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Signal scaling is a fundamental operation of practical importance in which a signal is made wider or 
narrower along the coordinate direction(s). Scaling, also referred to as magnification or zooming, is 
complicated for signals of a discrete variable since it cannot be accomplished simply by moving the signal 
values to new coordinate points. Most practical approaches to discrete scaling involve interpolation. We 
propose a new approach based on hyperdifferential operator theory that does not involve conventional 
interpolation. This approach provides a self-consistent and pure definition of discrete scaling that is fully 
consistent with discrete Fourier transform theory. It can potentially be applied to other problems in signal 
theory and analysis such as transform designs. Apart from its theoretical elegance, it also provides a basis 
for numerical implementation.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Signal scaling is a fundamental operation in which the inde-
pendent variable of a function f (u) is scaled by a real number M , 
resulting in the signal to be compressed or decompressed along 
the u axis in the form f (u/M). With reference to images, the 
terms magnification/demagnification or zooming in/out are more 
commonly used. Unlike with signals of a continuous (real) vari-
able, scaling or magnification is not straightforward for signals of 
a discrete (integer) variable: Given a function f [n] defined on the 
integers, the value of f [n/M] will be undefined unless n/M is an 
integer. Nevertheless, discrete scaling is a necessary operation in 
practice since we often want to scale signals which are represented 
as functions of discrete variables in digital computers.

An elementary approach [1–3] is to consider the values of f [n]
as the Nyquist-rate samples of a hypothetical bandlimited signal 
f (u). Then, we can use standard sinc interpolation to write an ex-
pression for f (u) in terms of f [n]. Now, f (u) can be scaled to 
f (u/M) and then re-sampled to obtain the values of a new signal 
of a discrete variable, which can be considered the scaled version 
of f [n]. The values of the new scaled signal will be linearly re-
lated to the values of the original signal f [n]. Of course, scaling 
f (u) to obtain f (u/M) will change its bandwidth, which necessi-
tates care in choosing the re-sampling rate. If the re-sampling rate 
is different, this somewhat complicates interpretation of the scaled 
signal. If the integer domain is not defined from −∞ to ∞, but 
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rather over a finite interval, say from 0 to N − 1, and we are work-
ing in a circulant domain, it is possible to modify the approach by 
deploying Dirichlet functions [4] instead of sinc functions.

From a practical perspective (for instance, in image process-
ing), discrete scaling is essentially a matter of interpolation, and 
has been addressed with a multitude of refined algorithms [5–8]. 
From a purer perspective, scaling is a basic operation in signals and 
systems theory, as well as optics and other forms of wave propa-
gation [4,9,10]. For instance, the scaling operation is one of the 
special cases and building blocks of linear canonical transforms 
(LCTs) and widely used in its applications as well as in theoret-
ical developments [11–20]. Our objective is not to propose new 
ad-hoc refinements to existing interpolation methods, but to pro-
pose a method for defining discrete scaling that is consistent with 
discrete Fourier transform (DFT) theory.

Given the purpose of the present paper, we limit ourselves to 
mentioning a few review articles from the vast literature on inter-
polation [5–8,21–23]. We will focus on a number of methods that 
can be used as standard baselines. We will use nearest-neighbor, 
spline and linear interpolation methods ([24–32]) as baselines for 
comparison. An approach that deviates from most others and 
which is more relevant to the present study is that by Pei et al., 
who developed a method based on “Centered Discrete Dilated Her-
mite Functions” (CDDHFs) [33], which is an improvement of their 
earlier “n2 matrix” method [34]. The CDDHF-based discrete scaling 
method works as follows: First, write the signal as a linear su-
perposition of discrete Hermite-Gaussian functions. Then, replace 
the discrete Hermite-Gaussian functions with their dilated (scaled) 
versions to obtain the scaled discrete signal [33]. In other words, 
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the expansion coefficients are kept the same while scaling the dis-
crete functions that form the expansion basis. Although this sounds 
conceptually simple, the difficulty (and ingenuity) lies in the devel-
opment of the set of dilated discrete Hermite-Gaussian functions, 
[33,35], on which the method rests. This procedure provides a 
mathematically sound and elegant way of performing discrete sig-
nal scaling. Note that the method does not involve interpolation, 
which is why we give it special attention.

A different approach is presented in this paper, that utilizes 
hyperdifferential operator theory [4,13,36–41] to obtain a discrete 
scaling matrix. The scaled version of the signal is obtained by mul-
tiplying the unscaled version by this matrix. We choose to work in 
a framework that is not only discrete, but also finite. That is, the 
functions are defined over finite intervals. Our approach employs 
discrete versions of the basic operations of differentiation and co-
ordinate multiplication. We believe that it provides a pure, elegant, 
and self-consistent definition of discrete scaling which is also fully 
compatible with DFT theory and its circulant structure. We also be-
lieve that the presented approach of defining a discrete operation 
in the context of hyperdifferential operator theory can set an ex-
ample that can be applied to other problems in signal theory and 
analysis.

The paper is organized as follows: preliminaries are given in 
Section 2. In Section 3, we review Pei’s method. Our method is pre-
sented in Section 4. Numerical results and comparisons are given 
in Section 5. Finally, we conclude in Section 6.

2. Preliminaries

For simplicity we work with one-dimensional signals, although 
our results can easily be generalized to higher-dimensional signals 
(an image example is presented in Section 5). Scaling is defined 
as the operation which takes f (u) to |M|−1/2 f (u/M). The fac-
tor |M|−1/2 is included to make the operation unitary, but this 
will not be of much importance. The real parameter M > 0 can 
be called the scaling or zooming factor or the magnification, de-
pending on context. The signal will be compressed/demagnified 
or decompressed/magnified depending on whether M is less or 
greater than unity. In operator form we will write

MM f (u) = |M|−1/2 f (u/M), (1)

where the calligraphic operator on the left-hand side includes the 
scaling parameter M as a subscript. Our convention for the Fourier 
transform operator will be

F f (u) =
∞∫

−∞
f (u)e− j2πuμdu. (2)

We define two further operators, the coordinate multiplication op-
erator U and the differentiation operator D:

U f (u) = u f (u), (3)

D f (u) = 1

j2π

df (u)

du
, (4)

where ( j2π)−1 term is to ensure that the coordinate multiplica-
tion and differentiation operators are precise Fourier duals (the 
effect of one in either domain is its dual in the other domain). 
Then, one can mathematically express the precise Fourier duality 
as follows:

U = FDF−1. (5)

Basically, the above equation says that, instead of multiplying a 
function f (u) with u, we can instead take its inverse Fourier trans-
form, differentiate it with respect to the frequency variable, divide 
2

by i2π , and take its Fourier transform, and we will get the same 
result.

Throughout this study, we work on finite-length signals. It 
could also be assumed that these discrete signals are defined on a 
circulant domain, without any consequential difference. The length 
of signal vectors are denoted by N and the samples are defined 
on the interval of integers [− N

2 , N
2 − 1] or [0, N − 1]. The sampled 

signals can be represented by column vectors with N rows.
The matrix representing the Fourier transformation will be the 

unitary discrete Fourier transform (DFT) matrix F, with appropriate 
shifting/circulation of its rows and columns such that it is consis-
tent with the index ranges. The elements Fmn of this N-point uni-
tary DFT matrix F can be written in terms of W N = exp(− j2π/N)

as follows:

Fmn = 1√
N

W mn
N , (6)

where m and n run through the index range.
We work with dimensionless coordinates; that is, the unit of 

u is not seconds or meters, it is unitless. Say the function f̂ (x)
of a continuous variable x in seconds or meters has an approxi-
mate extent lying over the interval [−�x/2, �x/2], meaning most 
of its energy is contained in this interval. Likewise, say its extent 
in the frequency domain lies over the interval [−� f /2, � f /2], 
where f is the frequency variable in Hz or inverse meters. Then 
we can introduce a parameter s, such that u = x/s is a dimen-
sionless number and choose to work with the function f (u) =
f̂ (su) instead of f̂ (x). If we choose s = √

�x/� f , then the ex-
tent of both f (u) and its Fourier transform will lie in the interval 
[−√

�x� f /2, 
√

�x� f /2]. According to the sampling theorem, if 
a signal is contained within such an interval, it can be sampled 
with a sampling interval of 1/

√
�x� f . Thus there will be N =√

�x� f /(1/
√

�x� f ) = �x� f samples in all. The quantity �x� f
is often referred to as the time-bandwidth or space-bandwidth 
product. Re-expressing in terms of the number of samples N , we 
would be sampling over the interval [−√

N /2, 
√

N /2] with a sam-
pling interval of 1/

√
N for a total of N samples.

We compare the proposed approach with some well-known in-
terpolation methods. Specifically, we have picked three interpola-
tion methods (linear, spline, and nearest neighbor interpolations). 
In Section 5, we present numerical results comparing the perfor-
mances of these interpolation methods and our approach. These 
techniques have been around for a very long time and naturally 
the literature on them is vast. A sampling includes [24–32].

Linear interpolation fits a first-order polynomial (a line) be-
tween successive data points. Spline interpolation fits piece-wise 
spline polynomials between data points (cubic splines in our ex-
periments). Nearest neighbor interpolation assigns the value of the 
nearest data point to each query point. In all three of these meth-
ods, when M < 1, we need to assign values to query points that 
are outside the domain of the signal (extrapolation). The way we 
have handled this in our implementation for the presented ex-
periments is to use the same interpolation method for the points 
outside the domain. For instance, for nearest neighbor interpola-
tion, all the points outside the domain are assigned the value of 
the signal at the closest end point.

3. Pei’s method

In [33], Pei et al. consider scaling a finite signal f [n] of length 
N . They let f M [n] denote the scaled discrete signal, with M being 
the scaling factor. The signal f [n] is expressed as a linear combina-
tion of N linearly independent “Centered Discrete Dilated Hermite 
Functions” (CDDHFs):
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f [n] =
N−1∑
p=0

cp,1 H p,1, (7)

where the H p,1 are the CDDHFs of length N , and the cp,1

are the coefficients. The coefficients are simply given by cp,1 =
〈 f [n], H p,1〉. The second subscript “1” denotes the CDDHF with no 
scaling. H p,M denotes the pth CDDHF with a scaling factor of M . 
The idea of the method lies at scaling the basis signals H p,1, and 
keeping the expansion coefficients the same. Thus the scaled signal 
f M is:

f M [n] =
N−1∑
p=0

cp,1 H p,M , (8)

where the H p,M are scaled versions of the H p,1 with a scaling 
factor M . To find the scaled versions of the basis signals, Pei et al. 
uses the differential equation

M2 d2

du2
ψp

( u

M

)
− 4π2

( u

M

)2
ψp

( u

M

)
= λψp

( u

M

)
(9)

satisfied by the scaled Hermite-Gaussian functions of a continuous 
variable, denoted by ψp(u), that are given as follows, [4]:

ψp(u) = Ap H p(
√

2πu)e−πu2
, Ap = 21/4

√
2p p! , (10)

where H p(u) denotes the Hermite polynomials.
Eq. (9) can be rewritten and rearranged in terms of the coor-

dinate multiplication operator U and the differentiation operator 
D:

(M4D2 + U2)ψp

( u

M

)
= − M2

4π2
λψp

( u

M

)
. (11)

The next step is to find the discrete counterpart of Eq. (11). This 
is done by replacing the calligraphic abstract operators by boldface 
matrix operators: (M4D2 + U2). Then, it is possible to compute the 
CDDHFs H p,M as the eigenvectors of this matrix. Here U and D are 
matrices that are the finite discrete counterparts of the abstract 
operators U and D. So the remaining task before implementing 
the method is to determine what U and D should be. Pei et al. 
define the matrix U2 as follows:

U2
mn =

{(
m − N−1

2

)2
if m = n,

0 otherwise,
(12)

where U2
mn is the mth row, nth column entry of U2, and m, n =

0, 1, . . . N − 1. Intuitively, this corresponds to multiplying every 
entry in a signal by the square of the corresponding index in a 
centered manner (hence the −(N − 1)/2 term). (It will be interest-
ing to contrast this with our development of the U matrix later on. 
We do not take for granted that U should be a simple reflection of 
the form of the continuous manifestation of the U operator, and 
indeed show that for a formulation satisfying complete structural 
symmetry, it should be chosen differently.)

Once U2 is defined, we have D2 = FU2F−1 by using the duality 
relation given in Eq. (5). The matrix F is the standard DFT matrix. 
Finally, for any scaling factor M , we can form (M4D2 + U2), and 
find its eigenvectors H p,M , after which we can easily complete the 
process. More on the implementation details of this approach can 
be found in [33].
3

4. Hyperdifferential operator based approach to discrete scaling

It is an established fact that the scaling operator MM can be 
expressed in hyperdifferential form in terms of the U and D oper-
ators [4,36,39,41]:

MM = exp

(
− j2π ln (M)

UD +DU
2

)
, (13)

where M is the scaling parameter.
Hyperdifferential operators have been very recently introduced 

to the signal processing literature in defining discrete transforms 
[13,38]. In this paper, we show how hyperdifferential operators can 
be used to define discrete scaling. Our approach is based on requir-
ing that all of our discrete definitions have the same relationships 
and operational properties as their abstract operator counterparts. 
Therefore, we will require the discrete manifestations of Eq. (5)
and Eq. (13) to have the same structure, with matrix operators re-
placing the abstract operators. As a consequence, Eq. (5) will hold 
for finite difference and matrix versions of the D and U operators 
and the matrix operator counterpart of MM will be

MM = exp

(
− j2π ln (M)

UD + DU

2

)
. (14)

Thus, a discrete-variable function can be scaled by writing it as 
a column vector and multiplying with the scaling matrix MM . In 
order to obtain the scaling matrix, we need the first-order coor-
dinate multiplication and differentiation matrices U and D, and 
then compute the matrix exponential of the expression inside the 
parentheses. Therefore our first task is to determine the D and U
matrices.

For discrete-variable signals, the counterpart of differentiation 
is to take finite differences:

D̃h f (u) = 1

j2π

f (u + h/2) − f (u − h/2)

h
. (15)

If we let h → 0, then we have D̃h → D, since the right-hand side 
goes to ( j2π)−1df (u)/du. This justifies the interpretation of D̃h as 
a finite-difference operator.

Another established result in operator theory is that f (u + h) =
exp( j2πhD) f (u) [4,36]. This allows Eq. (15) to be expressed as:

D̃h = 1

j2π

e jπhD − e− jπhD

h

= 1

j2π

2 j sin(πhD)

h
= sinc(hD) D. (16)

If we make h → 0, it can again be shown that D̃h →D, confirming 
our earlier observation.

Now, we consider the definition of Ũh . What first comes to 
mind might be to define the discrete coordinate multiplication 
matrix as a diagonal matrix with the elements along the diag-
onal being given by the coordinate values, with due adjustment 
for centering and discreteness, much as in Eq. (12). Although this 
seems reasonable, after careful consideration, we decided that this 
is not necessarily the correct approach. In order to obtain the most 
consistent formulation possible, we must insist on maintaining the 
structural symmetry between U and D. To this end, we define Ũh

in such a way that it is related to U , precisely the way D̃h is re-
lated to D:

Ũh = sinc(hU) U . (17)

If h → 0, then Ũh → U , as expected. Furthermore, when Ũh is de-
fined in this manner, we have the following duality expression 
(which is the same as Eq. (5) satisfied by U and D):
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Fig. 1. Example signal F5.

Table 1
Percentage MSE scores for different methods with varying scaling factors M . Input 
Function: F1 (Chirped Pulse). N = 512.

M Structural Formal Linear Spline Near Neig. Pei’s

0.33 0.0112 2.91e-19 4.04e-23 4.04e-23 4.04e-23 1.06
0.43 0.00369 2.43e-23 3.31e-4 6.1e-10 0.0958 0.472
0.52 0.00139 1.67e-23 3.04e-4 7.38e-10 0.17 0.219
0.62 5.57e-4 1.18e-23 3.39e-4 6.49e-10 0.116 0.101
0.71 2.16e-4 8.98e-24 3.38e-4 6.53e-10 0.111 0.0425
0.81 7.14e-5 6.46e-24 3.36e-4 6.45e-10 0.108 0.0147
0.90 1.41e-5 5.48e-24 3.17e-4 5.84e-10 0.11 0.00294
1.00 4.51e-24 4.51e-24 4.51e-24 4.51e-24 4.51e-24 5.21e-24
1.33 9.76e-5 2.65e-24 3.37e-4 6.53e-10 0.142 0.0166
1.67 3.44e-4 1.75e-24 3.37e-4 6.53e-10 0.111 0.0425
2.00 7.75e-4 1.1e-24 3.73e-4 8.39e-10 0.188 0.0664
2.33 0.00147 2.64e-24 3.37e-4 6.53e-10 0.115 0.0867
2.67 0.00253 1.69e-24 3.37e-4 6.53e-10 0.126 0.104
3.00 0.00406 6.76e-25 3.41e-4 6.11e-10 0.0964 0.118

Table 2
Percentage MSE scores for different methods with varying scaling factors M . Input 
Function: F2 (Trapezoid). N = 512.

M Structural Formal Linear Spline Near Neig. Pei’s

0.33 0.0189 3.05e-4 2.24e-24 2.24e-24 2.23e-24 0.0573
0.43 0.0205 2.22e-4 8.17e-5 2.6e-5 0.00535 0.026
0.52 0.011 1.31e-4 3.9e-5 2.08e-5 0.00621 0.012
0.62 0.0107 4.01e-4 5.9e-4 2.55e-4 0.00643 0.00564
0.71 0.00502 8.94e-5 2.28e-4 6.72e-5 0.00589 0.00236
0.81 0.00332 4.57e-5 7.85e-5 2.28e-5 0.00666 8.32e-4
0.90 9.43e-4 5.4e-5 2.64e-5 4.11e-5 0.00654 1.83e-4
1.00 2.69e-25 2.69e-25 2.69e-25 2.69e-25 2.69e-25 3.26e-24
1.33 0.0118 7.85e-5 2.62e-4 9.27e-5 0.00764 9.75e-4
1.67 0.0498 5.31e-5 1.27e-4 5.08e-5 0.00607 0.00248
2.00 0.128 6.8e-5 2.14e-4 7.65e-5 0.0102 0.00391
2.33 0.26 6.81e-5 1.98e-4 7.51e-5 0.00629 0.00524
2.67 0.459 6.28e-5 1.97e-4 7.03e-5 0.00677 0.00668
3.00 0.734 8.78e-5 2.34e-4 9.79e-5 0.00528 0.00847

Ũh = FD̃hF−1 (18)

This can be proved by substituting D̃h in the above:

Ũh = F
(

1

j2π

2 j sin(πhD)

h

)
F−1

= 1

j2π

2 j sin(πhU)

h
= sinc(hU)U . (19)

The action of the operator U on a continuous signal f (u) is:

Ũh f (u) = 1 sin(πhu)
f (u). (20)
π h

4

Table 3
Percentage MSE scores for different methods with varying scaling factors M . Input 
Function: F3 (Damped Sine). N = 512.

M Structural Formal Linear Spline Near Neig. Pei’s

0.33 0.65 0.0202 1.05e-12 5.07e-5 1.52e-17 18.6
0.43 0.244 0.00553 0.0468 1.67e-5 0.74 8.55
0.52 0.0849 0.00194 0.0203 3.47e-6 1.03 4.0
0.62 0.0335 7.73e-4 0.0419 6.54e-5 1.83 1.84
0.71 0.0127 3.13e-4 0.0398 1.08e-4 2.13 0.781
0.81 0.00406 1.12e-4 0.0475 8.38e-5 1.4 0.271
0.90 7.76e-4 2.49e-5 0.0316 2.89e-5 1.6 0.0543
1.00 8.48e-23 8.48e-23 8.48e-23 8.48e-23 8.48e-23 9.15e-23
1.33 0.00463 1.73e-4 0.0391 3.4e-4 2.34 0.306
1.67 0.0153 3.83e-4 0.0387 7.58e-4 1.92 0.783
2.00 0.0334 5.1e-4 0.043 9.56e-4 3.31 1.22
2.33 0.0621 5.53e-4 0.0387 9.94e-4 2.42 1.59
2.67 0.105 5.56e-4 0.0388 9.75e-4 2.07 1.9
3.00 0.165 5.53e-4 0.0392 9.57e-4 1.79 2.16

Table 4
Percentage MSE scores for different methods with varying scaling factors M . Input 
Function: F4 (Binary). N = 512.

M Structural Formal Linear Spline Near Neig. Pei’s

0.33 19.2 3.47 0 2.12e-27 0 30.2
0.43 19.2 3.22 1.77 1.5 0 17.5
0.52 18.1 4.37 4.32 4.44 14.4 4.73
0.62 15.3 5.85 6.72 7.23 13.3 6.42
0.71 18.0 1.06 0.498 0.401 0 1.77
0.81 15.0 1.41 1.06 0.857 0 2.25
0.90 12.5 5.32 5.28 5.7 11.0 5.4
1.00 0 0 0 0 0 3.26e-24
1.33 24.9 5.57 5.17 5.62 9.07 4.55
1.67 37.3 3.52 3.45 3.53 8.12 3.94
2.00 40.9 29.2 2.75 2.75 5.5 16.2
2.33 38.8 238.0 3.44 3.56 9.98 110.0
2.67 156.0 542.0 4.27 4.5 10.5 241.0
3.00 379.0 776.0 4.95 5.3 10.8 428.0

Table 5
Percentage MSE scores for different methods with varying scaling factors M . Input 
Function: F5 (Medieval). N = 512.

M Structural Formal Linear Spline Near Neig. Pei’s

0.33 2.17 0.246 4.14e-24 4.14e-24 4.12e-24 9.55
0.43 1.88 0.641 0.865 0.937 1.95 1.24
0.52 1.53 0.0555 3.7e-4 0.0246 0.0123 0.102
0.62 0.967 0.457 0.47 0.481 1.61 0.87
0.71 1.05 0.125 0.0602 0.0458 0.011 0.129
0.81 0.825 0.0812 0.0442 0.0362 0.0119 0.0926
0.90 0.804 0.309 0.299 0.274 0.0117 0.295
1.00 5.4e-25 5.4e-25 5.4e-25 5.4e-25 5.4e-25 4.33e-24
1.33 1.53 0.29 0.284 0.281 1.1 0.382
1.67 5.46 0.706 0.651 0.703 0.985 0.596
2.00 12.4 0.712 0.318 0.318 1.27 0.788
2.33 7.6 54.6 0.466 0.498 0.849 21.3
2.67 18.6 134.0 0.237 0.229 0.805 63.6
3.00 80.4 177.0 0.369 0.387 0.761 88.9

Note that the result is not simply multiplying the function with 
the coordinate variable. The alternative of defining Ũh in a man-
ner that corresponds to multiplying with the coordinate variable, 
destroys the symmetry and duality between U and D for discrete 
signals.

If we sample Eq. (20), the matrix operator that acts on discrete-
variable signals can be obtained. The sampling points are chosen 
as u = nh with n varying over a range that is determined by the 
number of sample N as explained in detail in Section 2. Finally, we 
are able to write the elements of the matrix U:
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Fig. 2. MSE (%) as a function of M for functions F1 and F2.

Fig. 3. Barbara. M = 0.6. (From left to right; top to bottom: original, proposed (structural), proposed (formal), linear, spline, nearest).
Umn =
{

(
√

N/π) sin (πn/N) , for m = n,

0, for m �= n.
(21)

We will refer to this definition as the structurally analogous defini-
tion of discrete coordinate multiplication.

The next step is to obtain the D matrix. To do so, first recall 
that Eq. (5) can also be written as
5

D = F−1UF . (22)

Since we want the finite discrete manifestations of these abstract 
operators to also exhibit the same structure, we write

D = F−1UF, (23)

where F was defined in Eq. (6). Thus, we have now obtained dis-
crete matrix forms U and D of coordinate multiplication and dif-
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Fig. 4. Barbara. M = 1.6. (From left to right; top to bottom: original, proposed (structural), proposed (formal), linear, spline, nearest).
ferentiation, and are finally in a position to calculate the discrete 
scaling operator defined in Eq. (14). We believe that the presented 
way of defining the finite matrix forms of coordinate multiplica-
tion and differentiation is the only way that is consistent with the 
dual nature of these operators, and the circulant structure of the 
DFT.

Before we move on to numerical results and interpretations, 
several comments will be in order. First of all, it will be worth 
recapitulating what we did and why. As mentioned, one approach 
is to define discrete coordinate multiplication by constructing a di-
agonal matrix with the elements given by the coordinate values. 
Then one can also easily obtain the discrete version of the differ-
entiation matrix by using duality, without having to go through 
the circuitous route we followed. In other words, if U is the coor-
dinate multiplication operation, it can be discretized by a straight-
forward procedure: Assume N samples taken over an extent 

√
N

spaced h = 1/
√

N apart. Then, we can discretize U f (u) = u f (u) as 
nhf (nh) = n/

√
N f [n] with u = nh and n = 0, 1, ..., N − 1. Finally, U

can be expressed as

Umn =
{

n/
√

N, for m = n

0, for m �= n
, (24)
6

where m, n = 0, 1, ..., N − 1 or n = − N
2 , ..., N

2 − 1. We will refer 
to this definition as the formally analogous definition of discrete 
coordinate multiplication. However, unlike Eq. (21), this definition 
is not consistent with the circulant structure of the finite/periodic 
lattice associated with the DFT.

Moving to another point, the simplest way to define the finite 
difference operator would have been, instead of Eq. (15),

D̃h f (u) = 1

j2π

f (u + h) − f (u)

h
. (25)

However, when discretized, the corresponding differentiation ma-
trix would have values of −1 along the primary diagonal and val-
ues of 1 along the diagonal adjacent to the primary, leaving us 
with a matrix that is not symmetric. We rejected this option since 
the lack of symmetry does not allow to the elegant formulation 
obtained from Eq. (15). However, Eq. (15), while symmetric, did 
not allow us to immediately write a differentiation matrix, because 
it involved sample points in the middle of the sampling intervals, 
rather than the ends. Fortunately, the relationship Eq. (16) between 
D̃h and D that we derived showed the way to define Ũh . The op-
erator Ũh did not exhibit the same problem of involving sample 
points in the middle that D̃h did, and could be discretized without 
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Fig. 5. Barbara. M = 2.1. (From left to right; top to bottom: original, proposed (structural), proposed (formal), linear, spline, nearest).
difficulty. It was also symmetrical, as desired. Once we obtained 
the U matrix, it was possible to use duality to obtain the D matrix 
as well.

To summarize, we defined two alternative operator theory 
based discrete coordinate multiplication operations. The first, given 
in Eq. (21), is structurally consistent with the DFT and theoretically 
desirable. The second one as given in Eq. (24), despite being based 
on the formal definition of the coordinate multiplication, lacks cer-
tain desirable properties. It will be seen, however, that despite its 
theoretical shortcomings, it has numerical advantages. We call the 
former “structural” and the latter “formal” definitions.

5. Quantitative discussion

In this section, we examine our formulation from a numeri-
cal perspective and then present computational cost analysis of 
our methods. We consider five different functions: a chirped pulse 
function exp(−πu2 − jπu2), denoted by F1, the trapezoidal func-
tion 1.5tri(u/2) − 0.5tri(2u) where tri(u) = rect(u) ∗ rect(u) de-
noted by F2, a damped sine function exp(−2|u|) sin(2π1.5u) de-
noted by F3, a binary sequence (01101010), denoted by F4, and 
the signal given in Fig. 1. We considered several different values 
for the scale parameter M , ranging from 0.33 to 3. To compute the 
7

reference values, we used a computationally expensive, brute force 
numerical method and calculated normalized mean-square errors 
(MSE) between the following vectors: (i) Reference: Samples of 
the scaled functions f (u/M) obtained by brute force; (ii) Discrete 
scaling: Samples obtained through our methods, Pei’s method and 
three baseline interpolation methods. In other words, we compare 
the following:

• Method 1: Proposed method I (Structural)
• Method 2: Proposed method II (Formal)
• Method 3: Linear interpolation
• Method 4: Spline interpolation
• Method 5: Nearest neighbor interpolation
• Method 6: Pei’s Method

The value of N , the number of samples, is taken as 512. Percentage 
MSE scores are tabulated in Tables 1 to 5 for a range of scaling 
factors M . Fig. 2 shows percentage MSE scores as a function of the 
scaling factor M for selected input functions.

Upon inspecting the results, one can make the following ob-
servations. First, our structurally analogous Method 1 outperforms 
Pei’s method in approximately two thirds of the input signal/scal-
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Fig. 6. Kiel Harbor. M = 0.6. (From left to right; top to bottom: original, proposed (structural), proposed (formal), linear, spline, nearest).
ing parameter pairs. On the other hand, our formally analogous 
Method 2 clearly outperforms Pei’s method in all cases with great 
margins. Based on the numerical evidence, our proposed Method 
2 clearly outperforms proposed Method 1 in terms of the MSE 
scores. Thus while Method 1 is the theoretically desirable alter-
native, Method 2 is to be preferred for practical numerical compu-
tation. Method 1 would have to be used with much higher values 
of N to achieve the same MSE as Method 2. The maintenance of 
strict structural analogy has a price in terms of numerical perfor-
mance. Now we turn our attention to the comparisons with the 
three baseline interpolation approaches. Although the purpose of 
the present work is not to achieve ad-hoc numerical improvements 
to existing interpolation methods, Method 2 is also on par with all 
of the three baseline interpolation methods numerically.

We have also considered “Barbara” and “Kiel Harbor” images as 
2D examples to make visual qualitative analysis. Results for dif-
ferent scaling parameters are given in Figs. 3 to 8. These images 
are also used in our experiments to verify the reversibility and ad-
ditivity of our proposed method. Our discrete scaling framework 
is theoretically reversible and additive. This could be easily seen 
upon inspection of our definition given in Eq. (14). When one 
constructs two matrices by using Eq. (14) with scaling parame-
8

ters M and 1/M , these matrices are exactly inverses of each other. 
Theoretically, their successive application would be identity. How-
ever, in practical applications, for scaling values that correspond 
to zooming-in, some of the information in the original input can 
be lost. This, in turn, gives rise to some reconstruction errors in 
numerical simulations. We have presented sample results for re-
versibility experiments in Table 6 for “Barbara” and “Kiel Harbor” 
images and for several scaling parameters. The same theoretical 
considerations are also valid for additivity. Successive application 
of two scaling matrices that are obtained by Eq. (14) with param-
eters M1 and M2 to a signal would equal to application of a single 
matrix with parameter M3 = M1M2. Numerical examples for addi-
tivity experiments are presented in Table 7.

The results confirm that the presented approach to discrete 
scaling provides reasonable numerical performance, in addition to 
being attractive from a theoretical perspective. Higher accuracy 
(lower MSE) is obtained with increasing N . This is because large N
means larger extents in both the time and frequency domains, so 
that a smaller percentage of the signal is left outside of these ex-
tents. As expected, the MSE values also depend on the signal that 
is being scaled. Recalling the considerations in Section 2, the accu-
racy obtained depends on what percentage of the signal energy is 
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Fig. 7. Kiel Harbor. M = 1.6. (From left to right; top to bottom: original, proposed (structural), proposed (formal), linear, spline, nearest).
confined within the chosen extents in the time and frequency do-
mains. For example, MSE values for F2 are relatively higher than 
those for F1. This is caused by the fact that its frequency do-
main content is spread over a relatively greater extent, leading to 
a greater percentage of its energy to fall outside the chosen ex-
tents.

Comparison of the computational complexities of our approach 
and the other methods is as follows. The computational com-
plexity for generating a scaling matrix of size N × N using our 
proposed methods is dominated by the computation of the ma-
trix exponential. One way to perform matrix exponentiation is 
through computing the eigenvalue decomposition, which has com-
plexity O (N3). Hence, in this case, generating the scaling matrix 
has complexity O (N3). Having said this, we note that if we pre-
compute and store the scaling matrix for size N , then computing 
the scaled signal is of complexity O (N2) as we only need to do a 
matrix-vector product. Linear, spline, and nearest neighbor inter-
polation methods have computational complexity O (N); however, 
their exact computational costs differ (hidden by the big-O nota-
tion). More precisely, nearest neighbor interpolation is the fastest 
one among these three methods and the second fastest one is lin-
ear interpolation. Pei’s Method, similarly to our proposed methods, 
9

involves computing the eigenvalue decomposition and has com-
plexity O (N3).

6. Conclusion

We proposed a framework for scaling discrete-time signals 
based on hyperdifferential operator theory. We formulate a unitary 
scaling matrix that can be used to left-multiply vectors holding 
samples of finite-length signals of a discrete variable, to return 
the vector holding samples of the scaled version. The proposed 
formulation is mathematically elegant and pure in the sense that 
the structural relationships between all discrete entities completely 
mirror those between the continuous and abstract entities. There-
fore, the structure obtained in the discrete world is strictly analo-
gous to that in the continuous world. Furthermore, it also exhibits 
consistency with the circulant structure associated with the DFT. 
These theoretically attractive qualities do not result in the most ac-
curate numerical method. However, the accuracy can be improved 
by maintaining the general hyperdifferential formulation, but only 
modifying the coordinate multiplication and differentiation matri-
ces used. Thus although the purpose of this paper is not to provide 
numerical refinements, the result is numerically competitive. Al-
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Fig. 8. Kiel Harbor. M = 2.1. (From left to right; top to bottom: original, proposed (structural), proposed (formal), linear, spline, nearest).
Table 6
Percentage MSE scores for reversibility with varying scaling factors M . Normalized 
by the energy of the input image.

Barbara Kiel Harbor

M 1/M Structural Formal Structural Formal

0.5 2 1.094 1.976 2.209 2.844
0.6 1.667 0.728 1.332 1.714 2.111
0.7 1.429 0.456 0.781 1.253 1.518
0.8 1.25 0.252 0.172 0.859 0.937

ternative coordinate multiplication and differentiation matrices not 
considered in this paper can also be experimented with.

Finally, we also believe that the use of hyperdifferential oper-
ator theory to the problem of defining a discrete operation might 
open up new research directions for other applications in signal 
analysis and processing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.
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Table 7
Percentage MSE scores for additivity with varying scaling factors M . Normalized by 
the energy of the output image obtained by direct scaling with parameter M1M2.

Barbara Kiel Harbor

M1 M2 M1 M2 Structural Formal Structural Formal

0.6 1.6 0.96 0.087 0.213 1.428 1.746
0.7 0.8 0.56 0.201 0.056 0.225 0.061
1.2 1.3 1.56 0.341 0.306 0.494 0.407
0.9 2.5 2.25 0.069 0.025 0.615 0.694
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