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Consider a database of time-series, where each datapoint in the series records the total number
of users who asked for a specific query at an internet search engine. Storage and analysis of such
logs can be very beneficial for a search company from multiple perspectives. First, from a data
organization perspective, because query Weblogs capture important trends and statistics, they can
help enhance and optimize the search experience (keyword recommendation, discovery of news
events). Second, Weblog data can provide an important polling mechanism for the microeconomic
aspects of a search engine, since they can facilitate and promote the advertising facet of the search
engine (understand what users request and when they request it).

Due to the sheer amount of time-series Weblogs, manipulation of the logs in a compressed
form is an impeding necessity for fast data processing and compact storage requirements. Here, we
explicate how to compute the lower and upper distance bounds on the time-series logs when working
directly on their compressed form. Optimal distance estimation means tighter bounds, leading to
better candidate selection/elimination and ultimately faster search performance. Our derivation
of the optimal distance bounds is based on the careful analysis of the problem using optimization
principles. The experimental evaluation suggests a clear performance advantage of the proposed
method, compared to previous compression/search techniques. The presented method results in a
10–30% improvement on distance estimations, which in turn leads to 25–80% improvement on the
search performance.
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1. INTRODUCTION

Internet search engines receive daily vast numbers of user queries. These
search requests are typically recorded in some aggregate form, which the
search engines later analyze in an effort to constantly improve the user ex-
perience. This is achieved through effective modeling and understanding of the
user search preferences and their evolution over time. The work presented
here deals with the compression of time-series weblogs and their efficient
search. We consider temporal sequences that capture the daily demand of
search queries. Figure 1 depicts two such sequences, describing the demand
at a search engine for the queries xbox and playstation, during the period
of one year. This representation of a query can highlight important data pa-
rameters; first, one can notice that the two queries exhibit a similar demand
pattern. This implies that the two queries are semantically related, which is
true since both keywords describe gaming consoles. Secondly, the temporal
representation of a query reflects important trends. For the specific example,
one can safely deduce that there is a greater demand for game consoles dur-
ing Christmas. Generally, as previous studies note: “user behavior is deeply
related to search keyword[s]” [Otsuka et al. 2004]. It is great interest to dis-
till a user’s search behavior because it can prove beneficial in a variety of
applications:

(1) Search engine optimization: Understanding the semantic similarity be-
tween keywords can assist in constructing more accurate keyword tax-
onomies and achieving better clustering of keywords [Otsuka and Kitsure-
gawa 2006; Ziegler et al. 2006]. This can serve in providing better search
results [Kage and Sumiya 2006] and ultimately help understand the true
relationship between Web pages. A number of features can assist in this
process, such as repetition in the search behavior [Sanderson and Dumais
2007], something that is easily conveyed by the temporal representation of
the query demand.

(2) Keyword recommendation: Related queries are manifested by similar de-
mand patterns. A search engine can exploit this characteristic for offer-
ing a “maybe you would also be interested in this" functionality. As an
illustrative example, Figure 2(a) shows some of the queries with similar
demand patterns as the keyword ‘cinemas’. All the results are highly inter-
pretable and include queries such as movie guide, hollywood.com, and roger
ebert.

(3) Better spelling correction: No dictionary or ontology can cover the wide
range of keywords that appear on the web. However, relationships between
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Fig. 1. Daily demand over a year for queries xbox and playstation.

keywords can be deduced by the systematic study of query logs and search
engines [Chen et al. 2007; Bollegala et al. 2007]. Figure 2(b) illustrates
an instance of such an example, for the query florida and the misspelled
keyword flordia.

(4) Identification of news events: Query logs can help understand and predict
behavioral patterns [Adar et al. 2007]. Important events usually mani-
fest themselves as bursts in the query demand [Kleinberg 2002; Vlachos
et al. 2004; Wang et al. 2007]. News travel fast, and web queries travel
even faster. By identifying increasing demand in a query, search engines
can accurately pinpoint developing news events. Such an example is in-
dicated on Figure 3, which shows that during May 2002 there was an
increase in the demand for the keyword Spiderman. This occurred because
the movie Spiderman 1 was released in the theaters during May of that
year.

(5) Advertising impact: The financial aspect of search engines is materialized
by the carefully selected matching of keywords to advertisements. Seman-
tic clustering of queries can, first, assist the search engine in recommend-
ing related keywords to the advertisers. Secondly, seasonal query demand
can help define in a more relevant way the price of an advertisement,
by elevating the price during times of greater demand for the keyword.
This paradigm is similar to the pricing of the TV or radio advertisements,
where prime-time commercials are valued higher than the remaining time
slots.

A common denominator in all of the above applications is a set of oper-
ations that allow for the effective storage and retrieval of the weblog data.
Given the excessive amount of collected data, there is a pragmatic need for
effective data compression. Popular search engines like Google, MSN, and
Yahoo! have data retention periods that lie in the range between 13 and 18
months.1 Very recently (Dec. 2008), Yahoo! announced that it will reduce the
retention time of users search record to 3 months.2 This is apparently another

1http://googleblog.blogspot.com/2007/06/how-long-should-google-remember.

html
2http://googlewatch.eweek.com/content/data_retention_policy/yahoos_data_

retention_move_puts_pressure_on_google_microsoft.html
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Fig. 3. Daily demand for the query Spiderman during 2002.

indication of the exploding data sizes and the forceful need for data compres-
sion. However, data compression on its own has little to offer if it cannot be com-
bined with analytics and search mechanisms that work directly on compressed
domain.

We propose to leverage the smooth and periodic nature of the Weblog data,
to offer a highly effective data compression scheme of the temporal patterns.
The Fourier coefficients with the highest energy are utilized which can effec-
tively capture most of underlying signal’s energy. We demonstrate with various
examples that such a compressed data representation can accurately describe
most of the data variability and also capture important patterns in the log files.
While this provides an excellent compression technique, comparison between
the compressed sequences is difficult since they are described by a (possibly)
diverse set of coefficients, according to their dominant frequencies. In this work
we present techniques that overcome this obstacle. A major contribution of this
work is a technique for calculating the optimal distance bounds that can be
derived using the aforementioned compressed representations. The algorithm
is based on solid optimization principles and offers a significant boost in the
search performance compared to the current state of the art. The technique
that we propose here is also of independent interest for general time-series
data; it is applicable on any numeric sequence data and on any orthonormal
data transformation.

The article is structured as follows; we begin with an overview of relevant
work from the web search, information retrieval and data mining communities
in Section 2. We continue with a discussion about techniques for compressing
Weblog sequences using orthonormal transforms and how to improve the search
performance through use of upper and lower bounding techniques (Section 3).
Subsequently, Section 4 delineates our algorithm for optimally bounding the
distance between compressed Weblog sequences, first providing the intuition
behind it, and then a formal proof. We illustrate how our scheme could be com-
bined with indexing techniques and also provide performance optimizations
through use of “early termination.” Detailed experiments examining conver-
gence properties, scalability, tightness of bounds and pruning efficiency are
the focus of Section 5. Finally, Section 6 concludes this paper and elucidates
directions for future work.
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2. RELATED WORK

Previous work considered various applications on temporal query sequences.
Sun et al. [2007] examine the discovery of causal relationships across query
logs by deploying an event causality test. Chien and Immorlica [2005] and
Lie et al. [2006] study similarity search and clustering in query data based on
metrics such as correlation and periodicity. While these utilize linear metrics to
quantify the similarity, Adar et al. [2007] examines the use of nonlinear metrics
such as Time-Warping. In Liu et al. [2006] the similarity between query logs
is quantified by comparing the similarity of ARIMA coefficients. Richardson
[2008] examines how long-term query patterns can help build concept hier-
archies and also assist in deciphering the sociological behavior of Web users.
Rode and Hiemstra [2006] examine the applicability of temporal query pro-
files as relevance feedback mechanism. Finally, Zhao et al. [2006] examine a
similar application of search on temporal logs but using click-through data.
An extensive study of temporal query logs is presented in Beitzel et al. [2007],
and techniques are delineated for analyzing the change of trends over time.
However, none of this work examines how to tailor search based on compressed
representations of the Weblogs. Our work, in that sense, is complementary to
all the above approaches, by allowing them to scale up to even larger dataset
sizes.

In the data-mining community, search on time-series under the Euclidean
metric has been broadly studied [Agrawal et al. 1993; Rafiei and Mendelzon
1998; Wang and Wang 2000] but, typically, compression using the first Fourier
or wavelets is considered. Vlachos et al. [2004] study the use of diverse sets of co-
efficients, but this is the first work that offers the tightest possible lower/upper
bounds. In the experimental section we offer a thorough performance com-
parison of our approach across the most predominant methodologies in the
time-series literature.

Indexing of time-series data has also been a well-studied topic in the data-
mining literature [Assent et al. 2008; Kahveci and Singh 2001; Yi and Faloutsos
2000; Cai and Ng 2004]. The majority of such approaches consider that each
compressed sequence is represented by the same set of coefficients thus are not
applicable for our setting. In the course of the article we show how metric tree
structures can be modified to operate on bounded pairwise distances and hence
accommodate our technique.

3. SEARCHING TEMPORAL LOG DATA

Before we explain how Nearest-Neighbor searches are performed over query
logs, we begin with a short overview of how these temporal demand patterns
are constructed on the first place.

3.1 Query-Log Construction

Search engines operate multiple proxy sites that service local search requests.
When a user enters a query term, a hash counter corresponding to the specific
query entry is increased, and for each day the total number of users hav-
ing requested the specific term(s) is recorded. The values from each site are
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aggregated and the total count of daily requests per query is recorded. In order
to avoid the excessive storage of query logs, only those query terms that are
above a certain threshold are stored. This process is repeated daily, and the
global temporal trend of the total set of posed queries is stored in a sequence
form. Such a representation is also privacy aware only the aggregate trend is
recorded, but no user-specific query behavior is ever stored.

3.2 Generic Search Algorithm

We consider a database DB that stores the temporal query sequences x(i),
i = 1 . . . M. The general problem that we examine can be abstracted as follows:
A user is interested in finding the k most similar sequences to a given query
sequence q, under a certain distance metric d. This operation is also known as
k-Nearest-Neighbor (NN) search. It is a core function in database search and
also a fundamental operation in many data-mining and machine-learning algo-
rithms, including classification (NN-classifier), clustering, and so on. Therefore,
the provision of such functionality is important for any system that attempts
to analyze the data or make useful deductions. The distance function d that
we consider in this work is the Euclidean distance. More flexible measures,
such as time-invariant distances [Vlachos et al. 2005] (essentially a Euclidean
distance on the periodogram) could also be used with little to no modifications
of our main algorithm. However, for ease of exposition here we focus on the
Euclidean distance,3 which is also the distance measure of preference in most
of the related work [Chien and Immorlica 2005; Lie et al. 2006].

In Figure 2 we plot some of the nearest neighbors of 3 queries; cinemas,
florida and citigroup. We observe that the results have a high semantic affinity
with the posed query. For example, the query citigroup (Figure 2(c)) returns
other financial or insurance companies. Additional examples on the quality of
the retrieved matches can be found in the experimental section.

Search operations can be quite costly, especially for cases where the car-
dinality of the sequences is quite extensive and the sequence length is also
substantial (both statements are true for our scenario). This is observed, be-
cause sequences need to be retrieved from disk in order to be compared to the
query q. An effective way to mitigate this cost is to retain a smaller, compressed
representation of the sequences, which will be used as an initial prefiltering
step. The set of compressed sequences could be small enough so that it can
be kept in-memory, hence lending an even greater performance speedup. Es-
sentially, one is employing a multilevel filtering mechanism. When examin-
ing the compressed sequences, we obviously cannot derive the exact distance
between the query q and any sequence x(i) in the database. Underestimates
and upper estimates of the distance will be calculated, which in the liter-
ature are also known as lower and upper bounds on the distance function.
Using these bounds, a superset of the k-NN answers will be returned, which
will be verified against the uncompressed disk-resident sequences. These will
be fetched and compared with the query, so that the exact distances can be

3Note that correlation is also an instance of Euclidean distance on properly normalized sequences.
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Fig. 4. General framework for speeding up Nearest-Neighbor search operations.

computed. This methodology is very widely used in the data mining field and
it is the methodology also used in this work. These steps are summarized in
Figure 4.

3.3 Use of Upper and Lower Bounds

Lower/upper bounds on the distance function serve three purposes: (1) elimi-
nate from examination candidate sequences that are provably worse than the
current best match during the search procedure; (2) dictate a search order of
the disk-resident sequences, so that more promising candidates are examined
first, hence providing at an early stage of the search a good candidate match.
This will help eliminate subsequent distance sequences from examination; (3)
provide guarantees that the initial data filtering using the compressed data,
will return the same outcome as when scanning sequentially the original un-
compressed data.

Consider that we are seeking the 1-NN match of the query q. By swiftly
scanning the compressed representations lower and upper bounds of q against
all sequences can be derived. We extract the minimum upper bounds UBmin and
all sequences that have lower bound greater than UBmin can be safely discarded,
since obviously a better match can be found (in the form of the sequence with
upper bound equal to UBmin). Next, the uncompressed sequences are retrieved
from disk in the order suggested by the lower bounds (LB’s), since sequences
with smaller LB’s are more likely to be closer to the query q. The true distance
of each sequence to the query is evaluated and the best-so-far match is possibly
updated. Once the LB of the currently retrieved sequence is greater than the
(true) distance of the best-so-far match, then the search can be terminated,
since all the remaining sequences are guaranteed to have greater distance
than the best-so-far candidate sequence.
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In the general case, where one is searching for the k-Nearest-Neighbors
(k > 1), the only change introduced in the preceding process is the introduction
of a priority queue that holds the k best results, and the algorithm prunes the
search space based on the distance of the k-th best-so-far match.

The given search procedure can be further improved through various tech-
niques, such as, for example, creation of an indexing scheme. However, the steps
that we described are rudimentary in most all search and indexing techniques
[Keogh 2002; Weber et al. 1998]. Additionally, the aforementioned search pro-
cedure constitutes a bias-free approach to evaluate the search performance of
a technique, since it does not depend on any implementation details. We em-
ploy the aforementioned search procedure in the experimental section, in order
to provide an unbiased performance estimator between various lower/upper
bounding techniques, since it does not depend on any implementation details,
but merely relies on the tightness of the derived bounds.

Obviously, techniques that provide tighter bounds will be able to offer better
pruning power and enhanced search performance. Later on, we will provide an
algorithm that computes the tightest possible lower and upper bounds, when
utilizing the high-energy coefficients of weblog sequences. In the upcoming
section we describe how this compression is achieved.

3.4 Compressing Weblogs

Query demand patterns exhibit a smooth and highly periodic nature [Vlachos
et al. 2004], therefore it is natural to compress such temporal data utilizing
the Fourier transform. Wavelets or Principal Components Analysis (PCA) could
have also invariably been used without any change in the algorithms that will
be described later on. In fact, everything that will be mentioned henceforth is
applicable on any orthonormal transform.

We begin with some notation first and a brief overview of the Fourier trans-
form. We denote each query as a time-series x = {x0, x1, . . . , xN−1} and the
Fourier transformation of x by the capital letter X.

Discrete Fourier Transform. The normalized Discrete Fourier Transform
(DFT) of a sequence x is a vector of complex numbers X( f ):

X( fn/N) = 1√
N

N−1∑
n=0

x(n)e− j2πkn/N, n = 0, 1, . . . , N − 1.

Each of the complex numbers encodes the amplitude and phase of a sinusoid
with frequency f and the sum of all sinusoids reconstructs the original se-
quence.

Periodogram. The energy of all Fourier coefficients is denoted by the peri-
odogram P, a vector comprised of the squared magnitude of the coefficients:

P( fn/N) = ∣∣∣∣X( fn/N)
∣∣∣∣2 , n = 0, 1, . . . ,

⌈
N − 1

2

⌉
.

The most dominant frequencies appear as peaks in the periodogram and corre-
spond to the coefficients with the highest magnitude. From here on, when we
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Fig. 5. We observe that many of the query weblogs can be characterized by few dominant fre-
quencies. For the query Full Moon 5 major frequencies account for more than 50% of the signal’s
energy.

refer to the best or largest coefficients, we mean the ones that have the high-
est energy and correspond to the tallest peaks of the periodogram. One could
construct an approximation of the original signal using any set of frequencies,
but typically the peaks on the periodogram would correspond to the important
data frequencies. These are the coefficients that we use to compress each query
sequence.

Example. Consider the demand pattern of the query Full Moon in Figure 5.
Its periodogram (which summarizes the energy of the signal frequencies) con-
sists of very few frequencies that hold the majority of the signal energy. For
example, 2 of the peaks on the periodogram correspond to a monthly and a
weekly periodicity. That is, people ask for the specific query approximately ev-
ery month and every week. Since the data is composed of few frequencies, the
data can be compressed or summarized accurately using minimal information.
At the bottom of Figure 5 we also show the high quality reconstruction that is
achieved when using the 5 coefficients with the highest energy. We will utilize
the Fourier coefficients with the highest energy signature for compressing the
underlying temporal demand pattern of each query.

Therefore, each compressed query sequence X will be described by a set of
c coefficients that hold the largest energy. The vector describing the positions
of those coefficients in X is denoted as p+, while the positions of the remaining
ones as p− (that is p+, p− ⊂ [1, . . . , N]). For any sequence X, we will also
store in the database the vector X(p+) or equivalently X+. If Q is a query in
the transformed domain, then Q(p+) (or Q+) describes a sequence holding the

ACM Transactions on the Web, Vol. 4, No. 2, Article 6, Publication date: April 2010.
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Fig. 6. Comparison of various compression techniques on query weblogs. The approximation error
e is very low when using the Fourier coefficients with the highest energy.

equivalent coefficients as the vector X(p+). Similarly, Q(p−) ≡ Q− is the vector
holding the analogous elements of X(p−) ≡ X−.

Example. Suppose X = {(1+2i), (2+2i), (1+ i), (5+ i)} and Q = {(2+2i), (1+
i), (3 + i), (1 + 2i)}. The magnitude vector of X is: ||X|| = {2.23, 2.82, 1.41, 5.09}.
Then, p+ = {2, 4}, X(p+) = {(2 + 2i), (5 + i)} and Q(p+) = {(1 + i), (1 + 2i)}.

Previous work considers compression of time-series data using the same
set of orthogonal coefficients, because this allows for easier comparison of the
respective coefficients and direct adaptation of traditional indexing structures,
such as R-trees. Figure 6 depicts two query examples and their approximation
for various time-series compression techniques, such as Piecewise Aggregate
Approximation (PAA) [Yi and Faloutsos 2000], Adaptive Piecewise Constant
Approximation (APCA) [Keogh et al. 2001], Chebychev Polynomials [Cai and
Ng 2004] and the use of first Fourier coefficients [Agrawal et al. 1993; Rafiei and
Mendelzon 1998]. We observe that the sequence reconstruction error e using
the best Fourier coefficients (last column) is very low, indicating the merits of
the proposed compression technique.

In addition, to the best coefficients of a sequence we will also record the
energy of the discarded coefficients: eX = ||X−||2, which corresponds to the sum
of squares of the omitted coefficients. This quantity represents the error in
the compressed representation, or, equivalently, the amount of energy in the
discarded coefficients.

3.5 Searching Compressed Weblogs

We now have all the elements for describing our problem setting. Given an
uncompressed query q, we need to find the closest sequences x in the database,
based on the Euclidean distance (L2-Norm). Parseval’s theorem dictates that
the Euclidean distance is the same whether computed in the time or in the
frequency domain. The preservation of energy holds for any orthonormal trans-
form (wavelets, PCA, etc), so anything mentioned from now on, is applicable on
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a variety of data transforms. The distance can be decomposed as follows:

D(x, q)2 = D(X, Q)2 (Parseval)

= D(X+, Q+)2 + D(X−, Q−)2

= ‖X+ − Q+‖2 + ‖X− − Q−‖2. (1)

The computation of the first part of the distance is trivial since we have all
the required data. However, the second part ‖X − Q‖2 cannot be calculated
since X− (the discarded coefficients) is unknown. Nonetheless, because we
have compressed each sequence X using the best coefficients, by construc-
tion we know that the magnitude of each of the coefficients in X− is less than
the smallest magnitude in X+. We use minPower = ||X+

min|| to denote the mag-
nitude of the smallest coefficient in X+.

We can estimate the range of values within which ‖X− − Q−‖2 lies, by ex-
pressing it as an an optimization problem; in specific, as two optimization
subproblems. As a maximization problem when considering the upper-bound
distance, and as a minimization problem when attempting to establish the
lower-bound distance

‖X+ − Q+‖2 + min
X−

‖X− − Q−‖2 ≤ ‖X − Q‖2 and

‖X − Q‖2 ≤ ‖X+ − Q+‖2 + max
X−

‖X− − Q−‖2.

For example, if we wish to discover a tight upper bound on the distance, we
need to provide a solution for the following optimization problem:

max
X−

‖X− − Q−‖2 such that (2)

‖X−‖2 = eX (3)

‖X−
i ‖ ≤ minPower, (4)

and

min
X−

‖X− − Q−‖2 such that (5)

‖X−‖2 = eX (6)

‖X−
i ‖ ≤ minPower, (7)

where X−
i is the ith component of the X−.

The algorithm that we provide is the optimal, that is, the bounds that we
compute are the tightest possible to the original distance under the Euclidean
Metric. We provide this result when a sequence is compressed using the k
coefficients with the highest energy. To our best of knowledge, this is the first
work that offers such bounds. First we provide an intuition regarding our
solution to the problem. Initially, on 2-dimensions and then on n-dimensions.
In the appendix we include a formal proof regarding the optimality of our
solution.
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Optimal Distance Bounds for Compressed Time-Series Query Logs • 6:13

Fig. 7. Illustration of the intuition behind our algorithm on 2 dimensions.

4. OPTIMAL DISTANCE BOUNDS

4.1 Algorithm Intuition on 2D

We demonstrate the optimal solution with a simple example. For this example
we assume that X and Q are 2-dimensional real vectors. We first find the
optimal upper bound and later the optimal lower bound. For the optimal upper
bound calculation, ‖Q+ − X+‖ is known and we want to find

max
X−

‖X− − Q−‖2 (8)

such that eX =
√

(X−
1 )2 + (X−

2 )2 and ‖X−
i ‖ ≤ minPower, i = 1, 2, where X− =

[X−
1 X−

2 ]T and Q− = [Q−
1 Q−

2 ]T.
Intuitively, given the query Q−, the vector that will maximize ‖Q− − X−‖2

should be on the opposite direction of Q−, i.e., X− = −αQ− for some α > 0, as
seen in Figure 7(a). Let’s also plot on the same figure the two constraints that
we have:

(1) Notice that the constraint on the total available energy eX essentially is
translated into a circle on the 2D plane (Figure 7(b)). Therefore the un-
known vector X− should always lie within this circle, otherwise the energy
constraints will be violated.

(2) The constraint on each coefficient of X− indicates that they should not
exceed minPower, therefore cannot go further than the dotted vertical and
horizontal lines at position minPower on the two dimensions/axes, d1 and
d2 (Figure 7(c)).

The algorithm proceeds as follows; we begin to scale X− in the opposite direc-
tion of the known Q− by increasing α, so as maximize the distance ‖Q− − X−‖2.
Now, one of two things may happen. Either we hit on the minPower boundary
on one of the axes or we cross the circle circumference indicating the total en-
ergy (whichever is violated first). As indicated in Figure 7(c), suppose that we
encounter first the boundary condition on one of the axes, for example, on axis
d2. Then we keep the corresponding dimension fixed at ‖X−

2 ‖ = minPower, that
is, X−

2 = −minPower, and only scale the vector X− on the remaining dimensions
until we use all the remaining energy or until we encounter another boundary
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condition. So, now we start moving X− along the d1 dimension. We can only
scale it up to a certain point, because we are faced with the total energy bound-
ary (the circle). At that point, the search stops because all conditions of the
maximization problem have been satisfied.

In a similar fashion, if we want to find the lower bound, we have to solve

min
X−

‖X− − Q−‖2

such that eX = ‖X−‖ and ‖X−
i ‖ ≤ minPower, i = 1, 2. However, intuitively,

given the query Q−, the vector which will minimize ‖Q− − X−‖2 should be on
the same direction of Q−, i.e., X− = αQ− for some α > 0. Since, the boundary
conditions are symmetric, proceeding similarly to the maximization problem,
we observe that the vector −X−,∗ yields the minimizer solution where X−,∗ is
the solution to the maximization problem.

Therefore, we do not have to solve the optimization problem twice, but only
once, since the two optimization problems are identical.

4.2 Algorithm on n-Dimensions

We now show how the algorithm operates in n dimensions, to allow better
exposition of our ideas. We depict the maximization problem.

Figure 8(a) shows the known vector Q− and the (unknown yet) vector X−

which we attempt to estimate. On the right side of the figure we also depict
a bucket indicating the available energy that we can allocate on X−. In the
previous example, we mentioned that vector X− needs to be on the opposite
direction of vector Q−, which translates to creating a rescaled vector of Q−

along that direction. X− is rescaled until all energy is used up (Figure 8(b)). If
certain coefficients exceed the minPower constraint, they are truncated/fixed to
minPower (Figure 8(c)). The energy that is alloted for the coefficients that are
now fixed is subtracted from the total available energy (Figure 8(c)). For the
remaining coefficients we repeat the same process, as shown in Figures 8(d),(e),
and (f), until all the available energy is used, or all the unknown coefficients
are approximated (fixed).

The configuration described above is a water-filling solution [Cover and
Thomas 1991; Bertsekas 2000] and it is shown to be optimal in the Appendix.
In Figure 9 we provide a pseudocode of the algorithm that we just described.

Therefore, the described water-filling algorithm will provide the tightest pos-
sible lower and upper distance bounds between the Euclidean distance on two
compressed sequences, when the k orthonormal coefficients with the highest
energy are used in order to describe the compressed sequences (and information
about the energy of the discarded coefficients is also retained).

4.3 Optimizations—Early Termination

Now we introduce a simple optimization that can further reduce the running
time of the optimal algorithm. In the main body of the algorithm, there exists
an iterative loop that assigns the remaining energy to the unknown coefficients
according to the principles that we described. Even though in the experimental
section we show that this loop converges very fast, when distance estimation
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Fig. 8. Various steps of the optimization (water-filling) algorithm in n-dimensional space. The
unknown vector X− is rescaled (opposite Q−) until all energy is used (a),(b). Coefficients exceeding
the given constraints are fixed (c), and the process is repeated for the remaining coefficients until
all energy is used up (d),(e),(f).

occurs during a NN-search operation, the algorithm can break early out of
the loop if the current lower-bound distance bound is already worse than the
bestSoFar match on the ongoing search. We call this process early termination
of the algorithm, and it can result in a significant speedup in the execution of
the search process.

Notice, that before entering the loop (lines 23–32 of Figure 9) there is an
initial distance estimate distSq computed based on the known coefficients. This
is increased accordingly to estimate upper and lower bounds on the distance.
Let’s also dictate that the algorithm accepts as input the current bestSoFar
match from the (ongoing) search process. We can update the current lower
bound distance within the loop, and then stop improving the distance bounds,
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Fig. 9. An implementation of the solution to the optimization problem.

if the current lower bound is larger than the bestSoFar match. This is possible,
since every execution of the loop will only increase the lower bound, bringing
it closer to the actual distance value between the two sequences Q and X.

Therefore, using the early termination feature, the algorithm will still return
the same results. However, it will refrain from estimating the tightest possible
bound, if the sequence is guaranteed to be more distant than an already found
match.

In the upcoming experimental section, we show that this simple optimization
results in a significant reduction on the amount of required iterations executed
by the algorithm.

4.4 Indexing in Metric Spaces

Even though indexing goes beyond the scope of this paper, we mention suc-
cinctly how the compression with different coefficients can utilize an indexing
structure for additional performance benefits.

Due to the non-uniform use of coefficients for every sequence, traditional
space partitioning indexing structures like R-trees [Guttman 1984], and its
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variants, cannot be utilized since they require the same set of coefficients for
all objects. However, metric trees which utilize distances between objects can
be adapted for our purpose. For example, VP-trees [Yianilos 1992; Chee Fu
et al. 2000; Bozkaya and Özsoyoglu 1997] are a popular instance of a metric
tree structure that partition the space based on distances to selected vantage
points of the dataset. A tree containing the objects is constructed by recursively
separating the dataset into two distinct sets based on the median distance μ to
the vantage point. The objects closest to the vantage point (S<) are stored on the
left subtree, and those that are further away from the median distance (S>) are
directed on the right subtree. The process is repeated recursively and a different
vantage point is selected for each of the remaining subsets. Figure 10 illustrates
this process on 2 dimensions for clarity (each point essentially represents one
object).

After the tree is constructed and a query is posed, one only has to examine
the proper subset based on the position of the query. Only if the query lies close
to the median distance, both subsets need to be examined, otherwise one of
them is discarded from examination.

For more details about such an approach, we direct the interested reader to
Vlachos et al. [2005].

5. EXPERIMENTS

We evaluate various parameters of our algorithm; the convergence rate, the
tightness of the estimated bounds, and the additional pruning power that is
achieved when using the presented optimal algorithm. As our testbed we use
search engine logs spanning a period of 3 years (3*365 points per sequence),
which we trim down to 1024 points in order to simplify calculations and expo-
sition of ideas. We had at our disposal approximately 60,000 query patterns.
The sequences were studentized (mean value was subtracted and sequences
normalized by the std), so as to remove any scale bias. In this way we are re-
verting the distance into a measurement of correlation and can discover more
flexible patterns.

Before presenting any performance aspects of our approach, we depict some
of the Nearest-Neighbor (NN) matches that resulted from the search procedure
for various queries. In Figure 11 we illustrate some indicative results included
within the 20-NN matches of various posed queries. The order of the reported
results also corresponds to the relative order of the answers in the result set.
However, we do not consider that an analyst should place importance on the
actual order of the returned results, rather than focus on the set of the top
results as a whole, in any attempt to analyze the connection to the posed query.
The results reported are for the following queries: abc, alexander the great,
deutsche bank, formula 1 racing, toyota.com, and usps.com. One can observe
that the returned matches hold a semantic affinity to the posed query. For
example, the results of the query toyota.com returns car-related queries, for
example, other car manufacturers or even keywords relating to car insurance or
automotive related Web sites. Similarly, the outcome of the query deutsche bank
resulted in keywords related to financial companies and stocks. In general,
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Fig. 11. Several NN-search results. Six queries and an indicative subset of their 20-nearest-
neighbors based to the temporal similarity in the query demand.

search on the query logs returns highly interpretable and useful matches,
something that was also attested by other relevant publications [Chien and
Immorlica 2005; Adar et al. 2007; Vlachos et al. 2004; Vlachos et al. 2005; Hall
2009].

5.1 Runtime

Reporting the actual runtime of an algorithm, is not always an accurate indica-
tor of performance, since wall-clock running time can be severely biased based
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Table I. Runtime for Returning the 20NN

Dataset cardinality 8000 16000 32000
Runtime (sec) 4.0625 5.3958 6.7500

on implementation, programming language, hardware, etc. Additionally, since
part of the experiments were conducted in Matlab, timing experiments cannot
capture the raw performance achieved by the proposed techniques. However,
for purposes of indicating the trend in runtime increase, in Table I we illus-
trate the time to return the 20-NN for increasing dataset cardinalities (8000
-16000 - 32000 sequences). The running cost is typically sublinear in the num-
ber of database sequences, because we are reutilizing the derived bounds from
previously examined sequences.

One can observe that NN-search on 16,000 sequences is not twice as costly
as the runtime on 8,000 sequences. Actually, searching 32,000 time-series adds
only 1.6 times to the cost of iterating through 4,000 time-series, even though
the dataset cardinality increased 4 times. From an implementation point of
view, and because of the sublinear nature of the algorithm, the search can
be easily architectured to perform in real-time. The search process can be
trivially parallelized with minimal communication and merging costs through
distributing portions of the dataset. NN queries can be issued at different
sites and merged subsequently. In such a way, even when the dataset size gets
increasingly large, real-time retrieval options are feasible.

In the upcoming sections we mostly focus on reporting the pruning power
of various search algorithms, which is an unbiased indicator of performance
[Keogh and Kasetty 2003; Keogh et al. 2001].

5.2 Convergence Rate

The proposed water-filling algorithm iteratively rescales subsets of the un-
known coefficients, in the process of allocating the remaining signal energy.
A number of iterations are required until convergence. Here, we empirically
demonstrate that the algorithm reaches the solution in very few iterations
(typically 2 to 3); therefore, performance of the algorithm is not adversely im-
pacted. The experiment is conducted by computing 1000 distance calculations
(lower and upper bounds) from a pool of randomly selected query logs. We re-
peat the experiment for various compressed representations, retaining from 8
to 64 coefficients per sequence, or in other words, for compression rates of 128

1
to 16

1 . The histograms of the number of iterations are depicted in Figure 12. We
observe that the algorithm converges very fast, typically in 1 to 4 iterations,
with the majority of the cases being 2–3 iterations.

Notice, that each additional iteration incurs a CPU cost which is smaller
than the previous one, because at each iteration we only evaluate coefficients
that have not been previously estimated. Therefore, there is a diminishing CPU
cost. Finally, we emphasize that most search operations are I/O bound and the
small additional cost that our algorithm incurs is only CPU-based. As will been
shown next, our algorithm ultimately achieves much better performance than
previous approaches due to the much tighter distance bounds which lead to a
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Fig. 12. Number of iterations for convergence on the optimization algorithm. The algorithm con-
verges very fast, typically in 2-3 iterations.

Fig. 13. Incorporation of early termination, reduces significantly the amount of iterations required
by the algorithm. The shown percentages indicate the relative reduction rates in iterations.

significant reduction in the number of uncompressed sequences fetched from
the disk.

Early Termination: The convergence rate of the optimal algorithm can be re-
duced even further by exploiting the early termination (ET) feature that was in-
troduced in section 4.3. In order to observe the merits of this feature we need to
perform an actual NN-search, so that we provide the current bestSoFar match
to the algorithm. We search over 1000 sequences and we pose 100 queries. We
record the total number of iterations over those 100 queries, with and without
the early termination. The results of the experiment are shown in Figure 13.
The regular optimal algorithm (without early termination) executes additional
iterations for increasing number of coefficients, something that was already
observed in the previous experiment. However, when early termination is
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employed, the number of iteration in the algorithm actually decreases, for in-
creasing number of coefficients. This is the case because as more coefficients are
used there are more opportunities for estimating even tighter distance bounds,
a fact that the optimal algorithm exploits. This automatically means that when
more coefficients are utilized the bounds will progressively become less loose,
giving better distance estimates and allowing for early termination. That is why
we observe a reduction of iterations when utilizing more coefficients, under the
ET feature.

On the same figure we also record the relative reduction of iterations under
the ET, which is quite dramatic, and ranges from 40% to more than 80%.

5.3 Bound Tightness

Now, we compare the tightness of our bounds against widely used time-series
search techniques, which have appeared in the data-mining literature. The
strawmen approaches that we compare with are:

(1) First Coefficients: Techniques that compute bounds on the distance using
the first coefficients, inherently make the assumption that the underly-
ing signal contains primarily low frequency components [Agrawal et al.
1993; Rafiei and Mendelzon 1998]. Such approaches perform sufficiently
on random walk signals, such as stock market data, but in general do not
adapt well for generic signals. Additionally, such approaches only estimate
lower bounds on the distance function, therefore in general cannot match
the pruning performance that the combination of lower/upper bounds can
achieve.

(2) First Coefficients + error: This approach augments the aforementioned
methodology by recording also the reconstruction error (or remaining en-
ergy of the omitted coefficients), which improves upon the previous bounds.
This work additionally utilizes upper bounds, which the previous ap-
proaches did not consider [Wang and Wang 2000].

(3) Best Coefficients + error: Similar to the previous approach, this technique
exploits the coefficients with the highest energy plus the approximation
error in order to bound the distance [Vlachos et al. 2004].

5.3.1 Space Requirements. Notice that it is not meaningful to directly com-
pare the above approaches using the same number of coefficients, because each
technique may require a different amount of storage space. We need to compare
all approaches under the same memory requirements.

The storage of the first c Fourier coefficients requires just 2c doubles (or
2c ∗ 8 bytes). However, when utilizing the c best coefficients for each sequence,
we also need to store their positions in the original DFT vector. That is, the
compressed representation with the c largest coefficients is stored as pairs of
[position-coefficient].

For our experiments, the sequences are composed of 1024 points, which
means that we need to store 512 positions, if we consider the symmetric prop-
erty of the Fourier coefficients. 9 bits would be sufficient to describe any of
the coefficient positions, however, since on disk we can write only multiples
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Table II. Requirements for Usage of Same Storage for
Each Approach

First Coeffs c First Coeffs + Middle Coeff
First Coeffs + error c First Coeffs + Error
Best Coeffs + error 	c/1.125
 Best Coeffs + Error
Optimal 	c/1.125
 Best Coeffs + Error

of bytes, each position requires 2 bytes. Therefore, each approach that utilizes
the best coefficients allocates 16 + 2 bytes per coefficient. In other words, if an
approach storing the first coefficients uses c coefficients, then our method will
use 	16c/18
 = 	c/1.125
 coefficients.

For some distance measures we also use one additional double to record the
error (sum of squares of the remaining coefficients). For the measures that don’t
use the approximation error we need to allocate one additional number and we
choose this to be the middle coefficient of the full DFT vector, which is a real
number [Oppenheim et al. 1997] (since we have real data with lengths of power
of two). If in some cases the middle coefficient happens to be one of the c best
ones, then these sequences just use 1 less double than all other approaches.
Table II summarizes how the same amount of memory is allocated for each
compressed sequence of every approach.

Therefore, when in the following figures we mention memory usage of
[2*(32)+1] doubles, the number in parenthesis essentially denotes the coef-
ficients used for the methods using the first coefficients (+1 for the middle
coefficient or the error, respectively). For the same example, approaches us-
ing the best coefficients will use the 28 best coefficients, leading to the same
memory requirements.

5.3.2 Results. We plot the lower and upper bounds derived by each ap-
proach and we normalize the results against the exact euclidean distance.
Numbers closer to 1 indicate tighter bounds. We observe that in all cases the
optimal algorithm returns the best distance estimates compared to the other
approaches, even though it uses fewer coefficients than some of the competing
methodologies. On the title of each graph of Figure 14 we also indicate how
much the optimal algorithm improves on the First Coeffs + error approach. We
observe that the optimal introduces an improvement of approximately 10% on
the lower bounds and 12–15% on the upper bounds. As we will demonstrate in
the following section, this reduction in the distance ambiguity can lead to very
dramatic speedups in the overall search performance.

5.4 Pruning Power and Performance Improvement

For this experiment we assemble a large pool of query Weblogs consisting of
32000 temporal sequences. We pose 100 random queries that don’t have exact
matches in order to offer more realistic performance metrics. We search for
the 1-Nearest-Neighbor of each query and we utilize both Lower and Upper
bounds. For the First Coeffs approach we utilize only the lower-bounds, since
no upper-bounds are offered.
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Fig. 14. Comparison of lower/upper bounds returned by various techniques, across different com-
pression rates. The optimal algorithm exhibits the tightest possible bounds.

Fig. 15. Top: Ratio of uncompressed sequences retrieved from disk (smaller numbers are better).
Bottom: Improvement of Optimal against all other approaches (higher numbers are better).

We evaluate the performance of each technique based on the search pro-
cedure presented in Section 3.3, which prunes the search space and directs
the search according to the lower/upper bounds derived from the compressed
sequences. Ultimately, we measure the cardinality of uncompressed sequences
that each technique retrieved from disk. This essentially reflects the most im-
portant bottleneck of a search performance, because it is an I/O bound process.
Figure 15 shows how many uncompressed sequences were retrieved for each
of the search approaches, normalized by the total number of sequences. For
clarity, the lower graph in the figure depicts the relative improvement in the
search performance when the proposed optimal bounding algorithm is used.
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Fig. 16. Optimal Algorithm: Ratio of uncompressed sequences retrieved from disk for different
number of coefficients and NN-search (1-NN, 5-NN, 10-NN, 20-NN).

When using [2*(32)+1] doubles per sequence we observe the largest improve-
ment in performance; 80%, 50%, 30% improvement compared to the 3 other
distance bounding methodologies. Therefore, we can achieve excellent perfor-
mance compared to previous state of the art when utilizing the optimal distance
bounds.

Lastly, we focus on the optimal algorithm and we depict its performance
when searching for increasing number of nearest neighbors (parameter k). We
measure the performance for 1-NN, 5-NN, 10-NN and 20-NN searches. We
capture again the pruning power of the algorithm as the ratio of uncompressed
sequences retrieved from disk. When searching for k-NN results the search
algorithm is slightly modified in order to accommodate the use of a priority
queue, where the k current nearest matches are stored. Now the pruning is
achieved using the k-th bestSoFar match. The results of this experiment are
reported in Figure 16 and indicate a small and smooth sublinear increase in the
number of retrieved sequences under increasingly larger k-NN searches. For
example, when using 64 coefficients per sequence and searching for the 1-NN,
0.8% of the sequences are retrieved. Approximately 5 times more sequences
are retrieved when searching for the 10-NN and 10-times as many sequences
when a 20-NN query is posed.

In conclusion, with these experiments we have seen that the presented opti-
mal distance estimation algorithm converges fast, provides the tightest possible
distance bounds, and leads to significant benefits in the search performance.

6. CONCLUSIONS

This work examined techniques that can boost the search performance on
temporal query Weblogs. We presented algorithms that compute the optimal
lower and upper bounds on distance functions, when working directly on the
compressed data. In addition to its theoretical underpinning, the algorithm is
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easy to implement, it is lightweight in its execution, and results in a significant
speedup of search operations.

Even though in this work we focused on a specific distance measure (Eu-
clidean distance) and on a certain compression methodology (Fourier trans-
form), our approach is directly applicable to other linear distance functions,
and to any orthonormal data transformation (wavelets, principal components,
etc). The presented techniques can also be combined with index structures (e.g.
metric trees) for achieving an additional performance boost. Although this work
was presented in the context of query demand patterns, search on other types
of temporal Web data, such as sequences of tag usage [Rattenbury et al. 2007;
Dubinko et al. 2006] and click-through data [Zhao et al. 2006] can also benefit
from our contribution. Finally, our techniques are of independent interest for
any time-series search application.

REFERENCES

ADAR, E., WELD, D., BERSHAD, B., AND GRIBBLE, S. 2007. Why we search: Visualizing and predicting
user behavior. In Proceedings of the International World Wide Web Conference.

AGRAWAL, R., FALOUTSOS, C., AND SWAMI, A. 1993. Efficient similarity search in sequence databases.
In Proceedings of the International Conference on Foundations of Data Organization and Algo-
rithms (FODO). 69–84.

ASSENT, I., KRIEGER, R., AFSCHARI, F., AND SEIDL, T. 2008. The TS-tree: Efficient time series search
and retrieval. In Proceedings of the International Conference on Extending Database Technology
(EDBT). 252–263.

BEITZEL, S., JENSEN, E., CHOWDHURY, A., FRIEDER, O., AND GROSSMAN, D. 2007. Temporal analysis
of a very large topically categorized Web query log. In J. Amer. Soc. Inform. Sci. Tech. 58, 2,
166–178.

BERTSEKAS, D. P. 2000. Nonlinear Programming. Athena Scientific.
BOLLEGALA, D., MATSUO, Y., AND ISHIZUKA, M. 2007. Measuring semantic similarity between words

using Web search engines. In Proceedings of the International World Wide Web Conference. 757–
766.
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