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We present a very simple relationship between two widely used discrete-time discrete-frequency Wigner 
distributions. The first one is obtained through sampling and the second one is obtained from the representation 
theory of the finite Heisenberg group. This relation shows that the values of one can simply be obtained by 
permuting the values of the other along the frequency axis, which in turn implies a relationship of the second 
definition to the samples of the continuous Wigner distribution, and the first definition to group representation 
theory. In the process, we derive a simplified form for the second definition which is completely analogous to the 
continuous Wigner distribution, and develop a set of relationships relating this definition to a discrete ambiguity 
function and auxiliary functions.

1. Introduction

The Wigner distribution (WD) of a function 𝑓 (𝑢), defined by

𝑊𝑓 (𝑢, 𝜈) =

∞ 

∫
−∞

𝑓 (𝑢+ �̄�∕2)𝑓 ∗(𝑢− �̄�∕2)𝑒−𝑗2𝜋�̄�𝜈𝑑�̄�, (1)

is one of the most studied time-frequency representations [1–5] and has 
found many applications in signal processing and other areas [6–9]. It 
is closely related to the fractional Fourier transform [10–12] and linear 
canonical transforms [13–15]. The discrete Wigner distribution is like-

wise of great importance [16–21] and is similarly related to the discrete 
fractional Fourier transform [22] and discrete linear canonical trans-

forms [23,24].

The definition of the Discrete Fourier Transform (DFT) is standard-

ized and widely accepted (save for the factor of 1∕𝑁 versus 1∕
√
𝑁

which determines whether it is unitary or not). Apart from being highly 
elegant in its construction, the Wigner distribution satisfies a surpris-

ingly large number of analytical properties and has found wide applica-

tion. It has a special place among all time-frequency representations and 
is indispensable in mathematics, physics, and signal analysis and pro-

cessing. The establishment and standardization of the discrete Wigner 
distribution would contribute substantially to the consolidation of signal 
theory more broadly. Unfortunately, despite many definitions having 
been proposed, none have emerged as the main standard definition, nor 
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has it been possible to establish all the promising connections with frac-

tional Fourier transforms and linear canonical transforms that are well 
established in the continuous case. The purpose of this paper is to bring 
us closer to the establishment of a widely accepted definition by demon-

strating what we believe are previously unnoticed connections among 
two discrete definitions and the continuous distribution.

A widely accepted definition for the discrete-time discrete-frequency 
Wigner distribution of a discrete-time signal 𝑓 (𝑛) with time extent 𝑀 , 
here referred to as WDs, is given by [1,18],

𝑊 s
𝑓
(𝑛, 𝑘) =

𝑀−1∑
�̄�=0 

𝑓 (𝑛+ �̄�)𝑓 ∗(𝑛− �̄�)𝑒−𝑗2𝜋𝑘�̄�∕𝑀, (2)

where the shifts in the above definition are linear. If the signal is zero 
padded properly to 𝑁 and periodically replicated so that the linear shifts 
can be replaced by circular shifts without overlap, then this definition 
takes the following form:

𝑊 s
𝑓
[𝑛, 𝑘] =

𝑁−1∑
�̄�=0 

𝑓 [𝑛+ �̄�]𝑓 ∗[𝑛− �̄�]𝑒−𝑗2𝜋𝑘�̄�∕𝑁, (3)

which is periodic in both 𝑛 and 𝑘 with period 𝑁 . As can be seen, this 
definition is not strictly analogous to the continuous definition (1) in the 
sense that the continuous Fourier transform (FT) is analogous to the dis-

crete Fourier transform (DFT), because of the absence of the factors 1∕2. 

https://doi.org/10.1016/j.dsp.2024.104939

Digit. Signal Process. 158 (2025) 104939 

Available online 13 December 2024 
1051-2004/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
http://orcid.org/0009-0001-8255-5426
mailto:haldun@ee.bilkent.edu.tr
https://doi.org/10.1016/j.dsp.2024.104939
https://doi.org/10.1016/j.dsp.2024.104939


S. Korkmaz and H.M. Ozaktas 

This definition suffers from aliasing and thus provides an approximation 
of the continuous WD over only half of the spectrum [1,18].

A distinct definition for the discrete WD, here referred to as WDm , is 
given by

𝑊 m
𝑓
[𝑛, 𝑘] =

𝑁−1∑
�̄�=0 

𝑓 [𝑛+ �̄�2−1]𝑓 ∗[𝑛− �̄�2−1] 𝑒−𝑗2𝜋𝑘�̄�∕𝑁, (4)

where �̄�2−1 is evaluated modulo 𝑁 . This definition originates from 
mathematical studies on the discrete Weyl correspondence [25,26] and 
has also been extensively studied in the physics literature [27–31] and 
the signal processing literature [32,16,17,33]. However, it should be 
noted that this definition of the discrete WD does not appear in these 
papers in the form of Equation (4), but rather in a different form which 
will be given below as Equation (5). In this paper we show how to obtain 
Equation (4) from Equation (5). The form of Equation (4) is advanta-

geous in that it allows direct comparison with the continuous definition 
(1) without referring to any group theoretical concepts. This definition 
exhibits a high degree of structural analogy to the continuous WD; not 
only is Equation (4) fully analogous to Equation (1), but this definition 
of the WD satisfies many of the operational properties of the continu-

ous WD [17,30,31]. However, it has been generally noted that it does 
not provide an approximation to the samples of the continuous WD, and 
therefore is apparently not suited to serve as a discrete WD for most sig-

nal processing purposes. We also note that the superscript “s” is chosen 
because WDs is related to sampling, and the superscript “m” is chosen 
because WDm arises from purer mathematical considerations.

In this paper, we show that for the case of odd 𝑁 there is a very 
simple relationship between these two definitions of the discrete WD, 
and relate WDm to the samples of the continuous WD [21]. Although 
both of the definitions discussed here have been widely studied and used 
in the literature, to the best of our knowledge, the relationship between 
them was not observed. In the process, we develop a set of relationships 
relating this definition to a discrete ambiguity function and auxiliary 
functions. We also connect WDs to group representation theory.

2. Some relationships for WD𝐦 and auxiliary functions

The usual way of obtaining WDm is from group representation the-

ory, where this discrete WD is defined as (for odd 𝑁) [16]:

𝑊 m
𝑓
[𝑛, 𝑘] = 1 

𝑁

𝑁−1 ∑
�̄�,�̄�=0

⟨𝜌[�̄�, �̄�]𝑓,𝑓⟩ 𝑒−𝑗2𝜋(𝑛�̄�+𝑘�̄�)∕𝑁, (5)

where

𝜌[�̄�, �̄�]𝑓 [𝑛] = 𝑒𝑗2𝜋(2
−1 �̄��̄�)∕𝑁𝑒𝑗2𝜋�̄�𝑛∕𝑁𝑓 [𝑛+ �̄�], (6)

and 2−1 = (𝑁 + 1)∕2 in modulo 𝑁 . (2−1, when multiplied by 2, should 
give unity. Indeed 2 × (𝑁 + 1)∕2 =𝑁 + 1, which in modulo 𝑁 is unity 
[17].) The inner product in the above expression is defined as

⟨𝜌[�̄�, �̄�]𝑓,𝑓⟩ =
𝑁−1∑
𝑛=0 

𝑒𝑗2𝜋(2
−1 �̄��̄�)∕𝑁𝑒𝑗2𝜋�̄�𝑛∕𝑁𝑓 [𝑛+ �̄�]𝑓 ∗[𝑛]. (7)

This inner product essentially corresponds to the ambiguity function 
(𝐴𝑓 [�̄�, �̄�] = ⟨𝜌[�̄�,−�̄�]𝑓,𝑓⟩). We now show that Equation (5) can be re-

duced to the form (4) which is more analogous to the continuous WD 
(1). First note that the above inner product can be further simplified by 
a change of variables 𝑛→ 𝑛− �̄�2−1 as follows:

⟨𝜌[�̄�, �̄�]𝑓,𝑓⟩ =
𝑁−1∑
𝑛=0 

𝑒𝑗2𝜋(2
−1 �̄��̄�)∕𝑁𝑒𝑗2𝜋�̄�(𝑛−�̄�2

−1)∕𝑁

× 𝑓 [𝑛− �̄�2−1 + �̄�]𝑓 ∗[𝑛− �̄�2−1]

=
𝑁−1∑
𝑛=0 

𝑓 [𝑛+ �̄�2−1]𝑓 ∗[𝑛− �̄�2−1]𝑒𝑗2𝜋�̄�𝑛∕𝑁. (8)

Fig. 1. The graphical representation of the relationships between 𝑊 m
𝑓

, 𝐴m
𝑓

and 
the auxiliary functions. The arrows indicate DFTs.

In passing from the first line of the above equation to the second we 
used

𝑛− 2−1�̄�+ �̄� = 𝑛+ 2−1�̄�. (9)

To see why this is true, using 2−1 = (𝑁 + 1)∕2 in modulo 𝑁 , the left 
hand side of this equation can be shown to equal, in modulo 𝑁 :

= 𝑛+ (−2−1 + 1)�̄�

= 𝑛+ (−((𝑁 + 1)∕2) + 1)�̄�

= 𝑛+ (−((𝑁 + 1)∕2) + 1 +𝑁)�̄�

= 𝑛+ ((𝑁 + 1)∕2)�̄�

= 𝑛+ 2−1�̄� (10)

which is the right side of Equation (9).

Now, let us define the two discrete auxiliary functions 𝛾𝑓 and Γ𝑓 as 
follows:

𝛾𝑓 [𝑛, �̄�] = 𝑓 [𝑛+ �̄�2−1]𝑓 ∗[𝑛− �̄�2−1], (11)

Γ𝑓 [𝑘, �̄�] = 𝐹 [𝑘+ �̄�2−1]𝐹 ∗[𝑘− �̄�2−1] (12)

where 𝐹 denotes the DFT. Note that our auxiliary functions are defined 
on rectangular grids, as opposed to those of [33] which proposes dis-

crete auxiliary functions on hexagonal sampling grids. By combining 
Equations (8) and (5) a simple expression for WDm can be obtained as:

𝑊 m
𝑓
[𝑛, 𝑘] = 1 

𝑁

𝑁−1 ∑
�̄�,�̄�,𝑛′=0

𝛾𝑓 [𝑛′, �̄�]𝑒𝑗2𝜋�̄�𝑛
′∕𝑁𝑒−𝑗2𝜋(𝑛�̄�+𝑘�̄�)∕𝑁

=
𝑁−1 ∑
�̄�,𝑛′=0

𝛾𝑓 [𝑛′, �̄�]𝑒−𝑗2𝜋𝑘�̄�∕𝑁𝛿[𝑛− 𝑛′]

=
𝑁−1∑
�̄�=0 

𝑓 [𝑛+ �̄�2−1]𝑓 ∗[𝑛− �̄�2−1]𝑒−𝑗2𝜋𝑘�̄�∕𝑁, (13)

which is the same as (4). Equations (8), (13) and a corresponding pair of 
equations for Γ𝑓 which can be similarly derived, can be summarized in 
graphical form (Fig. 1) which is familiar from the continuous case [34, 
35]. This constitutes further support for the strong structural analogy of 
this definition to the continuous case. Essentially equivalent results for 
the WDm and auxiliary functions can also be deduced from [29].

3. Relationship between the two discrete WDs

Having shown that the definition of WDm, given by (5), can be writ-

ten in the form of (4), it is now easy to show how WDs and WDm are 
related to each other:

𝑊 m
𝑓
[𝑛, 𝑘] =

𝑁−1∑
�̄�=0 

𝑓 [𝑛+ �̄�2−1]𝑓 ∗[𝑛− �̄�2−1]𝑒−𝑗2𝜋𝑘�̄�∕𝑁
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Fig. 2. The permutation of the values of WDm and WDs along the 𝑘 axis for 
𝑁 = 15.

=
𝑁−1∑
�̄�=0 

𝑓 [𝑛+ �̄�]𝑓 ∗[𝑛− �̄�]𝑒−𝑗2𝜋(2�̄�𝑘)∕𝑁

=𝑊 s
𝑓
[𝑛,2𝑘], (14)

or equivalently

𝑊 s
𝑓
[𝑛, 𝑘] =𝑊 m

𝑓
[𝑛,2−1𝑘], (15)

where 2−1𝑘 is again computed modulo 𝑁 . We used the substitution 
�̄� → 2�̄� in passing to the second line of (14). This remarkably simple 
relationship means that the values of either of these WDs are obtained 
simply by rearranging (permuting) the values of the other along the 
frequency axis (Fig. 2). It is interesting to note that the resulting permu-

tation is in the form of a perfect shuffle and is also related to decimation 
in frequency. This relationship also means that if we know the WD 
according to one of these definitions, we can quickly compute WD ac-

cording to the other definition by simply rearranging the values.

As already noted, WDm is usually considered to bear no relation to 
the continuous WD, in the sense that its values do not approximate the 
samples of the continuous WD. We have shown that WDm is actually 
closely related to the continuous WD in that its values are mere per-

mutations of a discrete WD which does approximate the samples of the 
continuous WD (at least over half the band if we work at the Nyquist 
rate).

To the best of our knowledge, WDs has not been defined in group 
theoretical terms. However, its close relationship to WDm implies that 
it too should possess some group theoretical structure. First, we note 
that 𝜌[𝑛, 𝑘, 𝜏] = 𝜌[𝑛, 𝑘]𝑒𝑗2𝜋𝜏∕𝑁 gives a representation of the Heisenberg 
group and the operator 𝜌[𝑛, 𝑘] satisfies the following concatenation rule 
[28]:

𝜌[𝑛, 𝑘]𝜌[𝑛′, 𝑘′] = 𝑒𝑗2𝜋[(𝑛𝑘
′−𝑘𝑛′)2−1]∕𝑁𝜌[𝑛+ 𝑛′, 𝑘+ 𝑘′], (16)

which can be shown from (6). Now, let us rewrite (3) by using (5) 
and (15):

𝑊 s
𝑓
[𝑛, 𝑘] =𝑊 m

𝑓
[𝑛,2−1𝑘] = 1 

𝑁

𝑁−1 ∑
�̄�,�̄�=0

⟨𝜌[�̄�, �̄�]𝑓,𝑓⟩𝑒−𝑗2𝜋(𝑛�̄�+2−1𝑘�̄�)∕𝑁

= 1 
𝑁

𝑁−1 ∑
�̄�,�̄�=0

⟨𝜌[2�̄�, �̄�]𝑓,𝑓⟩𝑒−𝑗2𝜋(𝑛�̄�+𝑘�̄�)∕𝑁. (17)

If we define

𝜚[�̄�, �̄�] = 𝜌[2�̄�, �̄�], (18)

it can be shown that the operator 𝜚[�̄�, �̄�] satisfies

𝜚[𝑛, 𝑘]𝜚[𝑛′, 𝑘′] = 𝑒𝑗2𝜋(𝑛𝑘
′−𝑘𝑛′)∕𝑁𝜚[𝑛+ 𝑛′, 𝑘+ 𝑘′]. (19)

This means that, 𝜚[𝑛, 𝑘] also provides a projective unitary representation 
of the group of time and frequency shifts in finite phase space.

However, since the map between the two groups given by Equation 
(18) is not symplectic, it follows that 𝜚[𝑛, 𝑘] is not an automorphism of 
the finite Heisenberg group [36].

4. Conclusion

In conclusion, we established a very simple connection between two 
different definitions of the discrete Wigner distribution, one widely stud-

ied in finite quantum mechanics and to a more limited extent in signal 
processing (WDm); and the other widely used in signal processing, es-

pecially for numerical and graphical purposes (WDs). In the process, we 
derived an expression for WDm which is directly analogous to the con-

tinuous WD expression (1). We also showed how this definition can be 
related to the samples of the continuous WD, a result which seems to 
have escaped previous researchers. This is of considerable interest be-

cause this definition exhibits a high degree of structural similarity to the 
continuous definition in terms of the operational properties it satisfies. 
A number of other related results including the relation of WDm to dis-

crete ambiguity function and auxiliary functions were also presented. 
Our results were limited to the case of odd 𝑁 , which is a common re-

striction in most work dealing with discrete Wigner distributions. It is 
an inconvenient reality in dealing with these types of entities that even 
and odd values of 𝑁 often lead to very different behavior, with odd 𝑁
usually leading to more desirable properties. One way to explain the dif-

ference is that 2−1 exists for odd 𝑁 and not for even 𝑁 [17]. (Recall 
that 2−1 = (𝑁 +1)∕2 in modulo 𝑁 for odd 𝑁 .) Number theoretical and 
topological reasons have also been discussed [29]. We refer the reader 
to the literature for more detailed discussion [17,29,37,38].

We finally note that the discussion of redundancy inherent in WDs

studied in [18] can be easily applied to WDm.

CRediT authorship contribution statement

Sayit Korkmaz: Conceptualization, Formal analysis, Methodology, 
Writing – original draft, Writing – review & editing. Haldun M. Ozak-

tas: Conceptualization, Formal analysis, Funding acquisition, Method-

ology, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests: 
Haldun M. Ozaktas reports financial support was provided by Turkish 
Academy of Sciences. If there are other authors, they declare that they 
have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper.

Acknowledgments

Haldun M. Ozaktas acknowledges partial support of the Turkish 
Academy of Sciences.

Data availability

No data was used for the research described in the article.

References

[1] B. Boashash (Ed.), Time-Frequency Signal Analysis and Processing: A Comprehensive 
Reference, Elsevier, 2003.

[2] L. Cohen, Time-Frequency Analysis, Prentice-Hall, 1995.

[3] P. Flandrin, Time-Frequency / Time-Scale Analysis, Academic Press, 1999.

[4] J.-Y. Chen, B.-Z. Li, Wigner distribution associated with linear canonical transform 
of generalized 2-D analytic signals, Digit. Signal Process. 149 (2024) 104481.

[5] J.-Y. Chen, B.-Z. Li, The short-time Wigner-Ville distribution, Signal Process. 219 
(2024) 109402.

[6] M.-Q. Liu, X.-B. Zhang, Y.-F. Chen, H. Tan, Multi-antenna intelligent spectrum sens-

ing in the presence of non-Gaussian interference, Digit. Signal Process. 140 (2023) 
104135.

[7] B. Boashash, S. Ouelha, Designing high-resolution time-frequency and time-scale 
distributions for the analysis and classification of non-stationary signals: a tutorial 
review with a comparison of features performance, Digit. Signal Process. 77 (2018) 
120–152.

Digital Signal Processing 158 (2025) 104939 

3 

http://refhub.elsevier.com/S1051-2004(24)00563-3/bib5BFCDFB690A2155BA4BBD0D12FC07FFEs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib5BFCDFB690A2155BA4BBD0D12FC07FFEs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibF8F7046ED9434D6CF6B8D1C5A015F62As1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib1943B4205612A11574B69A242E572BE9s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib8918DED077CD0CC24E6AB8EECC648051s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib8918DED077CD0CC24E6AB8EECC648051s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB6F6952036D5FE12D0E1000A4718E163s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB6F6952036D5FE12D0E1000A4718E163s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib1BCC5995479BB8E4C06E79F78C04D94Bs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib1BCC5995479BB8E4C06E79F78C04D94Bs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib1BCC5995479BB8E4C06E79F78C04D94Bs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib2060537A801E598D16F847A880066E82s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib2060537A801E598D16F847A880066E82s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib2060537A801E598D16F847A880066E82s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib2060537A801E598D16F847A880066E82s1


S. Korkmaz and H.M. Ozaktas 

[8] D. Dragoman, Applications of the Wigner distribution function in signal processing, 
EURASIP J. Appl. Signal Process. 10 (2005) 1520–1534.

[9] C. Munoz, A.B. Klimov, L. Sanchez-Soto, Discrete phase-space structures and Wigner 
functions for N qubits, Quantum Inf. Process. 16 (2017) 158.

[10] X. Wang, B.-B. Li, W.-J. Liu, et al., Anti-interrupted sampling repeater jamming based 
on intra-pulse frequency modulation slope agile radar waveform joint FrFT, Digit. 
Signal Process. 147 (2024) 104418.

[11] Q.-R. Li, X.-B. Li, Z.-Y. Chen, et al., Fast 3-D millimeter-wave MIMO array imaging 
algorithms based on the CF-DFrFT, Digit. Signal Process. 147 (2024) 104410.

[12] U. Candogan, O. Candogan, H.M. Ozaktas, Linearly time-varying systems and their 
fast implementation, Digit. Signal Process. 142 (2023) 104200.

[13] Y. Zhang, B.-Z. Li, Joint time-vertex linear canonical transform, Digit. Signal Process. 
155 (2024) 104728.

[14] D. Urynbassarova, Y. El Haoui, F. Zhang, Uncertainty principles for Wigner-Ville 
distribution associated with the quaternion offset linear canonical transform, Circuits 
Syst. Signal Process. 42 (2022) 385–404.

[15] M.-J. Cui, Z.-C. Zhang, Generalized convolution and product theorems associated 
with the free metaplectic transformation and their applications, Digit. Signal Process. 
145 (2024) 104350.

[16] M.S. Richman, T.W. Parks, G. Shenoy, Discrete time, discrete frequency time fre-

quency analysis, IEEE Trans. Signal Process. 46 (1998) 1517–1527.

[17] J.C. O’Neill, P. Flandrin, W.J. Williams, On the existence of discrete Wigner distri-

butions, IEEE Signal Process. Lett. 6 (1999) 304–306.

[18] C. Richard, Linear redundancy of information carried by the discrete Wigner distri-

bution, IEEE Trans. Signal Process. 49 (2001) 2536–2544.

[19] X. Hua, J. Liu, A novel fast algorithm for the pseudo Wigner-Ville distribution, J. 
Commun. Technol. Electron. 60 (2015) 1238–1247.

[20] J.M. O’Toole, M. Mesbah, B. Boashash, Improved discrete definition of quadratic 
time-frequency distributions, IEEE Trans. Signal Process. 56 (2010) 906–911.

[21] S. Korkmaz, Harmonic Analysis in Finite Phase Space, MS Thesis, Bilkent University, 
2005.

[22] C. Candan, M.A. Kutay, H.M. Ozaktas, The discrete fractional Fourier transform, IEEE 
Trans. Signal Process. 48 (2000) 1329–1337.

[23] F.S. Oktem, H.M. Ozaktas, Exact relation between continuous and discrete linear 
canonical transforms, IEEE Signal Process. Lett. 16 (2009) 727–730.

[24] A. Koc, B. Bartan, H.M. Ozaktas, Discrete linear canonical transform based on hy-

perdifferential operators, IEEE Trans. Signal Process. 67 (2019) 2237–2248.

[25] I.E. Segal, Transforms for operators and symplectic automorphisms over a locally 
compact Abelian group, Math. Scand. 13 (1963) 31–43.

[26] A. Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964) 143–211.

[27] G.G. Athanasiu, E.G. Floratos, S. Nicolis, Holomorphic quantization and finite quan-

tum mechanics, J. Phys. A, Math. Gen. 29 (1996) 6737–6745.

[28] G.G. Athanasiu, E.G. Floratos, Coherent states in finite quantum mechanics, Nucl. 
Phys. B 425 (1994) 343–364.

[29] U. Leonhardt, Discrete Wigner function and quantum-state tomography, Phys. Rev. 
A 53 (1996) 2998–3013.

[30] A. Luis, J. Perina, Discrete Wigner function for finite dimensional systems, J. Phys. 
A, Math. Gen. 31 (1998) 1423–1441.

[31] W.K. Wootters, A Wigner-function formulation of finite-state quantum mechanics, 
Ann. Phys. 176 (1987) 1–21.

[32] R.G. Shenoy, T.W. Parks, The Weyl correspondence and time-frequency analysis, 
IEEE Trans. Signal Process. 42 (1994) 318–331.

[33] J. O’Neill, W. Williams, Shift covariant time-frequency distributions of discrete time 
signals, IEEE Trans. Signal Process. 47 (1999) 133–146.

[34] F. Hlawatsch, G.F. Boudreaux-Bartels, Linear and quadratic time-frequency signal 
representations, IEEE Signal Process. Mag. (April 1992) 21–67.

[35] H.M. Ozaktas, Z. Zalevsky, A. Kutay, The Fractional Fourier Transform with Appli-

cations in Optics and Signal Processing, Wiley, 2001.

[36] G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, 1989.

[37] G. Bjork, A.B. Klimov, L.L. Sanchez-Soto, The discrete Wigner function, in: Progress 
in Optics 51, Elsevier, 2008, pp. 469–516, chapter 7.

[38] T. Opatrny, D.-G. Welsch, V. Buzek, Parametrized discrete phase-space functions, 
Phys. Rev. A 53 (1996) 3822–3835.

Sayit Korkmaz received the MS degree in Electrical and Electronics Engineering from 
Bilkent University, Ankara. His research interests include continuous and discrete signal 
representations, time-frequency analysis, sampling, localization, and sensor networks.

Haldun M. Ozaktas received a PhD from Stanford University in 1991. He then joined 
Bilkent University, Ankara as a Professor. In 1992 he was at the University of Erlangen as 
a Humboldt Fellow. In 1994 he was a Consultant at Bell Laboratories. He is the author of 
over 120 refereed journal articles, 20 book chapters, and over 120 conference presenta-

tions and papers, about 50 of which have been invited. He also authored or edited several 
books and special issues. Over 15,000 citations to his work are recorded in Google Scholar. 
He is the recipient of the 1998 ICO International Prize in Optics and the TUBITAK Science 
Award (1999), among other awards and prizes. Ozaktas is a full member of the Turkish 
Academy of Sciences and a Fellow of OSA, SPIE, IEEE, and AAIA.

Digital Signal Processing 158 (2025) 104939 

4 

http://refhub.elsevier.com/S1051-2004(24)00563-3/bib504630CF54FC47E815A97D33212F9558s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib504630CF54FC47E815A97D33212F9558s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib848BB7B99DDFAAE48A908EF33C5A4ADCs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib848BB7B99DDFAAE48A908EF33C5A4ADCs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB71CCDE228E247625E42EDD86F21800Ds1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB71CCDE228E247625E42EDD86F21800Ds1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB71CCDE228E247625E42EDD86F21800Ds1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib2813AD684D138F8CC889250136CFBD9Fs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib2813AD684D138F8CC889250136CFBD9Fs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib879D2FF5448F168721D5C56998194AD5s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib879D2FF5448F168721D5C56998194AD5s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib96B8F576F691FDE593FFE9559D61F9FEs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib96B8F576F691FDE593FFE9559D61F9FEs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibCAD4280EF5AB67372B043DB8A2A76984s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibCAD4280EF5AB67372B043DB8A2A76984s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibCAD4280EF5AB67372B043DB8A2A76984s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib975961A52CCE8D8A33460CFD579904D2s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib975961A52CCE8D8A33460CFD579904D2s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib975961A52CCE8D8A33460CFD579904D2s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibF055DF6CF622815170DAF3A557415B73s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibF055DF6CF622815170DAF3A557415B73s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibE37AF7A86188740500EA7B9A9035E805s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibE37AF7A86188740500EA7B9A9035E805s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9E4004D02FFB93FC3609A0CB80AAC132s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9E4004D02FFB93FC3609A0CB80AAC132s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibF22FEF0C409482153127C3F4AFAACF5Fs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibF22FEF0C409482153127C3F4AFAACF5Fs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib993BF42F0B8B7313A2DA710C44FB31D3s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib993BF42F0B8B7313A2DA710C44FB31D3s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib57389AABF51BD0DBD65D0CFA4763CC87s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib57389AABF51BD0DBD65D0CFA4763CC87s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib58C3FCF45127FD527DA5D0B5B3A0EC2Cs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib58C3FCF45127FD527DA5D0B5B3A0EC2Cs1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib8534DBDB745B82CFA32FDC607DB36F38s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib8534DBDB745B82CFA32FDC607DB36F38s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibAF3AC4C30B22A7BAB89A136D925C9B49s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibAF3AC4C30B22A7BAB89A136D925C9B49s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9FC9D5E04B0B8DCEC10CBB06D8B0F916s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9FC9D5E04B0B8DCEC10CBB06D8B0F916s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibBDD756F793AECB45663BFFF5F10BA03Ds1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9DD13CA69272CB4776E694386B14E38Ds1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9DD13CA69272CB4776E694386B14E38Ds1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib81A00C3150F0AA7F0B82140EF36BE6F3s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib81A00C3150F0AA7F0B82140EF36BE6F3s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib312D27C25477208485CCF8AF0B3B10D4s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib312D27C25477208485CCF8AF0B3B10D4s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB97613C6134FE8C0A6C68B8749AFCC17s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibB97613C6134FE8C0A6C68B8749AFCC17s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib332571FAB1173606010CAE5D0F7EBD72s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib332571FAB1173606010CAE5D0F7EBD72s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib85CAB0261D4749E64DD990640ADB2E3As1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib85CAB0261D4749E64DD990640ADB2E3As1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib90E4AC106BAB696EF7531B962A3171F3s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib90E4AC106BAB696EF7531B962A3171F3s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibEE0262A7A5B52975EB50809CDD7392C0s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibEE0262A7A5B52975EB50809CDD7392C0s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib50B8A7691EA3340BD13602B46849D414s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib50B8A7691EA3340BD13602B46849D414s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib70712E5E483285EB56199B783A883947s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibC91B0F3D808D565C827B6035549159A0s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bibC91B0F3D808D565C827B6035549159A0s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9BD31ADD0EF621582DC7EBD15A2AA300s1
http://refhub.elsevier.com/S1051-2004(24)00563-3/bib9BD31ADD0EF621582DC7EBD15A2AA300s1

	Relationships between two definitions of the discrete Wigner distribution and the continuous Wigner distribution
	1 Introduction
	2 Some relationships for WDm and auxiliary functions
	3 Relationship between the two discrete WDs
	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


