transform T4 for differ- 

ent decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 5.76 6.80 3 . 47 × 10 1 

512 1.56 2 . 10 1 . 41 × 10 1 

1024 4 . 18 × 10 −1 5 . 56 × 10 −1 4 . 89 

Formal 256 3 . 64 × 10 −4 3 . 62 × 10 −4 3 . 54 × 10 −4 

512 5 . 08 × 10 −5 5 . 07 × 10 −5 5 . 04 × 10 −5 

1024 7 . 33 × 10 −6 7 . 32 × 10 −6 7 . 31 × 10 −6 

Numerical 256 3 . 64 × 10 −4 3 . 62 × 10 −4 3 . 54 × 10 −4 

512 5 . 08 × 10 −5 5 . 07 × 10 −5 5 . 04 × 10 −5 

1024 7 . 32 × 10 −6 7 . 32 × 10 −6 7 . 31 × 10 −6 

N Digital Numerical Computation 

Method 

from [49] 

256 3 . 66 × 10 −4 

512 5 . 13 × 10 −5 

1024 7 . 40 × 10 −6 

Table 5 

Percentage MSE errors for function F1 (CHIRPED PULSE) and transform T5 for dif- 

ferent decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Formal 256 5 . 40 × 10 −22 5 . 42 × 10 −22 5 . 45 × 10 −22 

512 5 . 39 × 10 −22 5 . 47 × 10 −22 5 . 40 × 10 −22 

1024 5 . 65 × 10 −22 5 . 52 × 10 −22 5 . 53 × 10 −22 

Numerical 256 5 . 45 × 10 −22 5 . 43 × 10 −22 5 . 42 × 10 −22 

512 5 . 46 × 10 −22 5 . 57 × 10 −22 5 . 40 × 10 −22 

1024 5 . 44 × 10 −22 5 . 32 × 10 −22 5 . 37 × 10 −22 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 1 . 49 × 10 −9 

512 1 . 01 × 10 −10 

1024 6 . 42 × 10 −12 
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erve as a basis for comparison. Thus, we performed three consec- 

tive LCT transformations such that the third one is the inverse of 

he concatenation of the former two. Since the overall operation 

s an identity, the result of applying these three transforms should 

deally be equal to the original input signal. Therefore, the accu- 

acy performance in this case has been calculated by comparing 

he actual output to the original input signal. These experiments 

ave the additional benefit of providing confirmation of the addi- 

ivity/reversibility properties of the proposed DLCT. Moreover, this 

xperiment also tests the additivity/reversibility properties of the 

roposed DLCT. The performance metric is defined as the energy 

f the difference normalized by the energy of the reference, ex- 

ressed as a percentage. The number of samples N are taken as 

56, 512, and 1024 for three sets of numerical simulations. Since 

laughter’ is a signal of 52,634 samples with quite high frequency 

omponents, it is not possible to compute a DLCT of size 52,634 

s a single transform. Therefore, experiments were performed as 

ollows: we start with the first 64 samples and zero-pad to form 

ignals of length 256, 512 and 1024. We calculate the LCT and then 

ove 1 sample to the right to form another signal. We continue 

n this manner until we finish the entire sequence of 52,634. This 

roduces 52,571 chunks of input and we report average accuracy 

alues coming from 52,571 runs. 

.2. Numerical results 

The resulting percentage MSE scores for F2-T1, F2-T3, F3-T2 and 

3-T4 are tabulated in Tables 1–4 . Upon inspecting these results, it 
5 
an be seen that the proposed DLCT that uses “Formal” and “Nu- 

erical” U and D matrices, overwhelmingly outperforms the DLCT 

ith “Structural” definition of these building blocks. The same ob- 

ervation is also present in other experiments we performed and 

annot present here due to length constraints. Given the clear nu- 

erical inferiority of “Structural” approach, in our further exam- 

les we eliminate it from consideration and provide further results 

nly for the “Formal” and “Numerical” alternatives. In Tables 5 and 

 , we present results for F1-T5 and F4-T5. Some examples from our 

esults are also plotted in Fig. 2 . 

We consider the transform concatenations T5-T6, T4-T2, T1-T3 

nd T1-T5 on the ‘laughter’ signal such that C 

−1 
L 5 L 6 

C L 5 
C L 6 

is equal 

o the identity operation. The MSE scores of recovered signals and 
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Fig. 2. Magnitude and phase of T1 of F4 (Binary) for “Formal” DLCT method and different decompositions. 

Table 6 

Percentage MSE errors for function F4 (BINARY) and transform T5 for different de- 

compositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Formal 256 1.34 1.28 1 . 31 

512 3 . 46 × 10 −1 3 . 68 × 10 −1 3 . 40 × 10 −1 

1024 4 . 59 × 10 −1 4 . 56 × 10 −1 4 . 57 × 10 −1 

Numerical 256 1.30 1.28 1 . 32 

512 3 . 48 × 10 −1 3 . 73 × 10 −1 3 . 40 × 10 −1 

1024 4 . 61 × 10 −1 4 . 55 × 10 −1 4 . 58 × 10 −1 

N Digital Numerical Computation 

Method 

from [49] 

256 1.19 

512 3 . 15 × 10 −1 

1024 4 . 34 × 10 −1 
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nputs are tabulated in Tables 9–12 for different N values, decom- 

ositions, DLCT methods and the digital numerical computation 

ased method. 
6 
.3. Additional notes 

Upon inspecting the results presented in Tables 1–6 , it is clear 

hat the “Formal” and “Numerical” methods are almost equivalent 

n terms of accuracy, considering the inconsequential differences 

etween their respective MSE scores. Since these two methods give 

lmost identical results, from now on we will focus on “Formal”

pproach, which is the simpler of the two. In Tables 7 and 8 , we

resent results for several additional combinations of functions and 

ransforms, specifically for “Formal” approach. 

Another observation is that the effect of the decomposition 

sed is minimal. In general, none of the Iwasawa, Type I and Type 

I decompositions can present a decisive advantage upon others, 

nd whichever is most preferable based on other considerations 

an be preferred. 

Note that we are considering three alternative definitions for 

 and D matrices, three decompositions, four functions, and six 

ransforms, as well as three different values of N. This leads to 648 
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Table 7 

Percentage MSE errors for function F1 (CHIRPED PULSE) and transforms T2, T3, T6 FOR “FOR- 

MAL” DLCT method and different decompositions, and method from Koç et al. [49] . 

Transform N Iwasawa Type I Type II Method from [49] 

T2 256 5 . 40 × 10 −22 1 . 50 × 10 −17 5 . 37 × 10 −22 1 . 17 × 10 −7 

512 5 . 34 × 10 −22 5 . 48 × 10 −22 5 . 50 × 10 −22 6 . 85 × 10 −9 

1024 5 . 69 × 10 −22 5 . 29 × 10 −22 5 . 40 × 10 −22 4 . 01 × 10 −10 

T3 256 2 . 44 × 10 −15 1 . 71 × 10 −19 1 . 29 × 10 −17 1 . 04 × 10 −8 

512 5 . 47 × 10 −22 5 . 49 × 10 −22 5 . 44 × 10 −22 8 . 29 × 10 −10 

1024 5 . 24 × 10 −22 5 . 42 × 10 −22 5 . 36 × 10 −22 2 . 93 × 10 −11 

T6 256 5 . 51 × 10 −16 5 . 45 × 10 −22 9 . 51 × 10 −11 1 . 12 × 10 −12 

512 5 . 30 × 10 −22 5 . 45 × 10 −22 1 . 48 × 10 −21 1 . 81 × 10 −13 

1024 5 . 50 × 10 −22 5 . 54 × 10 −22 5 . 41 × 10 −22 3 . 14 × 10 −14 

Table 8 

Percentage MSE errors for function F4 (BINARY) and transforms T1, T4, T6 for “FORMAL” DLCT method 

and different decompositions, and method from Koç et al. [49] . 

Transform N Iwasawa Type I Type II Method from Koç et al. [49] 

T1 256 1.39 1.41 1 . 41 1.44 

512 4 . 18 × 10 −1 3 . 68 × 10 −1 3 . 68 × 10 −1 3 . 24 × 10 −1 

1024 5 . 06 × 10 −1 5 . 07 × 10 −1 5 . 07 × 10 −1 5 . 12 × 10 −1 

T4 256 8 . 57 × 10 −1 2.25 2 . 48 × 10 1 9.06 

512 2 . 16 × 10 −1 2 . 30 × 10 −1 3 . 73 × 10 −1 2 . 29 × 10 −1 

1024 2 . 66 × 10 −1 2 . 66 × 10 −1 3 . 15 × 10 −1 2 . 57 × 10 −1 

T6 256 7 . 48 × 10 1 1 . 08 × 10 2 1 . 03 × 10 2 5 . 48 × 10 −1 

512 5 . 14 × 10 1 7 . 45 × 10 1 6 . 74 × 10 1 1 . 25 × 10 −1 

1024 1 . 21 × 10 1 1 . 81 × 10 1 1 . 05 × 10 1 1 . 61 × 10 −1 

Table 9 

Percentage MSE Errors for vocal signal ‘LAUGHTER’ and transform pair T5-T6 for 

different decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 118.14 98.45 143.29 

512 124.66 77.75 131.16 

1024 129.59 91.74 127.81 

Formal 256 15.86 6.01 11.39 

512 1.51 0.42 1.41 

1024 0.43 1 . 8 × 10 −2 0.43 

Numerical 256 16.44 6.20 11.81 

512 1.5 0.42 1.43 

1024 0.42 1 . 9 × 10 −2 0.43 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 5.97 

512 9 . 30 × 10 −1 

1024 5 . 62 × 10 −1 

Table 10 

Percentage MSE errors for vocal signal ‘LAUGHTER’ and transform pair T4-T2 for 

different decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 116.32 136.26 138 . 15 

512 117.04 153.86 138.99 

1024 114.95 143.66 131.12 

Formal 256 3.89 3.33 2.99 

512 2.43 2.20 0.76 

1024 2.16 2.03 0.16 

Numerical 256 4.02 3.53 3.04 

512 2.54 2.24 0.77 

1024 2.18 2.06 0.16 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 2.32 

512 1.32 

1024 1.18 

Table 11 

Percentage MSE errors for vocal signaL ‘LAUGHTER’ and transform pair T1-T3 for 

different decompositions and DLCT methods, and method from Koç et al. [49] . 

Method N Iwasawa Type I Type II 

Structural 256 123.16 143.75 153 . 49 

512 114.05 122.86 139.84 

1024 105.88 103.93 138.07 

Formal 256 85.66 39.94 8.60 

512 39.82 4 . 8 × 10 −3 1.88 

1024 7.29 0 . 8 × 10 −3 0.56 

Numerical 256 84.33 41.65 8.82 

512 39.68 9 . 5 × 10 −3 1.9 

1024 7.26 3 . 2 × 10 −3 0.56 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 32.99 

512 4 . 83 × 10 −3 

1024 5 . 26 × 10 −4 

Table 12 

Percentage MSE errors for vocal signal ‘LAUGHTER’ and transform pair T1-T5 for 

different decompositions and DLCT methods, and method from [49] . 

Method N Iwasawa Type I Type II 

Structural 256 126.96 52.87 97.22 

512 116.74 52.16 98.57 

1024 112.15 80.49 119.92 

Formal 256 3.90 1.93 0.37 

512 3.26 1.50 9 . 14 × 10 −2 

1024 3.15 1.44 2 . 63 × 10 −2 

Numerical 256 3.86 1.94 0.44 

512 3.43 1.50 0.10 

1024 3.28 1.45 2 . 63 × 10 −2 

N Digital Numerical Computation 

Method 

from Koç

et al. [49] 

256 4.50 

512 4.34 

1024 4.29 

7 
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ases. However, examination of the results (both shown and not 

hown) allowed us to eliminate one of the definitions of U and 

 matrices, and show that the other two gave similar results. We 

lso noted that all decompositions gave similar results. This allows 

s to focus on the effect of varying the remaining parameters, for 

hich we presented half the possible combinations. Thus through 

ystematic elimination, we have covered the parameter space in a 

ufficiently representative manner. 

We now turn our attention to how the function and trans- 

orm parameters affect the results. Although there are exceptions, 

e can observe that, for a given function, different transform pa- 

ameters usually do not give considerably different results. A very 

mportant determinant of the final MSE is the time- or space- 

andwidth product of the function and how N is chosen in relation 

o that product. Some of the functions have higher time-bandwidth 

roducts and naturally require a larger value of N to achieve a 

omparable error to functions with lower time-bandwidth product. 

he value of N chosen is closely related to truncation of the extent 

f the function in both the time and frequency domains, and the 

SE is closely aligned with the energy in the truncated parts, [49] . 

t is observed in Tables 1 to 8 that, despite not being with high

argins, the Iwasawa decomposition performs better than Type I 

nd II decompositions for F4 (Binary) signal, which contains high 

requencies. In the low- and mid-frequency range (input functions 

2 and F3), Type I and II yield higher performances. 

On the other hand, if we turn our attention to the real vocal 

ignal example, we observe that there are LCT parameters where 

he Type I and II decompositions perform better than the Iwasawa 

ase for the non-synthetic vocal signal with high frequency fluctu- 

tions. In this case, the performance of the “Structural” DLCT vari- 

nt is even worse. Therefore, the proposed “Formal” and “Numeri- 

al” variants with the Type I and Type II decompositions are better 

ptions. 

.4. Computational considerations 

All variants of the proposed DLCT operate through matrix mul- 

iplication and have complexity O (N 

2 ) . There are several highly ac- 

urate fast O (N log N) computational methods for calculating the 

LCT [49,53,54,56] . For example, we showed in [49] , that we could 

igitally compute the continuous LCT to an accuracy limited by the 

ncertainty relationship, with a fast O (N log N) algorithm. However, 

hese numerical computation methods do not exhibit the structural 

nd operational properties we expect from a discrete transform 

efinition. The DLCT definitions that are the subject of this paper 

re compatible with the discrete Fourier transform (DFT) and its 

irculant structure, and is highly desirable from an analytical and 

heoretical standpoint. An ultimate goal would be to find a fast al- 

orithm for directly computing it, rather than numerically approx- 

mating it. 

. Conclusion 

We studied the operator theory approach to discrete linear 

anonical transforms by exhaustively considering several possible 

arameters and design choices. We showed that a numerically su- 

erior DLCT can be obtained by making certain choices regarding 

he discrete coordinate multiplication and differentiation matrices. 

he formally analogous definition, which is the simplest defini- 

ion, was comparable to the definition from numerical analysis and 

learly superior to the structurally analogous definition. We also 

onsidered Type I and Type II Canonical Decompositions and com- 

ared them with the originally proposed Iwasawa decomposition. 

e conclude that the choice of decomposition had very little ef- 

ect. 
8 
In [49] , we had presented a fast ( O (N log N) digital numerical 

omputation method to compute the continuous LCT to the best 

ccuracy permitted by the uncertainty relationship. The downside 

as that this method is not a discrete definition but merely a nu- 

erical computation method. Recently, in [61] , we introduced an 

perator based DLCT with desired discrete transform properties. 

owever, this DLCT, in its original form, does not provide very high 

ccuracy. By employing several alternative discrete differentiation 

nd coordinate multiplication definitions, as well as alternative de- 

ompositions, we identified a DLCT definition with very high ac- 

uracy, mostly on par with numerical approaches. Straightforward 

pplication of the definition proposed involves a matrix multipli- 

ation with complexity O (N 

2 ) . Developing a fast algorithm for the 

roposed operator theory-based DLCT would save us from having 

o fall back from using a theoretically desirable definition to nu- 

erical approaches, when fast computation is required. This would 

ring together all desirable qualities in a single DLCT definition. 
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