
Digital Signal Processing 142 (2023) 104200

Contents lists available at ScienceDirect

Digital Signal Processing

journal homepage: www.elsevier.com/locate/dsp

Linearly time-varying systems and their fast implementation

Utkan Candogan a, Ozan Candogan b, Haldun M. Ozaktas c,∗
a Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
b Operations Management, University of Chicago Booth School of Business, Chicago, IL 60637, USA
c Department of Electrical Engineering, Bilkent University, TR06800 Bilkent, Ankara, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 22 August 2023

Keywords:
Fast algorithms for digital signal processing
Algorithms for signal filtering, restoration, 
enhancement, and reconstruction
Transforms for signal processing

Linear time-invariant systems can be implemented in O (N log N) time, whereas the most general family 
of linear systems can be implemented as a vector-matrix product in O (N2) time. However, there 
are time-variant systems that can be implemented in O (N log N) time. In this paper, we introduce a 
particular family of such systems, which we refer to as the class of linearly time varying (LTV) systems. 
These systems interpolate between multiplicative systems and convolutive systems, and are characterized 
by their chirp-type eigenfunctions and their relationship to fractional Fourier domain filtering. We derive 
expressions for the linear transform kernel of LTV systems, and illustrate their use with examples. 
Recognizing LTV systems, or approximating linear systems with LTV systems when possible, can reduce 
the time of computation from O (N2) to O (N log N).
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1. Introduction

In this paper we focus on a class of systems which we refer to 
as linearly time-varying systems (LTV systems). We underline that 
we are not dealing with the broader class of “linear time-variant” 
systems, which are linear systems which are not time-invariant. 
Rather, we focus on a subset of time-variant systems, whose time-
variance is of a particular form. The term “linearly time-varying” 
is meant to refer to the particular kind of time-variance that is of 
interest to us.

We give two definitions of LTV systems. In the first, we charac-
terize LTV systems with their chirp-type eigenfunctions. The eigen-
functions of linear time-invariant systems are harmonic functions, 
whose frequencies do not vary with time. In contrast, the frequen-
cies of chirp-type functions vary linearly with time. Thus we refer 
to systems with chirp-type eigenfunctions as linearly time-varying 
systems. Chirp functions are known to interpolate between Dirac 
delta functions and pure harmonic functions [17, pp. 146-149]. 
Correspondingly, LTV systems interpolate between multiplicative 
systems and convolutive systems. (With these terms we refer to 
systems that correspond to multiplication or convolution by a 
function in the time domain.)

In our second definition, we define an LTV system to be a 
system which corresponds to multiplicative filtering in fractional 
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Fourier domains. According to the second definition, an LTV system 
corresponds to taking the fractional Fourier transform of the input, 
multiplying the result with a filter function in the ath fractional 
Fourier domain, and returning back to the original domain by tak-
ing the inverse transform. We show that these two definitions are 
equivalent. As suggested by the previous paragraph, LTV systems 
have the same relationship with the fractional Fourier transform, 
as linear time-invariant systems have with the ordinary Fourier 
transform.

The fractional Fourier transform (FRT) has been widely studied 
in the context of signal processing and optics [1–23]. Its properties 
have been established [17] and it appears in standard handbooks 
of mathematical transforms [20]. The FRT is intimately related to 
time-frequency distributions that are widely used in signal anal-
ysis and processing, and most notably the Wigner distribution 
[3,10,21,43]. Notable among its properties are the product and 
convolution theorems [11,14,15,17] and eigenfunctions [18]. The 
fractional Fourier domain decomposition has been inspired by the 
singular value decomposition [16] and the sampling theorem has 
been generalized to FRT domains [19].

There are several important relationships between the FRT and 
optics. First, the FRT models the propagation of light in graded-
index media [1,2,13]. Second, with appropriate scaling, it models 
the propagation of light not only in free space but also in sys-
tems consisting of arbitrary concatenations of lenses and sections 
of free space [13,17]. Third, it is possible to construct optical sys-
tems that perform analog fractional Fourier transforms with very 
high resolution and speed [5,6]. Fourth, it is intimately related to 
Gaussian-beam propagation in lasers and the Gouy phase [13].
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The fractional generalizations of many transforms and other 
concepts have been proposed [24–42]. Many applications of the 
FRT have been explored [43–51]. Specifically, the FRT has been 
shown to provide significant improvements in numerous signal 
reconstruction, signal recovery, filtering, and noise removal prob-
lems [52–70]. The concept of filtering in the ordinary Fourier do-
main has been extended to filtering in fractional Fourier domains, 
where the signal is fractional Fourier transformed, filtered, and 
then inverse transformed back to the time domain [3,39,52,56]. 
Closely related is the concept of fractional convolution [3,28,37]. It 
has been demonstrated that noise that cannot be separated either 
in the time or frequency domains can be separated in FRT domains 
[3,58]. Another example where the FRT has been found useful is 
the detection of linear FM signals [31,50]. Fractional correlation has 
been proposed as a generalization of ordinary correlation [24,26]. 
This has applications to signal detection and pattern recognition 
[54]. Multiplexing in FRT domains has been suggested as a strat-
egy between time-domain and frequency-domain multiplexing [3]. 
The FRT has been applied to signal synthesis [9], as well as to sig-
nal recovery from multiple measurements of wavefields [62]. The 
concept of filtering in FRT domains has been generalized to filter-
ing in multiple FRT domains [59]. These domains can be visited in 
sequential manner, which is referred to as repeated or multi-stage 
filtering [55,61]. They can also be visited at the same time and the 
results combined, which is known as parallel or multi-channel fil-
tering [17,59]. Applications to filter design are considered in [66]. 
Reference [69] deals with applications to beamforming. Further ap-
plications are reviewed in [46].

Generally speaking, for any application where the ordinary 
Fourier transform plays a role, there is the potential for general-
ization or improvement with the fractional Fourier transform. The 
fractional Fourier transform has an order parameter a which is 
equal to 1 for the ordinary Fourier transform. Thus the FRT in-
cludes the ordinary FT as a special case. This additional parameter 
provides greater generality and a degree of freedom over which 
to optimize. If the optimal value is a = 1, that means the FRT 
does not provide any improvement. However, if it is any other 
value, that means the FRT offers at least some improvement. The 
improvements are most often strongest when the system is not 
time-invariant and/or when the noise or other random character-
istics are not stationary. This is because the ordinary FT works 
best with time-invariant systems; after all the basis functions of 
the FT are the eigenfunctions of time-invariant systems. For time-
variant systems, the FRT often provides some improvement. As will 
be seen, the basis functions of the FRT are chirp functions, which 
are functions with linearly varying frequency. Thus one may ex-
pect the FRT to offer the greatest improvements when signals and 
systems exhibiting such behavior are involved. This is indeed fre-
quently observed.

An analogy with harmonic analysis in physics may be illuminat-
ing. Oscillatory systems are widespread in nature but they do not 
always have quadratic potentials. However, if the potential func-
tion is expanded as a Taylor series around its equilibrium point, 
the first order term vanishes by definition and the leading term is 
the quadratic term. Thus, provided the oscillations are not large, 
most vibrating systems can be treated as harmonic oscillators as 
a first approximation. The situation with application of the FRT is 
similar. While all time-varying systems do not exhibit behavior in 
frequency that is linear, this can be taken as a first approximation 
so that many systems will benefit from the use of the fractional 
Fourier transform. This analogy directly carries over to the concept 
of linearly time-varying systems developed in this paper. While all 
linear time-variant systems are not linearly time-varying systems, 
many can be reasonably approximated by one, and thus their im-
plementation can be accomplished in O (N log N) time instead of 
O (N2). Thus the motivation of this paper is to show that it is of-
2

ten possible to exactly or approximately model a system with a 
linearly time-varying system and thus implement it in O (N log N)

time.
The ath order FRT is a fractional generalization of the ordinary 

Fourier transform which interpolates between the identity opera-
tion and the ordinary Fourier transform operation, as a increases 
from 0 to 1. The ath order FRT of a function f (u) is commonly 
defined as [17]:

Fa[ f (u)] = (Fa f )(ua) = fa(ua) =
∞∫

−∞
Ka(ua, u) f (u)du,

Ka(ua, u) = Aα exp(iπ(cotα u2
a − 2 cscα uau + cotα u2)),

Aα = √
1 − i cotα, α = aπ

2
,

(1)

where Fa is the ath order FRT operator and Ka(ua, u) is the ath 
order FRT kernel. Here ua denotes the coordinate variable in the 
ath order fractional Fourier domain. All integrals in this paper are 
from −∞ to +∞. The above holds when a �= 2 j for j ∈ Z. If 
a = 4 j, Ka(ua, u) = δ(ua − u), and the FRT is the identity. When 
a = 4 j + 2, Ka(ua, u) = δ(ua + u) and the FRT becomes the parity 
operator.

The FRT can be computed in O (N log N) time, just as the 
Fourier transform [71,72]. These algorithms are based on careful 
analytical manipulation of the integrals prior to discretization. As 
we will more precisely see, LTV systems correspond to multiplica-
tive filtering of their inputs in the ath fractional Fourier domain. 
Since multiplicative filtering involves an FRT followed by simple 
multiplication (which take O (N) time), followed by another FRT, 
this implies that LTV systems can also be computed in O (N log N)

time. We underline the fact that although LTV systems are not lin-
ear time-invariant, this allows us to implement them in O (N log N)

time. Furthermore, even when a given system is not strictly LTV, 
we can use LTV systems to approximate non-LTV systems, with the 
purpose of reducing the computation times.

The base of logarithm is not important in complexity expres-
sions but for concreteness it may be taken as 2.

The paper is organized as follows: In section 2, we introduce 
the two definitions of LTV systems, and demonstrate their equiv-
alence. Next, in section 3, we derive the explicit form of the lin-
ear transform kernel for LTV systems, and examine its limits. In 
section 4, we illustrate the use of LTV systems to exactly or ap-
proximately model systems that we might encounter. We see that 
they can provide better performance than ordinary multiplicative 
or convolutive filtering, and lower cost than general linear filtering. 
In the last section, we conclude.

2. Definitions of LTV systems

In this section, we present two definitions of LTV systems. The 
first definition characterizes LTV systems with their eigenfunc-
tions. The second definition specifies LTV systems as those systems 
which correspond to filtering in a fractional Fourier domain. Then 
the equivalence of these two definitions is established.

2.1. First definition

We define ath order LTV systems to have eigenfunctions given 
by chirp−a,ζ (u), which are functions of u indexed by ζ . Chirp func-
tions, which are functions whose instantaneous frequencies are 
linearly time varying, are here defined as:

chirpa,ζ (u) = Aα exp
(
iπ(cotα u2 − 2 cscα uζ + cotα ζ 2)

)
,

Aα = √
(1 − i cotα) , α = aπ

.
(2)
2
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The eigenvalues associated with these eigenfunctions can be cho-
sen arbitrarily. Different eigenvalue choices result in different LTV 
systems.

Chirp functions are more commonly expressed in the form 
chirp(u) = exp(iπ(χu2 + 2ξu)). The form given in (2) may be 
related to this by taking χ = cotα and ξ = − cscα ζ , and multiply-
ing by Aα exp(iπ cotαζ 2). This reparameterization produces more 
convenient harmonic and delta limits as a → 1 and a → 0. Further-
more, we recognize the parameterized family of chirps chirpa,ζ (u)

as being essentially equal to the ath order FRT kernel Ka(ζ, u):

chirpa,ζ (u) = Ka(ζ, u). (3)

We also note that, all chirp functions are fractional Fourier 
transforms of each other and satisfy the equality Fa[chirpa′,ζ (u)] =
chirpa+a′,ζ (ua) [17]. The Wigner distribution of this family of 
chirps is given by:

Wchirpa,ζ
(u,μ) = 1

| sinα|δ
(
μ − cotα u + cscα ζ

)
, (4)

which is concentrated along the line μ = cotα u − cscα ζ in the 
time-frequency plane. As the order a varies, the axis crossings of 
the Wigner distribution changes. For more on the Wigner distribu-
tion, see [17].

For a = 0, we have chirp0,ζ (u) = δ(u −ζ ) and the Wigner distri-
bution Wchirp0,ζ

(u, μ) = δ(u − ζ ) forms vertical lines in the time-
frequency plane. Systems whose eigenfunctions are of the form 
δ(u − ζ ) are multiplicative systems; they simply multiply the input 
with some function of u to produce the output. On the other hand, 
for a = 1, we have chirp−1,ζ (u) = exp(i2πuζ ) and the Wigner dis-
tribution Wchirp−1,ζ

(u, μ) = δ(μ − ζ ) forms horizontal lines in the 
time-frequency plane. In this case the general chirp family reduces 
to harmonics. Systems whose eigenfunctions are harmonics are 
convolutive systems (time-invariant systems). Therefore, according 
to definition 1, LTV systems reduce to multiplicative systems for 
a = 0 and convolutive systems for a = 1. As a increases from 0 to 
1, the chirp family employed in the definition evolves from delta 
functions to harmonic functions, and the LTV systems, as defined, 
evolve from multiplicative systems to convolutive systems.

2.2. Second definition

Here we define LTV systems of order a as multiplicative filtering 
in the ath order fractional Fourier domain. In other words, we take 
the ath order FRT of the input f (u), multiply the result with some 
filter function H(ua), and then take the inverse FRT of the product 
to obtain the output g(u). Thus, mathematically, the output g(u)

for an input f (u) is given by:

g(u) = La{ f (u)} = F−a
[

H(ua) (Fa f )(ua)
]
(u), (5)

where La{·} denotes the ath order LTV system, and Fa denotes 
the ath order FRT operator. The filter function in the ath domain 
H(ua) can be chosen arbitrarily; choice of different filter functions 
results in different LTV systems.

When a = 0, the FRT operators in (5) boil down to identity op-
erators, and the system becomes a multiplicative system, g(u) =
f (u)H(u). When a = 1, (5) becomes Fourier domain filtering and 
the system becomes a convolutive system, g(u) = f (u) ∗ h(u), 
where h(u) denotes the inverse Fourier Transform of H(u). As a
varies from 0 to 1, the LTV systems evolve from multiplicative 
systems to convolutive systems. Therefore, the second definition 
conforms with the first definition, in terms of the behavior of the 
systems with respect to a.

Since LTV systems are systems which correspond to multiplica-
tive filtering in the ath fractional Fourier domain, one is also led 
3

to inquire the systems which correspond to convolutive filtering in 
the ath domain. It can trivially be shown that such systems are 
also members of the family of LTV systems defined in this section, 
but with order (a +1), rather than a. The reason is that convolution 
in the ath domain is equivalent to multiplication in the (a + 1)th 
domain.

The second definition of LTV systems enables representing 
these systems as matrix-vector products in the discrete-time do-
main. For that purpose, we construct the diagonal �H matrix 
which contains the samples of H(u) along its diagonal. Given the 
input vector f containing the input samples, the output vector g
can be calculated as

g = F−a�HFaf (6)

where Fa is the ath order discrete fractional Fourier transform ma-
trix [73].

The FRT can be computed in O (N log N) time, employing the 
algorithm discussed in [71,72]. This algorithm, in the light of (6), 
also implies a fast implementation technique for the LTV systems 
defined in definition 2. This is what gives significance to LTV sys-
tems. Although they are not time-invariant, they can be calculated 
fast in O (N log N) time.

2.3. Equivalence of the two definitions

In this section, we establish the equivalence of the two defi-
nitions given. First, we prove that systems with eigenfunctions of 
the form chirp−a,ζ (u) indeed filter their inputs in the ath frac-
tional Fourier domain. Conversely, we prove that systems which 
correspond to ath order fractional Fourier domain filtering, have 
eigenfunctions of the form chirp−a,ζ (u).

To prove the first step, we express f (u) in terms of the fol-
lowing inverse FRT relationship, given the ath order FRT fa(ua) of 
f (u):

f (u) =
∞∫

−∞
fa(ua)K−a(u, ua)dua

=
∞∫

−∞
fa(ua)K−a(ua, u)dua

=
∞∫

−∞
fa(ua)chirp−a,ua

(u)dua,

(7)

where we used symmetry of the FRT kernel Ka(u, ua) = Ka(ua, u)

in the second equality. The rightmost expression expresses f (u) as 
a linear superposition of the chirp−a,ζ (u) functions with weights 
fa(ζ ), if we replace the dummy variable ua with ζ . However, 
the functions chirp−a,ζ (u) are the eigenfunctions that character-
ize an ath order LTV system in the first definition. Therefore, the 
rightmost form in equation (7) expresses f (u) in terms of the 
eigenfunctions of the ath order LTV system according to the first 
definition:

f (u) =
∞∫

−∞
fa(ζ )chirp−a,ζ (u)dζ. (8)

Hence, when f (u) is fed into the ath order LTV system defined in 
definition 1, the output can be trivially obtained by multiplying the 
eigenfunctions with the corresponding eigenvalues. We will denote 
the eigenvalues by H(ζ ), where ζ is the index. Then the output of 
the system becomes
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La{ f (u)} =
∞∫

−∞
fa(ζ )H(ζ )chirp−a,ζ (u)dζ

=
∞∫

−∞
fa(ζ )H(ζ )chirp−a,u(ζ )dζ

=
∞∫

−∞
fa(ua)H(ua)chirp−a,u(ua)dua,

(9)

where we first used chirp−a,u(ζ ) = chirp−a,ζ (u) which followed 
from the symmetry of the kernel, and switched back to the dummy 
variable ua . Equation (9) amounts to taking the ath order FRT 
of the input f (u) to obtain fa(ua), then multiplying fa(ua) with 
H(ua) in the ath order domain, and then taking the inverse 
fractional Fourier transform of the result, since chirp−a,u(ua) =
K−a(u, ua) is merely the inverse FRT kernel. This sequence of op-
erations precisely corresponds to our second definition of LTV sys-
tems with the indexed eigenvalues H(ζ ) appearing in the first 
definition corresponding to the filter function in the second def-
inition. Thus we have shown that any system covered by definition 
1 is also a member of the systems defined by definition 2.

The proof of the converse is established by considering the 
eigenfunction equation of an ath order LTV system as defined by 
definition 2, in the form of a multiplicative filtering operation in 
the ath order FRT domain. Let f (u) be an eigenfunction and λ

be the corresponding eigenvalue of this LTV system. Here, 	H is 
a multiplicative system operator which multiplies its input with 
H(ua):
(
F−a	HFa f

)
(u) = λ f (u), (10)(

	HFa f
)
(ua) = λ(Fa f )(ua), (11)(

	H fa
)
(ua) = λ fa(ua). (12)

This is an eigenvalue equation in terms of (Fa f )(ua) = fa(ua). 
Since 	H is a multiplicative system operator, its eigenfunctions are 
δ(ua − ζ ) for arbitrary ζ . Therefore (Fa f )(ua) = fa(ua) = δ(ua −
ζ ) = chirp0,ζ (ua). Performing an inverse FRT, we obtain

f (u) = F−a[chirp0,ζ (ua)] = chirp−a,ζ (u), (13)

which implies that the systems defined by definition 2 have the 
eigenfunctions chirp−a,ζ (u), which are precisely the eigenfunctions 
that were used to define LTV systems in definition 1. Thus, the 
family of systems in definition 1 contain the systems defined in 
definition 2, and the equivalence of the definitions is established.

Definition 2 forms the basis for fast implementation of LTV 
systems. The FRT has a fast O (N log N) algorithm [71,72]. These 
algorithms are obtained by carefully manipulating the linear trans-
form integral before discretization. Special attention is required to 
ensure the chirp-like features inside the integral are properly sam-
pled, without requiring a sample rate that is above that dictated 
by the time-bandwidth product of the signals to be transformed 
[72]. Ordinary multiplication of two functions takes O (N) time. 
Since this definition involves an FRT followed by a multiplication 
followed by an FRT, we deduce that LTV systems can be digitally 
implemented in O (N log N) time. If we are to implement LTV sys-
tems optically, this time we can use the fact that the FRT can be 
realized with an optical system whose space-bandwidth product is 
O (N), to conclude that LTV systems can be realized with an optical 
system whose space-bandwidth product is O (N) [17,59]. On the 
other hand, Definition 1 reveals the eigenfunctions of LTV systems 
to be chirps, which are functions of linearly changing frequency. 
This suggests that linear changes in frequency might be a feature 
of LTV systems, as we will later further discuss.
4

3. Kernel of LTV systems

In this section we present the explicit linear transform kernel 
of LTV systems. Assuming the input signal f (u) is a well-behaving 
function, the output signal g(u) is given by the following relation-
ship:

g(u) = F−a [
H(ua) (Fa f )(ua)

]
(u) (14)

=
∞∫

−∞
K−a(u, ua)H(ua)

∞∫

−∞
Ka(ua, u′) f (u′)du′ dua, (15)

=
∞∫

−∞
f (u′)

∞∫

−∞
K−a(u, ua)H(ua)Ka(ua, u′)dua du′, (16)

=
∞∫

−∞
La(u, u′) f (u′)du′, (17)

where we identify La(u, u′) as the kernel of the ath order LTV sys-
tem:

La(u, u′) =
∞∫

−∞
K−a(u, ua)H(ua)Ka(ua, u′)dua, (18)

= 1

| sinα| exp[iπ cotα(u′2 − u2)]h[cscα(u − u′)],
(19)

where h(u) is the inverse Fourier transform of H(u). Since H(u) is 
an arbitrary function, so is h(cscα u). Thus, the kernel is essentially 
formed by a chirp, multiplied with an arbitrary function of u − u′ . 
If we expand the exponent as a difference of squares, we can also 
say that the kernel is an arbitrary function of u − u′ , multiplied 
with an exponent of u + u′ . The exponent of u + u′ causes the 
deviation from LTI systems.

The input-output relationship of LTV systems for an input f (u)

and output g(u) can be expressed as follows, by using (19):

g(u) = 1

| sinα| exp(−iπ cotαu2)

×
[

h
(

cscα u
) ∗ (

f (u)exp(iπ cotαu2)
)]

. (20)

From this equation it can be observed that an LTV system mul-
tiplies its input with a chirp, then convolves this with some func-
tion, and finally multiplies the result with the complex conjugate 
of the initial chirp. In other words, LTV systems are equivalent to 
linear time-invariant systems with a specific form of pre and post 
chirp multiplication.

3.1. The limit a → 1

When a → 1, the kernel of the LTV system given in (19) ap-
proaches to a convolutive kernel:

lim
a→1

La(u, u′) = h(u − u′). (21)

This kernel form is equivalent to convolution with the inverse 
Fourier transform of the filter function. This is expected since 
when a = 1, the system in (5) first takes the ordinary Fourier trans-
form of the input, then multiplies this with H(u) and then takes 
the inverse Fourier transform. Since multiplication in the frequency 
domain corresponds to convolution in the time domain, we obtain 
the convolutive kernel in (21).
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We now present an expression for the kernel which is valid 
when a is close to, but not necessarily equal to 1, by employing a 
Taylor series expansion of the kernel in (19):

La(u, u′) ≈ h(u − u′) + i
π2

2
(a − 1)h(u − u′) (u2 − u′2). (22)

From the equation above, it can be observed that when a is close 
to 1, the convolutive kernel is perturbed by a term which gets 
more significant as the order moves away from a = 1. This pertur-
bation term destroys time-invariance. Note that when h(u) is real, 
the perturbation is purely imaginary; in other words, the departure 
of LTV systems from time-invariance is of an imaginary nature, at 
least to first order.

The corresponding input-output relationship for (22) is:

y(u) = h(u) ∗ f (u)

+ i
π2

2
(a − 1)

[
u2(h(u) ∗ f (u)

) − h(u) ∗ (
u2 f (u)

)]
. (23)

3.2. The limit a → 0

For the case of a → 0, the cscα and cotα terms in (19) di-
verge. Setting a = b − 1 and using the index additivity of FRT, we 
rewrite the operator F−a	HFa as F1(F−b	HFb)F−1. The a → 0
limit corresponds to b → 1. Using (21) with b in place of a, we see 
that the kernel corresponding to the operator F−b	HFb is simply 
h(u − u′), which amounts to convolution of the input with h(u). 
Therefore the operator F1(F−b	HFb)F−1 corresponds to multi-
plication with H(u), so that we can write

lim
a→0

La(u, u′) = H(u′)δ(u − u′). (24)

When a is perturbed around 0, it is not possible to di-
rectly use a Taylor series expansion around 0 since the kernel 
is not differentiable with respect to a at this point. Again using 
F1(F−b	HFb)F−1, we can write a Taylor expansion for the ker-
nel of the operator F−b	HFb around b = 1 as in (22), but with b
in place of a:

Lb(u, u′) ≈ h(u − u′) + i
π2

2
(b − 1)h(u − u′) (u2 − u′2). (25)

Now, to obtain the expansion of La(u, u′) around a = 0, we perform 
ordinary Fourier transformation from the right and inverse Fourier 
transformation from the left:

La(u, u′) =
∞∫

−∞

∞∫

−∞
K1(u, u′′′)Lb(u′′′, u′′)K−1(u′′, u′)du′′ du′′′,

(26)

which, using standard Fourier transform properties, evaluates to

La(u, u′) ≈ H(u′)δ(u − u′) + i
a

8

(
H(u) − H(u′)

)
δ′′(u − u′). (27)

The input-output relationship corresponding to (27) is as fol-
lows:

g(u) = H(u) f (u) − i
a

8

(
f (u)

d2 H(u)

du2
+ 2

df (u)

du

dH(u)

du

)
. (28)

If H(u) is real-valued, the first multiplication term is real and 
the perturbation is purely imaginary, as it was in the a → 1 case.
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4. Examples and applications of LTV systems

4.1. Elementary systems

First we consider the case h(u) = | sinα| δ(sinα u), which leads 
to the identity operator with kernel La(u, u′) = δ(u − u′). This is 
expected since in this case h(u) reduces to a constant filter func-
tion H(u), and the FRTs in (5) cancel each other.

Next we consider h(u) = | sinα| δ(sinα u − ε), which leads to

La(u, u′) = δ(u − u′ − ε)exp(−iπ cotα (ε2 + 2u′ε)), (29)

which means that this kernel will cause a coordinate shift and 
phase shift. We observe that a shift of the filter function leads to 
both a coordinate and phase shift at the output.

Now we consider h(u) = | sinα| rect(sinα u). The kernel now 
becomes,

La(u, u′) = exp(iπ cotα (u′2 − u2)) rect(u − u′). (30)

Convolution with the rectangle causes a blur and the chirp term 
causes time varying phase changes.

We now turn our attention to the relationship between LTV sys-
tems and chirplet transforms, which are defined as follows [74]:

C f (u,μ,�u, s) =
∞∫

−∞

1√√
π �u

exp(−i2π(s(u′ − u)2 + μ(u′ − u)))

× exp(−1

2
(

u′

�u
)2) f (u′)du′, (31)

where u and μ are time and frequency centers, �u is the du-
ration and s is the chirprate of the chirplet. We now show how 
to express this transform in terms of LTVs. If we specify f (u′) ×
exp(− 1

2 ( u′
�u

)2) exp(−iπ cotα u′ 2) as the input of an LTV system 
with filter function h(u) = | sinα| 1√√

π�u
exp(−i2π(s(sinα u)2 −

μ(sinα u))), the output of the LTV system will be g(u) = C f (u, μ,

�u, s) exp(−iπ cotα u2). In other words, chirplet transforms can be 
interpreted as LTV systems with pre and post chirp-multiplication.

In the next section, we discuss a class of systems which are 
exactly LTV systems.

4.2. Linearly sliding frequency filters

In this section, we focus on a specific type of system and prove 
that its members are exactly LTV systems. This particular system 
can be referred to as a linearly sliding frequency filter. This system 
is essentially a bandpass frequency filter whose center frequency 
linearly shifts with time. Such systems are encountered in real life. 
For example, if we rotate an analog radio tuner knob with constant 
angular velocity, we will have such a system.

We mathematically represent the linearly sliding filter with the 
following kernel:

p(u, u′) = exp(−i2πcu(u − u′)) w(u − u′), (32)

where w(u) is the filter window and c is a parameter. The expo-
nential term provides the linear shift.

To understand the nature of this kernel, we first consider a lin-
ear time-invariant version of it for which p(u, u′) = p′(u − u′). To 
obtain this we will assume the term cu appearing in p(u, u′) to be 
a constant ξ , instead of linearly varying with u. In this case, the 
impulse response of the time-invariant kernel and the associated 
frequency response become
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p′(u) = exp(−i2πξu) w(u) (33)

=⇒P ′(μ) = W (μ + ξ). (34)

Thus P ′(μ) is nothing but a ξ shifted version of W (μ). Now, 
if we recall that we had used ξ to replace cu and substitute this 
back, we obtain W (μ + cu), a filter whose center shifts linearly 
with time u. Obviously, as strictly defined, linear time-invariant 
systems cannot have impulse responses or frequency responses 
that depend on time. Thus the argument above is clearly not a 
legitimate derivation and is merely meant to be suggestive. It can 
be thought to be approximately true if c is small and the change in 
center frequency is slow compared to other changes. In this case, 
it does become meaningful to speak of a frequency filter with lin-
early shifting center frequency.

Now we prove that the kernel given in (32) is an LTV system 
kernel. We emphasize that while the interpretation of this kernel 
as a frequency filter with linearly shifting center frequency was 
approximate and suggestive, the demonstration that this kernel is 
an LTV system is exact.

We will establish the proof by showing that the kernel p(u, u′)
given in (32) can be made equal to the kernel of an LTV sys-
tem La(u, u′) given in (19), both in magnitude and phase. We first 
equate the magnitudes of the two kernels:

|La(u, u′)| = |p(u, u′)| (35)

=⇒ 1

| sinα| |h(cscα(u − u′))| = |w(u − u′)| (36)

=⇒|h(u)| = ∣∣ sinα w(sinα u)
∣∣. (37)

The final equation tells us what the inverse Fourier transform of 
LTV system’s filter function h(u) must be chosen in terms of the 
window function w(u). Next, we equate the phases of the two ker-
nels:

� (La(u, u′)) = � (p(u, u′)) (38)

=⇒ � h
(

cscα(u − u′)
) =

� w(u − u′) − π(u − u′)
(
(2c − cotα)u − cotα u′). (39)

Notice that the left hand side is a function of u −u′ only. There-
fore, equality requires that the right hand side also be so. This is 
possible if c = cotα. Using this,

� h
(

cscα(u − u′)
) = � w(u − u′) − π cotα(u − u′)2 (40)

=⇒� h(u) = � w
(

sinα u
) − π sinα cosα u2. (41)

Thus, we conclude that, by choosing c = cotα and

h(u) = | sinα| w(sinα u)exp(−iπ sinα cosαu2), (42)

we can express the given linearly sliding frequency filter kernel 
p(u, u′) in the form of an LTV kernel.

The order a of the equivalent LTV system is given by a =
(2/π) arccot(c) and its defining h(u) is given by (42). The multi-
plicative filter to be applied in the ath order FRT domain is H(u), 
which is the Fourier transform of h(u).

For larger values of c, the rate at which the center frequency 
slides increases, and the equivalent LTV system has a lower FRT 
order a. For smaller values of c, the center frequency slides more 
slowly, and the LTV system has a higher order a. The limiting case 
of c = 0 corresponds to no sliding, and the system becomes a time-
invariant (convolution) system. The FRT order associated with the 
equivalent LTV system is a = 1. On the other hand, as c → ∞, the 
sliding rate increases without bound, and the system becomes a 
purely multiplicative system. The associated FRT order is a = 0.
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Linear time-invariant systems can be expressed either as a con-
volution, or as a multiplicative filtering operation in the frequency 
domain. Since discrete Fourier transforms can be computed in 
O (N log N) time, it is possible to simulate time-invariant systems 
in O (N log N) time. In general, non-time-invariant systems cannot 
be computed in O (N log N) time and must be computed in O (N2)

time. However, if we are able to show that a non-time-invariant 
system can be expressed or approximated as an LTV system, then 
they can also be simulated in O (N log N) time.

While the eigenfunctions of time-invariant systems are har-
monic functions of constant frequency, the eigenfunctions of LTV 
systems are chirp functions, which have linearly changing fre-
quency. This suggests that LTV systems might be useful when the 
system is not time-invariant or stationary, but has features that 
are linearly changing with time. However, it matters what feature 
is changing linearly. Above we saw that, if the center frequency of 
a band-pass filter is changing linearly, that indeed leads to an LTV 
system. On the other hand, if it was the width of the band-pass 
filter that was changing linearly, we would not arrive at an exact 
LTV system.

4.3. Approximating linear systems with LTV systems

LTV systems can be useful when we have some general linear 
system L that we wish to implement. Ordinarily, discrete imple-
mentation of a general linear system takes the form of a matrix-
vector product which requires O (N2) time. LTV systems may in 
some cases allow fast O (N log N) time computation of general lin-
ear systems. To this end, we try to approximate L with an LTV 
system of the form F−a	HFa , which we know can be computed 
in O (N log N) time. In other words, we choose a and the diagonal 
operator 	H so as to make F−a	HFa as close as possible to L, 
which amounts to approximately modeling L as an LTV system. To 
select a and 	H appropriately, we try to minimize the error mea-
sure ||L − F−a	HFa|| over 	H and the order a. Since the FRT 
is a unitary operation, this minimization is the same as minimiz-
ing ||FaLF−a − 	H ||. Therefore, the optimal filter function turns 
out to be 	H = diag(FaLF−a) for a specific a. For each a, the er-
ror norm can be calculated after finding the corresponding optimal 
	H . Following this, the LTV order a producing the minimum error 
norm can be identified and employed for the approximation.

If the kernel of L is purely real, it can be approximated by the 
real part of an LTV system: Re{F−a	HFa}. We will refer to sys-
tems of the form Re{F−a	HFa} as real LTV systems. If the filter 
function 	H is real, real LTVs exhibit the following useful prop-
erty:

Re{F−a	HFa} = Re{Fa	HF−a} (43)

= 1

2

(
F−a	HFa +Fa	HF−a), (44)

which implies that the real LTV can be expressed as half of the 
sum of an ath order and an −ath order LTVs (if the filter function 
is real). This equality holds because the complex conjugate of an 
ath order LTV system with a real filter function is the −ath order 
LTV system with the same filter function. The last statement can 
easily be obtained from (19).

LTV systems are also useful in restoring, recovering, or recon-
structing signals that have been distorted by systems that are 
not time-invariant or stationary. Let us call the distorting sys-
tem Ld . Our recovery operator Lr will be an LTV system of the 
form F−a	HrFa . Ideally, we would want this operator to re-
verse the effect of Ld; that is F−a	HrFaLd = I . Thus we want 
Ld =F−a(	Hr )

−1Fa . If there exists a diagonal operator 	Hr satis-
fying this equation, perfect recovery is possible. This would mean 
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Fig. 1. A sector of the example circuit. Resistors between outer nodes are constant 
and have value R . The resistor between the outer node k and the ground at the 
center is Rk . The values of Rk are linearly changing.

that Ld itself was an LTV system. Thus we observe that if a dis-
tortion can be modeled as an LTV system, then the original signal 
can be completely recovered by another LTV system. However, if 
Ld cannot be expressed in the form Ld = F−a(	Hr )

−1Fa , then 
we might instead aim to approximate it with an LTV system. Af-
ter finding the best approximation F−a(	Hr )

−1Fa for Ld , we can 
achieve fast recovery by choosing the recovery filter associated 
with the LTV approximation of the original system. Alternatively, 
in some situations, the general linear optimal recovery operator Lr

may have been obtained through one of several means and avail-
able to us. In this case, rather than implementing this in O (N2)

time, we might choose to employ the LTV approximation proce-
dure and implement the resulting system in O (N log N) time.

To provide an example, we consider 8 nodes on a circularly 
shaped circuit. We assume that each node is connected to its left 
and right neighbors with resistive elements of the same value. We 
further assume that each node is connected to the ground at the 
center of the circle, with resistive elements whose values change 
linearly from node to node. A section of the designated circuit is 
given in Fig. 1.

In this configuration, the input vector i consists of the currents 
ik that flow into the nodes and the output vector v consists of the 
voltages vk of each node relative to the ground at the center. The 
input output relationship of this system is trivial and can be com-
puted as v = Si, where S is the matrix formed by the Kirchhoff’s 
laws. However, finding v from i by direct matrix multiplication re-
quires O (N2) operations.

In our example, we choose the constant resistances between 
the outer nodes to be R = 10 k�. The values of the resistances be-
tween the outer nodes and the ground node are Rk = 2000, 1750, 
1500, 1250, 1000, 1250, 1500, 1750 � for k ∈ {1, . . . , 8}, so that 
the values of these resistances are decreasing linearly from 2000 �
to 1000 �, and then increasing back from 1000 � to 2000 � as we 
go around the circle. Given this configuration, we approximate the 
S matrix with a real LTV system of the form Re{F−a�HFa}, where 
Fa is the ath order discrete FRT matrix [73] and �H is a diagonal 
matrix.

In this approximation, both the order a and the diagonal ma-
trix �H are free parameters to be optimized over with the goal of 
minimizing the Frobenius norm of the difference. This leads us to 
the following optimization problem for a given value of a:

min
∥∥∥S − Re{F−a�HFa}

∥∥∥, (45)
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Fig. 2. The error energy as a function of order a. The minimum error is attained at 
a = 0.50.

subject to �H being a diagonal matrix. This problem is solved 
using YALMIP [75], which is a MATLAB toolbox for solving opti-
mization problems. Once we find the optimal �H for each a, we 
calculate the resulting error energy and express it as a percentage 
of the energy of S. The resulting error energy as a function of the 
order a is given in Fig. 2.

The optimal order is a = 0.50. The error energy at a = 0.50
is about 0.27%, which amounts to a more than 10-fold improve-
ment compared to approximating the same system in the ordinary 
time (a = 0) or Fourier (a = 1) domains, where the error energies 
are 2.91 and 2.84, respectively. The error versus a function is not 
necessarily symmetric, although in this case it is nearly so. For dif-
ferent resistance values and different circuit structures, the optimal 
order could be other values between 0 and 1.

Having found the LTV system that best approximates the S ma-
trix, we compare the performances of the LTV system and the orig-
inal system for arbitrary inputs. The resulting approximate voltage 
outputs for these inputs are given in Fig. 3, along with the exact 
voltage outputs. The normalized error energy between the approx-
imate and exact voltage outputs is also indicated at the top of each 
figure. In Fig. 3.a, the same current value of 10 mA is made to 
flow into each node located on the circle. In Fig. 3.b, uniformly 
distributed random current values between 5 mA and 15 mA flow 
into the nodes. Lastly, in Fig. 3.c, the values of currents flowing 
into these nodes increase linearly from 10 mA at node 1 to 20 mA
at node 8.

In all of these examples, the LTV system serves as a very good 
approximation of the original system represented by S. Thus with-
out losing much in terms of accuracy, we are able to compute the 
output in O (N log N) time instead of the usual O (N2).

5. Conclusions

In this paper we consider a class of systems we refer to as 
linearly time-varying (LTV) systems, and define them in two dif-
ferent ways: The first definition focuses on the eigenfunctions of 
LTV systems, stating that an ath order LTV system has chirp-type 
eigenfunctions given by chirp−a,ζ (u). Our second definition states 
that ath order LTV systems correspond to multiplicative filtering 
in the ath order fractional Fourier domain. We demonstrate the 
equivalence of the two definitions. We also show that LTV sys-
tems interpolate between multiplicative systems and convolutive 
systems, as a changes between 0 and 1.
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Fig. 3. Actual and approximate voltage distributions for three different current distributions.
In addition to some elementary systems, we discussed a linearly 
sliding window filter, and noted that it corresponds to an LTV.

The second definition of LTV systems shows how to compute 
them with a fast O (N log N) algorithm, despite the fact that they 
are not time-invariant systems. Being able to implement LTV sys-
tems with a O (N log N) algorithm can be beneficial in a number 
of ways. If we can recognize a system to be an LTV system, we 
can compute it in O (N log N). When this is not the case, we can 
still try to approximate the linear system at hand with an LTV sys-
tem. If an acceptable approximation is found, we can compute the 
approximation to this system in O (N log N) time, leading to con-
siderable computational savings.

In the process of approximating a given linear system as an 
LTV system, we should try to choose both the fractional order a
and the filter function optimally in order to make the approxima-
tion as close as possible. In general, use of the optimal order a will 
give better results than use of a = 0 or a = 1, which correspond to 
the ordinary time and frequency domains respectively. So, we are 
able to improve performance with respect to time and frequency-
domain filtering, without giving up the O (N log N) fast computa-
tion advantage we are accustomed to with time and frequency-
domain filtering. We provided a numerical example which illus-
trates these points, showing more than a 10-fold improvement in 
error.

Other properties and applications of LTV systems remain to be 
investigated. The concept of real LTVs also seems to deserve fur-
ther study.

It may also be of interest to contrast the present work with [76,
77], where a completely different approach is taken to deal with 
the problem of correcting weakly time-varying systems.
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