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Abstract—In this paper, we consider mixture approaches that
adaptively combine outputs of several parallel running adaptive
algorithms. These parallel units can be considered as diversity
branches that can be exploited to improve the overall performance.
We study various mixture structures where the final output is
constructed as the weighted linear combination of the outputs
of several constituent filters. Although the mixture structure
is linear, the combination weights can be updated in a highly
nonlinear manner to minimize the final estimation error such
as in Singer and Feder 1999; Arenas-Garcia, Figueiras-Vidal,
and Sayed 2006; Lopes, Satorius, and Sayed 2006; Bershad,
Bermudez, and Tourneret 2008; and Silva and Nascimento 2008.
We distinguish mixture approaches that are convex combinations
(where the linear mixture weights are constrained to be nonnega-
tive and sum up to one) [Singer and Feder 1999; Arenas-Garcia,
Figueiras-Vidal, and Sayed 2006], affine combinations (where
the linear mixture weights are constrained to sum up to one)
[Bershad, Bermudez, and Tourneret 2008] and, finally, uncon-
strained linear combinations of constituent filters [Kozat and
Singer 2000]. We investigate mixture structures with respect to
their final mean-square error (MSE) and tracking performance
in the steady state for stationary and certain nonstationary data,
respectively. We demonstrate that these mixture approaches can
greatly improve over the performance of the constituent filters.
Our analysis is also generic such that it can be applied to inhomo-
geneous mixtures of constituent adaptive branches with possibly
different structures, adaptation methods or having different filter
lengths.

Index Terms—Adaptive filtering, affine mixtures, combination
methods, convex mixtures, diversity gain, least mean squares
(LMS), linear mixtures, recursive least squares (RLS), tracking.

I. INTRODUCTION

N adaptive filtering applications, there are various design
choices to be made that affect convergence and tracking per-
formance. Among these, we can list the selection of the order
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of the adaptive filter [1], and the choice of the adaptation algo-
rithm and its parameters [6], [7]. The lack of a priori structural
and statistical information about the data model that relates the
observations to the desired signals would make the selection
process more difficult. As a robust solution to this problem, a
method based on combining the outputs of various adaptive fil-
tering branches corresponding to different design choices has
recently been proposed [1]-[6], [8], [9]. According to this ap-
proach, parallel adaptive branches can be perceived as alterna-
tive hypotheses about the data model as well as different diver-
sity sources, which can be used to achieve better performance
than the individual branches. Depending on the availability of
intelligent combining approaches and computational/hardware
resources, such structures may be well-suited for a wide variety
of adaptive filtering applications, especially for those involving
nonstationary data models.

In this paper, we study different mixing strategies in which
the final outputs are formed as the weighted linear combination
of the outputs of several constituent algorithms for stationary
and certain nonstationary data. In its most general form, the out-
puts of the constituent algorithms may be combined using a non-
linear method rather than a weighted linear mixture. However,
the linear mixture is most commonly used due to its tractability
and adequate accuracy in modeling [1]-[5], [10], [11]. We note
that although the final combination structure is often linear,! the
update on the linear combination weights can be highly non-
linear [1], [2], [4], [10].

We distinguish mixture approaches that are convex combi-
nations (where the linear mixture weights are constrained to be
nonnegative and sum up to one) [1], [2], [10], [11], affine combi-
nations (where the linear mixture weights are constrained to sum
up to one) [4] and, finally, unconstrained linear combinations of
constituent filters [6]. We study several different methods to up-
date these mixture weights under the given constraints, such as
training the convex combination weights using a stochastic gra-
dient update after a nonlinear variable transformation [2].

At first sight, constraining the mixture weights, such as im-
posing convex constraints, would result in lower target diversity
gains than could be achieved by a less constrained (such as affine
combination) or unconstrained mixture approach at steady state.
However, we point out that the combination weights are also up-
dated through an adaptive process and that impacts the overall
performance. As an example, as we demonstrate here, although
an optimal affine (or unconstrained) combination of the con-

"However, for the framework investigated in this paper, the linear weights
used for combination cannot have components from the outputs of the
constituent algorithm. Hence, these are truly linear combinations, i.e.,
y(t) = 23(t) = [z(¢)]?x(t) is not a linear model in x(¢).
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stituent algorithms may yield a better target diversity gain than
a convex combination in steady state, there may be excess gra-
dient noise [or excess mean-square error (MSE)] due to the
training of these affine weights based on a stochastic gradient
approach [4]. In comparison, this additional MSE due to gra-
dient noise, which is counteracting against the diversity gain, is
not present in certain convex updates such as the one used in
[2] due to the sigmoid nonlinearity. A similar tradeoff is also
present for tracking performance: Although it may be favor-
able to use a Hessian-based approach such as the recursive least
squares (RLS) algorithm in terms of reducing the excess MSE in
the final combination stage, the least mean squares (LMS) (or
gradient) based approaches are shown to have better tracking
properties under certain conditions [7], [12].

The combination methods proposed for adaptive filtering can
be considered as the descendants of some earlier work in adap-
tive control [13]-[15], computational learning theory [11], [16],
[17], investment [18] and universal source coding [19], [20]. In
particular, in computational learning theory such methods have
been a major focus of research, in which several Bayesian algo-
rithms have been proposed under the mixture-of-experts frame-
work (see, for example, [11] and [17]). The objective here is
to combine the outputs of several different adaptive filters run-
ning in parallel on a given task, with the goal of achieving per-
formance better than or at least as good as the best constituent
algorithm, for all sequences. This is usually accomplished by
exploiting the time-dependent nature of the best choice among
constituent filters [10], [11]. In computational learning theory,
the performance of such combination algorithms are often mea-
sured through the excess loss, i.e., “the regret,” with respect to
the best constituent algorithm in a deterministic sense. The lit-
erature typically reports that the bounds are deterministic, i.e.,
they are guaranteed to hold under the given data models for each
individual sequence of outcomes, and these results are given
with respect to the best algorithm in the combination. It has
been demonstrated that the final algorithm can often do even
better than the best constituent algorithm in the competition
class [1], [20], [21]. Although deterministic bounds are guaran-
teed to hold, they usually require certain assumptions on the un-
derlying signals or regression parameters, such as boundedness
[10], [22], [23] or upper limits on the norms of regression vec-
tors [11], [24], respectively. The results for deterministic data
do not hold in a fairly general stochastic context, e.g., if the ob-
servation sequence is a stationary Gaussian process, the bound-
edness assumption is invalidated.

Within the context of adaptive filtering, an adaptive convex
combination algorithm based on Bayesian mixture strategies
was introduced in [1] to merge a finite number of adaptive
branches using RLS updates based on their accumulated past
performance. This algorithm was shown to asymptotically
achieve the performance of the best algorithm in the mixture
for any bounded but arbitrary real-valued data in [1]. This
convex mixture was then extended to more general combina-
tion structures in [6], where both the convex combination as
well as unconstrained linear combination of multiple order
LMS algorithms were studied.

An alternative algorithm that adapts a convex combination
of two adaptive filters using stochastic gradient methods was
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studied in [2]. Although the analysis given for the convex com-
bination of two filters was generic [2], the results were then spe-
cialized to the case of two LMS filters with different learning
rates: one with a comparably smaller and the other with a com-
parably larger learning rate, were combined. Hence, the combi-
nation approach enjoyed fast converge in the start of the adapta-
tion and smaller excess MSE at the steady state. The algorithm
introduced in [2] was shown to be universal, such that it achieves
the performance of the best constituent algorithm (of the two)
under the given data model. This combination is shown to out-
perform even the best constituent filter if the cross-correlation
between the a priori errors of the constituent filters are suffi-
ciently small [2]. This approach was extended to a combination
of multiple adaptive algorithms of the same length in [8], [9],
and [25] and of the different lengths (along the same lines of
[1]) in [3] and [25]. Recently, the convex combination of [2]
was used in [5] for combination of adaptive filters using dif-
ferent adaptation rules, such as the RLS update, in a tracking
context.

Motivated by the results of [2], the work of [4] relaxed the
convex combination constraint and used affine combination for
merging two adaptive branches. The authors demonstrated that
under certain circumstances the optimal affine combination is
different than a convex combination, and the affine combina-
tion algorithm introduced (which is not realizable) will have a
final MSE that is better than the MSEs of both constituent algo-
rithms. To realize this optimal affine combination of two filters
using LMS updates, the authors introduced a stochastic gradient
update (without performance analysis) and a variable transfor-
mation method. In this paper, we first extend this stochastic gra-
dient update to a combination of multiple filters and then pro-
vide the steady-state analysis for stationary and certain nonsta-
tionary data.

In this article, we consider a more general adaptive com-
bination framework consisting of various alternatives for the
merging of multiple (two or more) branches. We provide a gen-
eral framework for linear combination methods and investigate
several different methods to update combination weights. The
adaptive branches involved are allowed to be inhomogeneous,
i.e., the filters are not constrained to have equal lengths or to use
the same update. We first provide the maximal achievable di-
versity gains for each combination strategy in steady state. We
then produce theoretical analysis for all structures and adaptive
methods in steady state for stationary and non-stationary data
in a tracking context. After deriving final MSEs for all struc-
tures, including the excess MSEs, we also provide comparison
between these methods through simulations. We demonstrate
that we can improve over the existing methods [2], [4], [5]
in terms of steady-state MSE by using unconstrained methods
for both stationary and nonstationary data. Our methods are
generic and can be readily extended to blind algorithms as was
done in [5]. In comparison to [6] where only the LMS up-
date was used to train the combination weights, we provide an
extension where more general combination structures (such as
unconstrained, convex and affine combinations) and adaptation
schemes (such as LMS, RLS and various gradient search al-
gorithms based on constraint set parametrization) are used for
the combination stage.
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Fig. 1. Linear mixture of outputs of m adaptive filters.

The organization of the article is as follows. In Section II,
we first provide the general mixture structure for the combina-
tion of outputs of several parallel adaptive filters. We then in-
vestigate three different combination structures including un-
constrained linear, affine and convex combinations. We provide
the corresponding diversity gains, i.e., the achievable final min-
imum MSEs by these three combination structures based on the
cross-correlations between the excess errors of the constituent
filters. As an illustrative and widely studied example, we spe-
cialize these results to the case where the constituent filters are
of the same length. We then continue to investigate adaptive
methods to update the mixture weights. For unconstrained and
affine combinations, we study both the RLS and LMS updates
and provide the final MSE, as well as the excess MSEs due
to using adaptive methods, in Section IV and Section V, re-
spectively. In Section V-A, we introduce the stochastic gradient
based algorithm to train the affine weights, which is an exten-
sion of the algorithm used in [4] for the combination of only
two LMS filters (without performance analysis). For the convex
combination of several branches, we study the convex combina-
tion approach of [3], which is an extension of [2], in Section VI.
As an illustrative example, in Section IV, we specialize the re-
sults to the case where each constituent filter has the same length
and uses additive updates (such as the RLS update or the LMS
update) [7]. We conclude the paper with numerical examples for
different combination structures and corresponding remarks.

A. Notation

In this paper, all vectors are column vectors and represented
by boldface lowercase letters. Matrices are represented by bold-
face capital letters. For presentation purposes, we work only
with real data. Given a vector w: w(*) denotes the ith individual

entry of w; w’ is the transpose of w; ||w||; £ S, [w@ ] is the
[ norm; ||w|| 2 wTw is the I» norm; and |lw||r 2 VwRw
is the weighted /o norm for a positive definite matrix R. For a
vector w, diag(w) represents a diagonal matrix formed using
the entries of w. For a real number a, |a| is the absolute value;
()T =aifa >0, (a)t =0if a < 0. For a vector w, (w)*
represents a vector, where each entry of w is given by (w?) * For
a symmetric square matrix, R € R™*™, p;(R),i =1,...,m,
are the eigenvalues sorted in descending order. Special vectors
(or matrices with an abuse of notation) 1 and 0 denote vectors
(or matrices) of all ones or zeros, respectively, where the size of
the vector (or the matrix) is understood from the context.

II. MODEL DESCRIPTION AND COMBINATION METHODS

The generic model we consider in this paper consists of two
parts. In the first part, we have m adaptive algorithms running in
parallel to estimate a desired signal d(t) as seen in Fig. 1. Each
algorithm updates a weight vector, w;(t) € IR*, s; is an integer,
i = 1,...,m, and produces an estimate w? (t)u;(t) using the
input vector process ;(t) € IR**. The estimation error for each
algorithm is given by e;(t) 2 d(t) — d;(t). For each filter, the
optimal weight vector that minimizes the MSE is given by

Wo,i 2 R 'p;,
i = 1,....m, where R, 2 E[u;(t)u?(t)] and p; =
Elu;(t)d(t)] for wide-stationary data. We emphasize that
this wide-sense stationary model is extended to nonstationary
data models in Section VII. Using this optimal weight vector,
we define

A

€o,i(t) = d(t) — wl ju;(t),
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where Ele, ;(t)u;(t)] = 0 by orthogonality [7]. For each algo-
rithm, a priori, a posteriori and estimation errors are defined
as

b2

eayi(t) [ (
ep,i(t) [wo i wZ(t + 1)] uZ( )
ei(t) = d(t) —wi (t)ui(t),

respectively. Clearly, based on these definitions, we can write

w,; —w; t)] ()

»

b2

ei(t) = eailt) + coult),

i = 1,...,m. We further define J;(t) = E[e2(t)],
Ji = limy oo Ji(t) MSE) and Jexi(t) = E[@Z,z’(t)]’
Jox;i = limy_o0 Jex,i(t) (EMSE), when these limits exist.
We define the cross-correlation between a priori errors as
Jex,ij(t) = Eleai(t)eq;(t)] and Joxij = lime oo Jex,i5 (1),
when the limit exists. If we deﬁng for each filter the “clean”
part of the desired signal as g;(t) = wZ ;u;(t), then

=wlu(t) =wl ut) -

0. [wo,i —wi(t)]” u(t)
=gi(t) — eq,i(t). (D

d;(t)

The second stage of the model is the mixing stage. In order
to obtain the final output, we combine outputs of the constituent
filters using a linear combiner as

d(t) = w" (t)y(t)

where y(t) 2 [di(t), ... dp(t)]T and w(t) € R™. Similar
to the constituent algorithms, we consider only linear combina-
tions in the final output. The final estimation error is given by

e(t) 2 d(t) — d(t).

Using (1), we have

91(t) = ea1(t)

y(t) = :
gm (t) — €a,m(t)

With these definitions, the autocorrelation matrix for the input

of the combination stage is given by R(t) 2E vty (1)), R =

lim,_,~, R(t) and the cross-correlation vector is given by p(t) =

Ely(t)d(t)], p £ lim;_, o p(t), when the limits exist.
To calculate R, we observe that for any filter pairs 4 and j:

Jim B [(g:(#) ~ ea(6)) (95(8) — eaj(0)]
= Jim {Bgi(1)g;(1)] — Elg;(t)eai(1)]
~ Egi(t)ea (0] + Fleai(t)eai(O)]}
= 2 L0050 + i Pl )

+ Je)\ YR

g ij
ol 2 w}  Eu;(t)u] (t)]w, j, where in the third line we use a
separation assumption similar to the one used in [2] and [7] that
Elgi(t)ea ;j(t)] = Elgi(t)|Eleq,;(¢)] for all 7, §, in the limit as
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t — oo. This assumption is plausible as the filters converge as
in [7]. With this result, by orthogonality we have

2 2
Jex,l + 09711 Jex,lm + o'g’lm

R:
Jex,lm + 0'371771 Jex,m + Ug,mm
=G+ J
where @) — @9 é J(w) — Jud 2 g .
g”, ex,t
(when ¢ # j) and G“ 2 g”, J A Jexi-
Hence, the steady-state autocorrelation matrix R is

formed as the sum of two positive semi-definite matrices:

G = limo E{g1(t), s gm®]T[g2(1)s ..., gm(t)]}
for the stationary part of the data and J =

limy oo E{[ea1(t), - am®)] [ea1(t),. .-, eam(t)]} due
to excess errors in modeling.

For the cross-correlation vector, since
limy o0 E[d(t){gi(t) cai)}] = 054 by or
thogonality we have

o511
p= :
U?],mm

We observe that for different structures and adaptation
methods on the constituent filters, we would have different
correlation matrices R and cross-correlation vectors p. Given
this generic setup, we consider three different combination
structures including: unconstrained linear combination (linear
combination), affine combination and convex combination. We
first analyze the optimal diversity gains that can be achieved by
these structures by formulating minimum MSE (MMSE) levels
corresponding to the optimal combination weights for each
structure. The adaptation algorithm alternatives corresponding
to these structures will be investigated in Sections 1V, V,
and VL.

III. MIXTURE STRUCTURES AND FINAL MMSES

In this section, we obtain the optimal performance levels cor-
responding to the three different combination structures men-
tioned above. The derivations are generic such that one needs
to only provide R and p for any constituent filter structure or
the adaptation algorithm used. However, as an interesting and
widely studied special case that was investigated for the combi-
nation of two filters in [2], [4], and [5] (or multiple filters in [§]
and [9]), we also consider the scenario in which all of the con-
stituent filters have the same order as a specific example. We
note that, although here we consider wide-sense stationary data
models, we extend our models to include nonstationarity in a
tracking context in Section VIL.

A. Linear Combination
For fixed w in the combination stage, the final MSE is given
by

lim E [*(t)] =0 —p" R 'p+ (w—w,)"Rlw—w,) (2)

t—o0o
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where 02 £ E[d?(t)] and w, = R™'p. If the unconstrained
linear combination scheme is used, then the optimal linear
weight vector that minimizes the final MSE in (2) and the
corresponding final MSE are given by

w, = R 'p,
° ’ 3
Jmin = U,% +PTR71P ( )

where we assumed that R is invertible. Here, assuming asymp-
totic stationarity of y(¢)

€o é d(t) - wzy(t)7

Jmin = limy o0 Ele2(t)] and limy—. Ele,(t)y(t)] = 0.

As an illustrative example, suppose that the constituent filters
are of the same length, such that each w;(¢) € IR’ for an in-
teger s. Assume further that each g;(¢) can be represented by a
common g;(t) 2 g(t), Vi, ui(t) = u(t), Vi, and define o 2
E!gz(t)] = w! E[u(t)u” (t)]w,. For each term in R, we have
R = Timy— oo E[{g(t) = eai())Ho(t) = eas()}] =02 +
Jex,ij (and RO — ch + Jex,;)- For the cross-correlation vector,

we have

since limy oo E[d(t){g(t) — €q,i(t)}] = 02,

R=J+os211"
and
p:agl

where J7) — Jex,ij (and JHD —
inversion lemma in (3), we obtain

Jex,i). Using the matrix

J'1
w, = — e
0 O'g_+(1l.,711) (4)
Tmin = Op + —=bs
o, +@ATTI'1)

where o2 2 miny, E[(d(t) — wTu(t))’], i.e., the linear MMSE
and J is invertible. Clearly, J,;, > 03 and J,i, approaches
o2 for nearly singular J and for small 03 values assuming that
J does not depend on 03. Furthermore, we observe that unless
o, ? is equal to zero, then 17w, # 1, hence the optimal weight
combination is not affine. However, the optimal linear combi-
nation would be nearly affine if crg_2 is negligible compared to
(17J7'1). As an example, for most commonly used adaptive
methods (such as the RLS update [5], the LMS update [2]), since
the excess terms Joy i, Jex,ij, are proportional to ag, we have
02 /o7 term in the denominator of w, (4). Hence, for large SNR,
it can be shown after some algebra that we get 1Tw, ~ 1,i.e.,an
affine mixture, for the combination of these adaptive methods.

B. Affine Combination

When the mixture weights are constrained to be affine, we
find the final MMSE by solving

min {03 —p"R'p+ (w — w,)" R(w — wo)}
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subject to 17w = 1. If we define the Lagrangian
min {03 —p" R 'p+(w—w,)T Rw—w,)+ (17w - 1)} )

then the optimal affine combination weights are given by

w? 2, — LW Rty (5)

For this optimal affine combination in (5), the final MSE is given
by

(17w, — 1)°

e R =T

min
Hence, the difference between final MMSE:s of the optimal un-
constrained linear combination and the affine combination is
given by

T = 1" w,—1)
min — "JTR-17 °*

J(l

min —

Consider the same illustrative example that led to (4) such
thatp = 021 and R = [J + 01 17]. In this case, we have

a _ _J7"1
W, = gry=17»

= ThwolT,” ©)

_ 2 1
min — Tn + 1TJ—11°

Hence, for this case

0.—2

glin - Jmin - g (7)
(a;2 + 1TJ‘11) (1+17J7'1)

which is approximately equal to 1/(1 + 17 J~"1) for small o2.

C. Convex Combination

When the combination is constrained to be convex, we solve
min {0 —p" R7'p+ (w —w,) " R(w —w,)}  (8)

subject to 17w = 1 and w® > 0,7 = 1,...,m, where
w=[wh . w(m)]T, i.e., we have a (convex) quadratic min-
imization problem over the unit (or standard) simplex A =
{w)1™w = 1,w® > 0,5 = 1,...,m}, which is the intersec-
tion of the plane corresponding to affinity constraints and the
nonnegative orthant.

We note that the cost function in (8) can be rewritten as

J° = i+ 10— w, [}

which is in terms of the weighted norm of (w — w,). Therefore,
ignoring the constant term J,,,;, we can rewrite the optimization
problem in (8) as

. 2
min [~ w, ©

subject tow € A (10)
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which is the projection of w, to the unit simplex with respect to
the weighted norm. We can further write

Je :Jmin + ||1.U —’U’Z +wz - wOH%Z
a 2 a2
- Jmin + ||wo - wOHR + ||w - onR
+2(w—w")" R(w® —w,)
(1Tw, — 1)

a\T
g Tt

2
= Jin T [lw —wi|lg — 2

m

Since over the constraint set A, (w —w?)"1 = 0, and ig-
noring the constant term J¢; we can reformulate the optimiza-
tion problem (9) corresponding to the best convex combination
coefficients as

min,  |jw—w?|R

subject to w e A

which is the projection of w to the unit simplex with respect to
the weighted norm. When the weighting matrix R = I, i.e., the
projection is with respect to the standard Euclidean norm, the
corresponding projection can be obtained in a finite number of
steps using the algorithm suggested in [26]. However, for a more
general positive definite R, the formulation of the projection
point and the corresponding J¢; is more involved. However,
we can start with the following basic observation:

o ifw$ € A, ie., w? consists of only nonnegative elements,

then wi = w?;

 otherwise, w¢ is at the boundary of the constraint set A.
Using the results of [27], we can make more explicit statements:

1) m = 2 Case: When there are two adaptive branches to be
combined, the projection task is rather simple:

wl wl >0
we = { 0 17 we® <o (11)
107 we® <o

where w > 0 means all the entries of the vector is nonnega-
tive. As an example, we present the case given in the first line
of (11) in Fig. 2(a), where we plot the combination weights in
IR?. The cases given in the second and third line of (11) are il-
lustrated in Fig. 2(b) with the level set of the cost function as the
ellipse segment corresponding to the minimum achievable cost.
The excess MSE corresponding to the convex combination ap-
proach, relative to the affine combination approach, is given by

0 w?: >0

2
c _Ja' — ‘wg(l)‘ C wg(l) <0

min min

(12)
2
‘wg@)‘ ¢ wf,‘(Q) <0

where ( = Ri1 + Ro2 — 2R12 and R;; is the element of R in
row ¢ and column j.

2) m = 3 Case: When there are three adaptive branches
to be combined, we can define the optimal convex combination
weights in terms of the following six polyhedral regions:

B:{w|e?wgo,hfjwzo 15j;éz'g3} i=1,...3

Pij:{w|hfjw§0,hﬁw§0}7 1<i<2,i<j<3
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Fig. 2. Optimal mixture weights for affine versus convex combination of two
adaptive filters.

where
hiy =[Rss + Ri2 — Ris — Ros
hiy =[Roz + Ri3 — Ros — Ri2
hy, =[Ri1 + Rsz — 2R13  Rsz + Ris — Riz — Roz 0]

[ Rys + R33 — 2R3 0]
[
[

hy; =[0 Rii 4 Roz — Ria — Ri3 Ri1 + Rsz — 2Ry3]
[
[

0 Ros+ Rsz — 2Ro3]

hiy =[Ri1 + Roo — 2R12 0 Rz + Riz — Rio — Ras)
hiy =[0 Ryi+ Rog —2Ria  Ryy + Roz — Rig — Ri3)
and e; is the unit vector for the 7th coordinate axis. Based on

these definitions, the expression for the optimal convex combi-
nation coefficients and corresponding relative MSE levels

(

wy —wVg; wi € P,
es3 wg S P12
wg = (D) wg S P13
€éq 'wfﬁ € P23
L ws otherwise
( 12
’wz(” g’ Rg; w’€P;
a 2 a
R (. ”wo_e?)”%{ wo€P12
min min ||wg _ e2||R wg E P];3
lw? — el wl € Pa
\ 0 otherwise
where
4T
a=|1 Riz+Ro3—R33—Ri2  Ria+Raz—Roo—Ry3
= Roo+R33—2Ro3 Roo+R33—2Ro3 |
q _[Raz+Ri3—R3z— R Roi+Riz—Rii— Rz "
2 | Rii+Ra3—2Rq3 Ri1+R33—2Ry3 |
a :_R23+R12—R22—R13 Ri3+Ri2—Ri1—Ras 1_ T
3 Ri1+Ry—2Ry» Ri1+Ry—2Ry»
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Fig. 3. Optimal mixture weights for affine versus convex combination. Three
adaptive branches are combined in the figure.

As an example, we illustrate the projection problem corre-
sponding to obtaining optimal convex combination coefficients
from affine combination coefficients in Fig. 3, where we plot the
corresponding combination weights and polyhedral regions in
IR3. In this figure, the unit simplex corresponding to the convex
combination weights and the polyhedral partitions that specify
whether the affine combination weights are mapped to the sides
or the corners of the unit simplex are shown on the plane cor-
responding to the affine constrained combination. An example
case, where w? is in P»3 and mapped to e; is shown, where the
level set of the weighted distance cost function is also drawn to
demonstrate the nature of projection.

3) m > 3: The polyhedral partitioning approach introduced
for m = 3 case can be extended for more general m values.
This leads to rather complicated expressions for large values of
m. However, irrespective of the value of m chosen, due to the
inclusion ordering of the corresponding constraint sets, we can
always write

Jmin < I3, < 5

min = “min*

13)

In the following sections, we introduce adaptive methods to
train the combination weights. We first investigate training the
unconstrained linear combination weights using the LMS up-
date and then the RLS update in Section IV. We next continue
using the LMS and the RLS updates to train the affine combi-
nation weights in Section V. When the combination weights are
constrained to be convex, we use the stochastic gradient update
after a variable transformation using the sigmoid nonlinearity
from [2] and [3] in Section VI.

IV. ADAPTIVE METHODS TO UPDATE UNCONSTRAINED
LINEAR MIXTURE WEIGHTS

In this section, we first use the LMS update to adapt the un-
constrained linear combination weights in order to minimize the
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mean of the overall quadratic estimation error e?(t). We then use
the RLS update instead of the LMS update.

A. Adapting Linear Mixture Weights Using the LMS Update

Given that y(t) = [dy(t), ..., dm(t)]T, the LMS update on
the combination weights is derived using the gradient of the
instantaneous squared error e2(t) to update the combination
weights, i.e.,

w(t+1) = w(t) - %Minvw e2(t).

Applying the LMS update to the outputs of the constituent filters
yields

d(t) wT(t)ygt),
o(t) = d(t) — d(t)
w(t+ 1) =w(t) + pine(t)y(t)

where p;, > 0 is the learning rate of the mixture update. For
this LMS update, using the optimal weight vector (3) that min-
imizes the final MSE, we define a priori, a posteriori, and or-
thogonal errors as

(14)
15)

ea(t) 2 [w, —w(t)]" y(t) (16)
ep(t) 2 [w, —w(t + 1)) y(t) (17)
eo(t) =d(t) —wly(t) (18)

where we also have from (17) and (18) e(t) = e,(t) +ea(t). We
next present the relation between a priori and a posteriori errors
using (15), (16) and (17), e,(t) = eq(t) — mime(t)||ly(®)||?, as
well as the energy conservation relation [7]
é@]
2
ly(®)ll

= B [llw, - w(®)] + £

E [||wo —w(t+ 1)||2] +E

ep(t)
ly(t)11”

] (19)

which yields
B [Jw, = w(t + 1)I”] + pin [ly(0)]1* (1)
= B [[lw, — w(t)|*] + 28 [ea()e(t)].

As shown in the Appendix, lim; ., E[lw(t)] = w,, and
if we assume that in the limit lim;_, o E[||lw, — w(t +
D|?] = limj_e E[[jlw, — w(t)||?], ie., the update is
mean-square convergent, then we get the variance relation
[7]: limy— oo pin E[||[y(2)[|?€%(t)] = 2E[eq(t)e(t)], as t — oo.
We note that in the limit assuming asymptotic stationarity,
we only have Fy(t)e,(t)] = 0, however, we next make the
assumption that e, (¢) is independent of y(¢) and w(t) (which
is plausible as the filters are near convergence [7]). After this
assumption and straightforward algebra, the steady-state MSE
of the mixture stage algorithm is given as

Hlin Jmintr(R)

2— ulintr(R) ’ (20)

lim E [e*(t)] = Jmin +

t—o0

Thus, we observe that although the unconstrained linear com-
bination theoretically could achieve the MMSE, i.e., Jyin, We
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have excess MSE due to stochastic gradient update used in the
adaptation.

B. Adapting Linear Mixture Weights Using the RLS Update

In this section, linear combination weights are trained using
the RLS update to minimize the square error of the overall com-
bination. If we write the desired signal as d(t) = wly(t) +
€o(t), where lim;_, ., E[y(t)e,(t)] = 0 by definition, the RLS
update is given by

() =w" (t)y(t)
e(t) =d(t)—d(t)

1 A KT Oyy" (K (t)
K (t4+1) =0 (K () - 11+/\finy T(OK (D900
w(t +1)=w(t)+ K (t+1)e(t)y(t) (21)

where 0 < Ay, < 1 is the forgetting factor, K(t) =
S  A=ly(DyT (1) + Mel is the estimated correlation
matrix, K(0) = el, € is a small positive number and I is an
appropriate sized identity matrix. We next define a priori error
eq(t) and a posteriori error e, (t) for the mixture stage as in (16)
and (17), respectively. Using the energy relation and the vari-
ance relation for the RLS algorithm derived in [7], and making
the assumption that lim;_.. E[K ' (t)] = R™'(1 = Ap,), we
can show that of [7, p. 265]

(1= Alin)m

(1 — /\1in)m (22)

lim £ I:ez(t):l = Jmin + Jmin

t—o0 2 —

V. ADAPTIVE METHODS TO UPDATE AFFINE
MIXTURE WEIGHTS

When the weights are constrained to be affine, we can use
the following parametrization involving m — 1 unconstrained
weights:

wD () =200), i=1,...,m—1
m—1
= 2
1=1
Here, the m — 1 dimensional vector z(t) 2 [z(l)(t)7

.,z(mfl)(t)]T is the unconstrained weight vector. Hence,
we transformed the constrained optimization problem into an
unconstrained quadratic optimization problem. We note that
when we combine just two filters, this update corresponds to
the stochastic gradient update given in (45) of [4]. Observing
that e(t) = d(t) — w” (t)y(t) and if we use z(t) as our weight
vector, we have

e(t) =d(t)— [dl( Yoo Jm,l(t)] 2(t) = (1=172(t)) dim (t)

where 8(t) 2 [di(t) — d(t), ., dm—1(t) — dpn ()]". Hence,
we have an adaptive filter problem with [d(t) — d,,, ()] as the de-
sired signal and 6(t) as the input vector. We next define I'(¢) =
E61)8" ()], T = limy_ o L(¢) and y(t) = E[z(t)(d(t) —
dy (1))], ¥ = limy—_, 00 ¥(£) when the limits exist. For this affine
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combination, the final MMSE is reached when 2z, = F_lfy,
which, along with w(™ (t) = 1 — 3."7" 2()(%), should be
equal to w?, since w? is the optimal affine combination weight
vector. The final MMSE of this filter is given by J; .

In terms of adaptation strategies for the reduced dimensional
unconstrained parametrization, we first look at LMS update ver-
sions in Section IV-A, which is along the same lines as the algo-
rithm for the two branch version in [4]. Next, we train the affine

combination weights using the RLS update as in [V-B.

A. Adapting Affine Mixture Weights Using the LMS Update

Since we transformed affine constrained weights w(t) into
unconstrained weights 2(¢), we apply the LMS update di-
rectly on 2(¢). Similar analysis for the MSE can be done as in
Section IV-A by using (d(t) — d,,,(t)) instead of d(t) and &(t)
instead of y(¢). Hence, we will only provide a brief explanation,
update equations and the final MSE.

The update to minimize the variance of e(t) is given by

z2(t+1)=2(t) — %/Lagvz (1)
=2(t) + parre(t)6(1),

by new definitions of desired signal and input vectors. We next
define a priori, a posteriori and estimation errors as in (16), (17),
and (18), but using z(¢) and z, = I'"'4 instead of y(t) and
w,, respectively. After these new definitions, we derive energy
conservation and variance relations [7] to obtain

p’aff‘]mm (F)
2 — [j,afft (F) '

This expression is the final MSE when the affine combination
coefficients are trained using the LMS update. In order to com-
pare the excess MSE due to training in this case to the excess
MSE expressions for the unconstrained case in (20), we note
that

limE[

t—o0

(23)

]_ min

§(t)=®y(t) where ®2[I,_; —1], (24)
and therefore, I' = ®R®” . If we partition R in the form
R,y Ry
R- [ R RQJ (25)

where R11 S ]Rm_lxm_l, R12 € ]Rm_1><1 and RQQ € R,
then we have I' = Ry; — R1217 — 1R}, + R,117 . Therefore,
tr(T) = tr(R) + (m — 2)Ras — 217 Ry5. As a result, any
inequality relations between the traces of R and I" would depend
on the correlation among the adaptive filtering branches.

B. Adapting Affine Mixture Weights Using the RLS Update

We next apply the RLS update on z(t) using the desired signal
d(t) — d,,(t) and the input vector §(¢). The RLS update for the
affine weights are given as

2(t+1) = 2(t) + At + 1)e(t)d(t),
with e(t) = d(t) — dm(t) — 27 (t)8(t) and

A AT (O80T (A (1)
A6 (AT ()6 (1)

[

ANt +1) = A5

al

AN -

=]
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where 0 < A.g < 1 is the forgetting factor, A(¢t) =
iy /\;flﬁ(l)ﬁT(l) + Agel is the estimated correlation
matrix, A(0) = €I, € is a small positive number. Following the
same lines as in Section IV-B, we derive the final MSE of this
algorithm as

lim F [62(t)] =Je. (I(I :\a;fjf(f;ré; i)l)

min
t—o0

+ I

min 2

(26)

VI. AN ADAPTIVE METHOD TO UPDATE CONVEX
MIXTURE WEIGHTS

In this section, we study the convex combination approach
using the stochastic gradient update illustrated in [3], which can
be considered as a multiple filter extension of [2].

A. Adapting Convex Mixture Weights Using a Stochastic
Gradient Update

In this section, we consider the algorithm in [3] which is a
multiple order extension of the algorithm in [2]. The results
derived here for the algorithm of [3] can be readily extended
to [2] or other variable transformations as used in [3]. In [2],
[3], the optimization problem with convex combination con-
straints (i.e., the unit simplex constraint set) is transformed into
an unconstrained optimization problem by a change of vari-
ables. Then, a stochastic gradient update is applied to this new
set of unconstrained variables to minimize the final estimation
error. Here, the convex combination weights w(*) (t), 17w (t) =
1, are reparametrized using

= Twm @7
Z RIO)
k=1

such that z()(¢) are the unconstrained variables. We denote
these unconstrained weights by z(t) 2 [zD(t),..., 20 (t)]T.
The unconstrained weights 2(t) are trained using a stochastic

gradient update to minimize the instantaneous squared error
e2(t) such that

1
— Zpewx Vs €2 (t)

2(t+1) = 2(t) - ;

where pevx > 0. However, unlike [8] we use a single ficyx in-
stead of using different y.vx s for each dimensions =1,...,m
to be consistent with the other adaptive updates considered in
this paper. Hence, the final update is given by

2(t+ 1) =2(1) ~ ptevs {V-w(1)} [e(t) Vo e(?)]

=2(t)+ frevx {w(t)w(t)" —diag (w(t)) } [e(t)y(1)]
where V. w(t) = {w(t)w(t)T — diag(w(t))} and Vye(t) =
—y(t). For convergence analysis, we uphold the assumption in-
troduced in [3] such that the variance of z(t) is zero at the con-
vergence such that F[z(t)] =~ 2z(t), then as t — oo

2(t+1)=2(t)+pevx {w(f) )T diag (w } Ele(t)y(1)].
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Since at convergence lim;_,o 2(t + 1) = lim;— 2(t), the
minimizing 2(¢) should satisfy
{ww®)" - diag( ()} E [e(t)y(t)]
= {w(t)w(t)" - diag (w(t))} [p - Rw( )]
= {w( — diag (w(t))} R[w, — w(t)]
=0.

f'w

The converged 2(t) satisfies,

{wHw(®)” w(t)] =0,

with the added constraints on w(#) such that w(#)T1 = 1 and

— diag (w } Rw (28)

It can be shown that w¢ given in (5) satisfies (28) if all entries
of w’ are nonnegative, i.e., wi = w;. Clearly, since the original
minimization problem is convex and the sigmoid transformation
in (27) is uniformly decaying (or increasing), the minimal point
w° of the original cost function in (8) is also the minimal point
for the transformed cost function. Although the minimal point
is unique for the original cost function, since the sigmoid (27)
is many-to-one mapping, there are infinite number of points in
z(t) domain that correspond to w® and achieves J5; , e.g., for
any 7, z + 71 map to the same vector where z maps. We also
note that, w(t) = [0,...,1,...,0]%,i.e., any vector w(t) where
all the entries except a single entry is equal to one, also satisfies
(28) such that {w(t)w(t)” — diag(w(t))} = 0. These points
are the saddle points of the sigmoid cost [28].

VII. TRACKING ANALYSIS FOR ADAPTIVE
COMBINATION METHODS

In this section, we investigate the tracking performance of the
combination methods introduced in this paper in a nonstationary
environment. After a general comment, we study a particular
model for the statistics of the desired data, commonly used to
model nonstationarity in tracking analysis [7]. We note that the
derivations in the previous sections solely relied on the auto- and
cross-correlations between a priori errors of the constituent fil-
ters. Hence, for nonstationary environments, in the cases where
lim;_,oo R™"(£)p(t) exists, the previous analysis will still hold,
since the definitions of a priori errors have not changed. Based
on the new values of the optimal weight vectors and converged
statistics, one only needs to change the previous results for the
final MSEs accordingly given in (20), (22), (23), and (26).

As a widely studied illustrative example [2], [5], [7], we con-
sider the case where the constituent filters have the same length,
ie., d;(t) = wl (t)u(t), w;(t),u(t) € R®. Furthermore, in the
generation of the desired signal d(¢), we assume a random walk
model [7] for w,(t) such that

w,o(t+1)

— w,y(0) = aw,(t) — w,(0)] + q(t).

Here, d(t) = wT (t)u(t)+n(t), where g(t) € R*isani.i.d. Zero
mean vector process with covariance matrix E[g(t)q” (t)] =

w,(0) is the initial weight vector (as well as the mean of thls
vector process), u(t) € IR® is a stationary input vector process

and n(t) is an i.i.d. zero mean noise process with variance o2
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and ¢(t), u(t) and n(t) are mutually independent. Usually, 0 <
|| < 1.1In this case, a priori, a posteriori and estimation errors
for the constituent filters are given as

cai(t) = fwo(t) —wi(t)] " u(t)
ep.i(t) = [wo(t) —wi(t + 1)) u(t)
ei(t) = eqi(t) + n(t).

Under this data model, it can be shown that limits for the au-
tocorrelation matrix of a priori errors, J, exists for most com-
monly used adaptive methods, including the LMS update [2],
[7], the RLS update and several unsupervised updates [5] (when
|| = 1, and can be readily extended to the case when |o| < 1
using results from [7]). By these definitions, as the input to the
combination stage, we have

wy (Hu(t) — eq(t)

e e

y(t) = :
wy (t)u(t) — €qm(t)
The variance of clean part of the desired signal, g(t) 2
w? (t)u(t), is given as
2(t) = tr {E [w,(Hyw} ()] E [u(t)u’ (¢)]}

where
B [w, () (1)] = 0 [, (¢ — 1w (¢~ 1)]

+(1 = o®)w, (0)w, (0) + Q,

i.e., the variance 03 (t) is time-varying, unlike previous sections.
When |a| < 1,

Q + (1 - a)w, (0)w? (0)

lim £ [wo( )'wT(t)] = 1— a2

t—o0
However, when |a| = 1, E[w,(t)w? (t)] diverges. Hence, the
variance of ¢(t) is increasing, yielding the covariance matrix of
y(¢) to be unbounded when |«| = 1. Hence, we need to consider
the two cases, o] = 1 and |a| < 1, separately for tracking
analysis.

When |«| = 1, the cross-correlation matrix for the a priori er-
rors, J, can be shown to be convergent [5]. For affine or convex
combinations, since 17w(t) = 1, i.e., the estimation is unbi-
ased, we have

e(t) =d(t) — w" (t)y(t)

— (w()19(6) = w" (1) [ean (). ..
=9(t) +n(t) = (9(t) = [ean(t),- -+,

n(t) +[ean(t), - -, eam ()] w(t).
Thus, as demonstrated in [2], [5], the effect of the unbounded-
ness of g(t) need not affect the convergence or final MSE anal-
ysis. For unconstrained linear combinations, although w,(¢) can
be shown to be convergent, we note that from (4)

1777 "1

o3 (t) + (17T 1)’

eam®])
Cam(B)] ()

1Tw,(t) =
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yielding as t — oo, 17w, (t) ~ 1 since o (t) diverges. Hence,
the optimal unconstrained linear combination coincides with
optimal affine combination.

For values |«| < 1, the variance of g(¢) is convergent and one
can derive the corresponding J and G values as in [7]. After this
point the derivations exactly follow along lines similar to those
given in previous sections with the updated cross-correlation
matrix and vectors.

VIII. SIMULATIONS

In this section, we demonstrate the performance of mixture
algorithms through simulations using both stationary and non-
stationary data. We observe that the combination structures pro-
vide improved performance over the constituent filters, espe-
cially under low SNR conditions both in stationary and non-
stationary environments in these simulations. We also observed
close agreement between the simulations and the theoretical re-
sults introduced in this paper under different scenarios and al-
gorithmic parameters.

The first set of experiments involve system identification
with different order linear filters as the constituent algorithms.
To observe the accurateness of the results introduced in (3),
(5), (20), (22), (23), and (26) under different algorithmic
parameters and SNRs, the desired signal as well as the system
parameters are selected as follows. First a third-order linear
filter, w, [0.32,—0.48,—0.23]T, is chosen, where each
entry is selected randomly from [—1, 1]. The underlying signal
is generated using the data model d(t) = Twlu(t) + n(t),
where u(t) is an i.i.d. Gaussian vector process with zero mean
and unit variance entries, i.e., E[u(t)u” (t)] = I, n(t) is an
ii.d. Gaussian noise process with zero mean and variance

E[n?(t)] = 0.01, and 7 is a positive scalar to control SNR.

Hence, the SNR of the desired signal is given by SNR =

10log(E[r?(wTu(t))?]/0.01) =10log(72|lw,||?/0.01). By
changing 7, we simulate the performance of the combination
algorithms under different SNRs. We select the constituent al-
gorithms as linear filters from first-order through fifth-order, all
using the LMS update to train their weight vectors w; (t) € R",
i = 1,...,5. Here, each filter produces d;(t) = w] (t)u;(t),
where u;(t) € IR". The input vector processes that are fed to the
constituent filters and to the desired system model are generated
as follows. First, a fifth order i.i.d. Gaussian vector process
with zero mean and unit variance, such that us(t) € R?, is
generated. The 7th constituent filter uses the first ¢ entries of this
vector process as its input, i.e., u;(t) = [u(M) (1), ... ,u(i)(t)]T,
where u5(t) = [uM(t),. .. 7u(5)(t)]T. Hence, for the desired
signal, d(t), generation, we use u(t) = wus3(t). The learning
rate of the LMS update for each constituent filter is set to
w; =0.1,2=1,...,5. InFig. 4, we plot the final excess MSEs
corresponding to the mixture methods investigated in this paper,
ie., limy_ o E[e?(t)] — E[n%(t)], with respect to the learning
parameters and forgetting factors of the mixture algorithms. The
simulations are done over 2 x 10° samples, averaged over 100
independent trials. The final MSEs are calculated by averaging
the last 7000 samples of each iteration. Fig. 4(a), (b), and (c)
shows the excess MSE versus the algorithmic parameters of
the corresponding mixture algorithms. The z axis displays
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LMS filters from 1st to 5th order, SNR = -15dB
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Fig. 4. System identification with constituent filters from first-order to fifth-order linear filters with a third-order desired signal. Here, the = axis represents learning
rates p for the LMS based mixture methods. The forgetting factors of the RLS based algorithms are defined as one minus the learning rate of the LMS based mixture
algorithms. The y axis is the excess MSE in dB. (a) SNR = —15dB. (b) SNR = —5dB. (c) SNR = 5 dB. (d) The estimated final weights lim, _, o, E[w(%)]
for the unconstrained linear filter trained using the RLS update and the theoretical w,, estimated using the cross-correlation matrix R from the observed data with

respect to SNR.

the corresponding learning rates for s, € [1072,1071]
(“-lms”) and p.g € [1073,107Y] (“a-lms”). We point out
that since the combination algorithms work on possibly highly
nonstatitonary outputs generated by the first stage adaptive
filters, the final combination may have convergence issues
for relatively larger learning rates used in the mixture stage.
For display purposes, the x axis also represents the forgetting
factors for the RLS based mixture methods, where corre-
sponding forgetting factors are defined as A 21— u for each
learning rate i, i.e., Ain € [1 — 10711 — 1073] (“1-1ls™)
and \.g € [1 — 10711 — 1073] (“a-rls”). To guarantee
the convergence of the convex constrained algorithm studied
in Section VI for these simulations, we have selected the
learning parameters for the stochastic gradient method of [3]
as feyx € [50 x 1073,50 x 1071] (“cvx™), i.e., the learning

parameters are selected 50 times larger than the unconstrained
or affine constrained algorithms. Note that for presentation pur-
poses, we plot the steady-state MSE of the convex constrained
method with the same z axis range; however, the learning
parameters are 50 times the value given in the x-axis. In the
same plot, we also show the steady-state MSE for the algorithm
from [15] (“ref”), where the “analysis interval” is selected as
40. For the RLS based algorithms, we set K(0) = 10721,
however, note that the value of K(0) does not affect the final
results (guaranteed that the mixture stage converges) since
we plot the steady-state MSEs after convergence. We repeat
the same experiment under three different SNRs including,
SNR = —15 dB, —5 dB, and 5 dB. To get the corresponding
theoretical results in (20), (22), (23), and (26), we calculate the
corresponding R and p from these simulations. In these plots,
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we observe a close agreement between the introduced results
and the simulations. Note that the results are more accurate for
smaller values of learning rates (or larger values of forgetting
factors), since it is well known that the theoretical derivations
involving the LMS (or the RLS) update based algorithms are
more accurate for small x4 (or large \) with the assumptions
used for the derivations [7]. To get more accurate results for
larger values of p (or smaller values of )), one can change
the corresponding derivations accordingly [7]. In Fig. 4, we
also plot the final excess MSE of the best constituent filter
with the smallest excess final MSE (“min”’). We observe that
the unconstrained linear combination methods outperform
the other mixture methods for low SNR values. We observe
that the “cvx” algorithm outperforms “ref” algorithm, since
it can exploit diversity as explained in Section VI-A. Since
the Bayesian inspired method of [15] do not explicitly seek
to minimize the final MSE (unlike the unconstrained, affine
constrained methods or convex constrained method of [2]), this
algorithm provides inferior steady-state performance compared
to the other methods for these simulations.

In Fig. 4(d), we plot the estimated final weights
lim; o E[w(t)] for the unconstrained linear filter trained
using the RLS update (averaged over last 5000 samples) as
well as the theoretical w, estimated using the cross-correlation
matrix R and p from the observed data with respect to
SNR. In this figure, we plot the sum of the weights, i.e.,
S limy oo E[w®(£)], as well as the combination weights for
all constituent filters. We observe that for low SNR values, sum
of the weights differ greatly from 1, i.e., the affine mixture.
This is also the main reason that we observe high performance
gains in Fig. 4 for low SNR values with respect to affine and
convex combination methods, since the unconstrained methods
can scale the corresponding coefficients towards zero for low
SNR values. We also observe a close agreement between the
theoretical results and the simulations.

To test the accurateness of the separation assumptions
used heavily in the derivations for unconstrained and affine
constrained methods, we also plot in Fig. 5, the normal-
ized _difference || E[l[y(t)|%e2 ()] — Elly()I2El2 )]/
VE[ly@®)|?1E[e2(t)] in the steady state for unconstrained
and affinely constrained methods with the same algorithmic
parameters as in Fig. 4 under SNR = —15, —5, and 5 dB. We
observe that in the convergence, the separation assumption is
fairly accurate for these algorithms.

In the next set of experiments, we consider the system
identification task under the nonstationary model discussed
in Section VII. Here, the desired signal is generated as
d(t) = 7wl (t)u(t) + n(t), where w,(t + 1) — w,(0) =
Blw,(t — 1) — w,(0)] + ¢q(t), the initial value is selected as
w,(0) = [-0.12,0.63]T, E[q(t)q” (t)] = cI and n(t) is an
i.i.d. Gaussian process with zero mean and 02 = 0.01. The
input regressor u(t) is an i.i.d. Gaussian vector process with
zero mean and unit variance entries. As the constituent filters,
we combine outputs of two adaptive filters of length 2, the first
one using the LMS update with learning rate ppns = 0.03
and the second one using the least-mean fourth (LMF) update
with learning rate purvr = 0.5. For the correlation matrix
of g(t) and 3, we selected ¢ = 0.1 and § = 0.93. We also
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Fig. 5. Normalized difference || E[||y(t)||?e2 ()] — E[||lw(HII?1E[2 (H)]]?/
VE[|ly(t)]|?1E[€2(1)] in steady state for unconstrained and affine constrained

methods with the same algorithmic parameters as in Fig. 2 under SNR = —15,
—5,and 5 dB.

set 7 to yield SNR = —15dB. All parameter values have
been selected in order to have the final mixture to converge to
lim; o Elw(t)] = [0.24;0.25]7, i.e., both filters have nearly
equal contribution in the final mixture and the sum of the
weights, 0.49, is away from the affine or convex mixture. We
then simulate all the mixture algorithms, using the same setup
as in the first set of experiments, under different learning rates
and forgetting factors. The results are displayed in Fig. 6(a).
The simulations are done with 4 x 10* samples over 70 in-
dependent trials. The final MSEs are averaged over the last
7000 samples. We observe from these plots that even under a
nonstationary data model in a tracking context, the results intro-
duced in (20), (22), (23), and (26) accurately describe the final
MSE:s, especially for small learning rates (or large forgetting
factors). We next repeat the same experiment for 5 = 0.995
and display the results in Fig. 6(b). With this value of 3, we
have lim;_, o, E[w(t)] = [0.32;0.19]7. For this configuration,
we again observe close agreement among the simulations and
the introduced results.

IX. CONCLUSION

In this paper, we investigated adaptive linear mixture ap-
proaches in terms of their final MSE in the steady state for
stationary and nonstationary environments. Our analysis is
generic such that the mixtures can be constructed based
on several different adaptive filters each having a different
adaptation method, structure or length. We demonstrated the
performance gains when we use unconstrained linear, affine and
convex combination weights, and provided adaptive methods
to achieve these results. We show that by using these mixture
approaches, we can greatly improve upon the performance
of the constituent filters by exploiting the cross-correlation
information between the constituent filter outputs and biasing
the combination weights toward zero for low SNR.
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APPENDIX

Since for the unconstrained linear combination, w(t + 1) =

w(t) + pine(t)y(t), we get
w(t +1) =w(t) + pmine(t)y(t)
= (I = piny(D)y" (1)) + priny()d(t).

Defining, w,(t)
sides and assuming independence of w(t) and y(t), yields

w(t+1) = w,(t + 1) = (I - (1)) (w(t) — w, (1))
T (w(t) — w(t +1)).

Hence, lim;_,o Flw(t)] = w,, provided that pyy,

R™'(t)p(t), taking the expectation of both

(29)

<

2/ Amax(R(t)), where Apax(R(t)) is the maximum eigen-

value of R(t).
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