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Abstract—We investigate robust turbo equalization over fre-
quency selective channels in the presence of channel uncertainties.
The turbo equalization framework investigated here contains
a linear equalizer to combat ISI and a trellis based decoder.
However, instead of completely tuning the linear equalizer param-
eters to the available inaccurate channel information, a minimax
scheme and a competitive scheme are studied, which incorporate
the uncertainty in channel information to equalizer design in
order to improve robustness. Approximate implementations of
these methods are also presented with reduced computational
complexity. The performance improvement obtained by the pro-
posed algorithms are demonstrated through simulations under
different scenarios.

Index Terms—Channel uncertainties, competitive, linear turbo
equalization, minimax.

I. INTRODUCTION

W E consider robust turbo equalization over communi-
cation channels with intersymbol interference (ISI) in

the presence of channel uncertainties. Turbo equalization takes
advantage of the concatenated code structure of the data path
that consists of an error-correcting code (ECC) implemented at
the transmitter and the convolutional structure of the commu-
nication channel perceived as a rate-1 convolutional code [1].
Turbo equalization mimics the classical turbo decoding proce-
dure for the turbo codes, however, one of the intentional ECCs
of the classical turbo coding framework is replaced by the “un-
intentional” convolutional channel [2]. Since the parameters of
this unintentional code are medium dependent, and therefore
random, they are to be estimated by the receiver. Consequently
these “code parameters” are prone to estimation errors. The in-
accuracies in the channel parameters may be either due to im-
perfect channel estimation caused by limited training data, high
energy noise, or due to time variations of the channel parameters
outside the training period which may be attributed to time vari-
ations in the channel (i.e., the violation of the quasi stationary
assumption) or timing recovery problems [3]. Our goal in this
article is to introduce novel turbo equalization approaches to
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achieve robustness against such potential uncertainties in the es-
timated channel parameters. In particular, we show that through
use of equalization algorithms based on competitive [4] and
minimax frameworks [5], [6], we can obtain turbo equaliza-
tion methods whose performance are less sensitive against the
channel estimation errors and better in terms of bit-error-rate
(BER) over the plug-inmethods in certain scenarios.We empha-
size that the robust estimation setup here is specific to the turbo
equalization framework, since unlike [5]–[7], due to the soft in-
formation generated from the soft input soft output (SISO) de-
coder, we require to estimate non zero mean random variables
by observing non zero mean random variables through an un-
known channel. Hence, this setup requires a particular equalizer
formulation which is further explained in Section II. Moreover,
due to the convolutive channel, robust formulations require con-
strained “affine”mapping yielding different formulation and op-
timization compared to [5]–[7].
In this paper, we study linear turbo equalization centered

around the mean square error (MSE) minimization framework,
however, we refrain from completely tuning the linear equalizer
parameters to the available inaccurate channel information.
The methods we introduce are based on minimizing certain
MSE criterion which incorporate the channel inaccuracies in
the problem formulation. In the first approach, we apply a
minimax framework where the linear equalizer coefficients
are selected by minimizing the MSE with respect to the worst
possible channel around the inaccurate channel coefficients [6],
[8], [9]. We then extend this framework and define a relative
performance measure between the MSE of a linear equalizer
and the MMSE of the linear MMSE equalizer calculated with
the correct knowledge of the underlying channel [4], [5], [7].
This relative performance measure describes our “regret”
using a linear equalizer that is not the correct linear MMSE
equalizer (which is not available). We then seek for a linear
equalizer that minimizes this regret with respect to the worst
possible channel around the inaccurate channel coefficients.
We demonstrate that obtaining the linear equalizers for both
approaches can be formulated as a semi-definite programming
problem (SDP), which can be efficiently solved [10] even for
real-time applications [11]. For certain applications, as in the
linear MMSE equalization setup, applying these approaches
at each time instant may be computationally prohibitive [2].
Hence, we also provide approximate implementations of both
methods with lower computational complexity.
The framework we investigate in this paper, where the MAP

equalizer is replaced by a linear equalizer is initially studied in
[12], where an LMS adaptive algorithm is used to train the linear
equalizer parameters. Different extensions of this idea are fur-
ther elaborated in [2], [13]. We emphasize that the introduced
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methods can be used in conjunction with such adaptive algo-
rithms since usually the channel or system parameters cannot be
learned perfectly by the adaptive algorithms and the uncertainty
in learning can be incorporated in the equalizer design as in this
paper. Along the lines of [13], in [2], authors replaced the MAP
equalizer with a linear equalizer or a DFE, where the parameters
of these filters are trained using the MMSE criteria. However, in
[2], the parameters of the system are trained assuming perfect
knowledge of the channel impulse response, hence the results
cannot be applied here. However, we compare our results with
the linear MMSE equalizer tuned to the inaccurate channel in-
formation and demonstrate that the introduced algorithms pro-
vide better BERs in certain scenarios in our simulations.
The robust minimax approach to equalization problems under

channel uncertainties is studied in [5], [8], and [9]. In [9], the
uncertainty in the channel information is represented in spec-
tral domain as bounds on the phase and amplitude function of
the unknown channel. However, unlike here where we explic-
itly provide the linear equalizer coefficients that are robust in a
minimax sense, no expressions for a linear equalizer satisfying
the functional forms of the phase and amplitude response are
given in [9]. Although in [5] and [8] the minimax and com-
petitive methods are used to incorporate the uncertainty in the
model into the equalization problem, the framework, the appli-
cation as well as the cost function definitions are different in this
paper. Due to the turbo equalization framework, the problem we
study here involves estimating a nonzero mean random variable
using non-zero mean random observations under channel un-
certainties, unlike in [5], [14], [15]. In [5], the data is assumed
to be zero mean. However, in this paper, the received random
variables cannot be normalized to have zero mean since the un-
known transmitted sequence is observed through an unknown
channel. Furthermore, in [5], the competitive minimax regret es-
timation framework has uncertainty only in the covariance ma-
trix of the transmitted data and the channel is assumed to be
perfectly known. For the minimax estimation framework (not
for the regret case) in [5], the model has uncertainty either in
the channel and/or in the covariance matrix of the transmitted
signal. However, even in this preliminary case, the equalizer is
optimized without any constraints, i.e., the channel matrix or
the matrix generated by the linear equalizer are not required to
have convolutive forms and the equalizer structure is different
due to the bias terms. However, we use a similar SDP approach
with [5], [7] to solve the convex constraint convex optimization
problems. Although the well-known equalization approach
shares a similar minimax optimization setup as here, there are
important differences. In the framework, the cost criteria is
the maximum energy gain from input signals to the output esti-
mation errors, where the ratio of the error signal energy to the
energy of the disturbances for all possible signals (with nonzero
energy) is minimized [16]–[19]. The uncertainty in the ap-
proach is specifically in the signals, where all signals and distur-
bances are considered as deterministic. However, in this paper,
we specifically consider the case that the uncertainty is in the
linear mapping, i.e., in the channel, the signals are taken as sto-
chastic signals and naturally the cost function is different. The
robust turbo equalization based on the minimax formulation is
recently investigated in [20]. Note that our setup is different
than [20] due to the specific structure of the channel matrix

and norm based uncertainty ball, hence, requires different SDP
formulations.
The competitive approach as an alternative to the minimax

framework studied here has extensive roots in computational
learning theory, information theory and signal processing [4],
[21], [22]. The competitive approach studied here with a sim-
ilar cost function is introduced in [5] and studied in [7] for linear
estimation. However, the competitive framework of [5] concen-
trates on data estimation where the uncertainty is in the statis-
tics of the desired and noise signals. In this paper, because of
the nature of the communication problem, the uncertainty is in
the communication channel; the statistics of the desired signal
and the noise are assumed to be known.
The main contributions of this paper are as follows:
1) We focus on robust channel estimation where the inaccura-
cies in channel estimation are incorporated in the problem
formulation through a minimax framework. Specific to the
turbo equalization framework, this setup, unlike [5], [6],
needs an adaptive bias term and, unlike [5], needs convo-
lutive structure, where obtaining equalization parameters
are formulated as an SDP problem.

2) We then study a competitive approach where the cost func-
tion is defined with respect to the performance of the best
linear equalizer in MSE sense (which is unavailable). As in
the minimax case, unlike [7] and [5], this competitive setup
has a bias term and a convolutive structure that needs dif-
ferent formulation specific to the turbo equalization frame-
work. Obtaining equalization parameters that optimizes
this competitive setup is formulated as an SDP problem.

The organization of this article is as follows. In Section II, the
basic setup for turbo equalization is described, along with the
notation. We illustrate the proposed equalization approaches in
Section III. We first study the linear MMSE equalization tuned
to the inaccurate channel filter in order to introduce reduced
complexity versions of the proposed algorithms. We then in-
vestigate the minimax approach and then the competitive ap-
proach, and demonstrate that both problems can be cast as SDP
problems. Simulation results to illustrate the performance of the
proposed algorithms are presented in Section IV. Finally, we
conclude our paper with certain remarks in Section V.

II. TURBO EQUALIZATION SYSTEM DESCRIPTION

Throughout this paper, bold lowercase letters will denote vec-
tors and bold uppercase letters will denote matrices. All vec-
tors are column vectors and -norm of a vector is defined
as , where , and represent trans-
pose, conjugate transpose and conjugation, respectively. The
time index is shown in the subscripts. The operator E[.] denotes
the expectation operator. For notational simplicity, the expected
value of a random variable is denoted as , and the ex-
pected value of a random vector is . The matrix de-
notes the identity matrix of appropriate dimensions. The vector
(or matrix) represents a vector (or matrix) of zeros, where the
dimensions are understood from the context. Here,
denotes the Gaussian distribution with mean and variance .
The operator “ ” is the convolution operator.
In this section, we provide the basic description of the com-

munication system studied in this paper, illustrated in Fig. 1.
Here, , , , is the transmitted



KALANTAROVA et al.: ROBUST TURBO EQUALIZATION 263

Fig. 1. A basic turbo equalization framework with the transmitter, the channel
and the receiver. The receiver contains both the equalizer and the decoder parts.

signal. To incorporate redundancy in transmission, the input
signal is encoded by a convolutional code to produce ,

. To further decrease the possible transmission
errors, the encoded bits are interleaved using an S-random
interleaver [23] to produce the interleaved and coded bits

. Finally, the interleaved bits are modulated to produce
channel symbols , e.g., if one uses BPSK signaling then

. For notational simplicity, we assume BPSK
signaling in the rest of the paper when we need to specify a
particular modulation method. However, the formulations for
the introduced equalization algorithms are given for complex
modulated data. The modulated sequence, , is transmitted
through a baseband discrete-time channel with a finite-length
impulse response , , represented by

. Here, the transmitted signal is
assumed to be uncorrelated due to the interleaver. The received
signal is given by

where is the additive complex white Gaussian noise with
zero mean and circular symmetric variance .
Note that the underlying channel impulse response vector is

not accurately known, however, an estimate of is provided
as (which can be possibly time varying for certain adaptive
methods [24]). The uncertainty in the channel impulse response
vector is modeled by , , , where or
a bound on is known. We emphasize that although the results
we provide hold for time varying and , we have dropped the
time index from and only for notational simplicity.
The received signal is then processed by a turbo equal-

ization system comprised of an equalizer and a decoder as
shown in Fig. 1. In this framework, the equalizer and decoder
are considered as the inner decoder and outer decoder, respec-
tively, and an iterative decoding scheme is used at the receiver
of Fig. 1. The equalizer computes the a posteriori information
using the received signal, transmitted signal estimate, channel
convolution matrix (or an estimate of it) and a priori probability
of the transmitted signals. After subtracting the a priori infor-
mation and de-interleaving the extrinsic information

, a SISO channel decoder computes the extrinsic infor-
mation on coded bits, which are fed back to the linear
equalizer as a priori information after interleaving. The
a priori information from the decoder can be used to compute
the mean and variance of the as and

, respectively, where
represents the expectation of with respect to the distribution
defined by . As an example, for BPSK signaling, the mean and

variance are given as and .

Hence, the equalizer in turbo equalization system has access to
second order statistics of in addition to .
In this paper, a linear equalizer is used to combat the ISI. The

estimate of the desired data is constructed as

(1)

where is length

linear equalizer and .We point that in
(1), the equalizer is “affine”, i.e., there is a bias term since the
received signal is not zero mean and the mean sequence
is not known exactly due to uncertainty in the channel. Since
the received data vector is given by

where and

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

is the convolution matrix corresponding to
, the estimate of can be written

as
(2)

or

where is the convolution matrix corre-
sponding to and .
As the linear equalizer, if one uses the linear MMSE equal-

izer, this yields

(3)

(4)

where ,
is a diagonal matrix (due to uncorre-

lateness assumption on ) with diagonal entries
and is

a vector of all zeros except the th entry is equal to 1.
Then, the corresponding linear MMSE is given by

(5)

However to remove dependency of to due to using
and in (3) and (2), we set to 0 while computing
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, yielding and [2]. This changes the covariance
matrix to and the mean of to ,
resulting in (2) and (3)

(6)

(7)

Since, the underlying channel vector is not accurately
known at the receiver, but an estimate , , ,

is provided, one cannot directly calculate (6) or (7). In
the next section, we investigate three methods: a method using
the inaccurate to calculate the linear MMSE equalizer in (7);
a minimax equalizer and a competitive equalizer that incorpo-
rate the uncertainty in the problem formulation to mitigate the
effect of uncertainty on the equalization performance.

III. EQUALIZATION METHODS

A. Linear MMSE Equalization

When the underlying communication channel is not accu-
rately known but estimated by , one may use a linear MMSE
equalizer that is matched to the estimated channel vector as

(8)

where is the convolution matrix generated using . Calcu-
lating using (8) at each time may be computationally infea-
sible for certain applications since (8) requires
operations (as shown in Fig. 2). Assuming that the channel esti-
mate is time invariant, i.e., , then one can reduce the com-
putational complexity by approximating the covariance matrix
. As an example, one can compute (8) using , i.e., as-

suming unit variance and zero mean for each , corresponding
to a covariance matrix constructed without a priori information
on [2]. Then, (8) can be solved once and the resulting time
invariant linear equalizer can be used over the whole block of
received data in (3) and (4) [2], [25]. A better approximation can
be achieved by computing (8) using , i.e.,
using time averaged variances, yielding

, where is the size of the data block [25]. By this
approximation (8) yields [25]

(9)

where , (9) follows from matrix inversion

lemma and is the convolution matrix generated from the time

invariant channel estimate . Note that to get a time invariant
version of (9), one can use a time invariant assuming no
a priori knowledge on or , i.e., without
term. The linear equalizer with time invariant approximation is
given by

(10)

The required number of computations at each time , per re-
ceived symbol , for and is given in Table I.

B. Linear Equalization With a Minimax Formulation

When the underlying channel is unknown but estimated by
, the uncertainty in the channel estimate can be incorporated
in the equalizer design using a minimax framework in order to
improve robustness over (8). In this minimax framework, one
optimizes the MSE performance with respect to the worst pos-
sible communication channel around the channel estimate and
seeks for equalizer coefficients that minimize the worst case
MSE, i.e.

(11)

Note that we have

(12)

where is the convolution matrix constructed using , the
second line follows since is i.i.d. and has zero
mean. To find the minimax equalizer coefficients
satisfying (11), we formulate the corresponding problem in
(11) as an SDP problem. We emphasize that SDP problems
are convex constrained convex optimization problems, where
efficient methods exist for their solutions [10]. The following
theorem, whose proof is given in Section III-D, provides the
corresponding robust linear equalizer while solving the corre-
sponding SDP problem.
Theorem 1: Let , and represent the trans-

mitted, received and noise sequences in Fig. 1 such that
, where is the unknown channel

impulse response vector and is zero mean. At each time ,
given an estimate of the underlying communication channel
response vector satisfying , , then

(13)
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Fig. 2. Equalization results for the channel in (36) for 100 randomly introduced distortions with . Here, . Included algorithms are
from (8) labeled “mmse,” from (11) labeled “minimax” and from (21) labeled “regret.” (a) Sorted MSEs for the 1st iteration. (b) Sorted BERs for the
1st iteration. (c) Sorted BERs for the 2nd iteration. (d) Sorted BERs for the 3rd iteration.

TABLE I
NUMBER OF REQUIRED COMPUTATIONS TO IMPLEMENT THE CORRESPONDING ALGORITHMS AT EACH TIME PER RECEIVED SYMBOL

FOR LARGE PACKET SIZE. HERE, IS THE EQUALIZER LENGTH, IS THE CHANNEL LENGTH

where and are the coefficients of the
linear equalizer, is the convolution matrix generated from ,

and are the covariance
matrices of the transmitted and noise sequences, respectively, is
equivalent to the SDP problem

(14)

such that [see (15) at the bottom of the next page]. The
minimizer in (14) yields the robust linear equalizer

in (11).
The proof of the theorem is provided in Section III-D. We

note that in Theorem 1, for notational simplicity, we have
dropped the time indices from and . The same formulation
equally applies to time varying .
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To get the corresponding log-likelihood ratios,

, to fed into the decoder, we assume that
is a Gaussian distribution with

[2]. With the formulation
, one calculates and
as

(16)

(17)

Since is unknown, we use in (16) and (17) to calculate
.

As in (8) of Section III-A, the SDP problem in (14) should
be solved at each time to compute since and (pos-
sibly) are time dependent. Although there exist efficient
methods to solve the corresponding SDP problem presented in
Theorem 1, using these methods for each time instant may
be infeasible in certain applications since these calculations
have computational complexity. To reduce
computational complexity, assuming a time invariant channel
estimate , one can use a time invariant covariance matrix

corresponding to a covariance matrix constructed
without a priori information on or corresponding
to time averaged variances. We note that unlike in Section III-A,
we can not directly use , since this
formulation is time dependent. Then, the corresponding SDP
problem can be solved once to yield a time invariant equalizer,
which can be used over the whole block, i.e.

(18)

such that (see the equation at the bottom of the page).

The required number of computations at each time , per re-
ceived symbol , for and is given in Fig. 2.

C. Linear Equalization With Competitive Algorithm
Formulation

We note that the minimax framework investigated in
Section III-B to construct robust linear equalizers may produce
overly conservative solutions in certain applications, since
the linear equalizers are optimized to minimize the MSE
corresponding to the worst possible channel. To improve the
equalization performance, while trying to preserve robustness,
a competitive approach may be used [4], [5], [7], [21]. In this
competitive framework, instead of the usual MSE performance,
the performance of a linear equalizer is defined with respect to
the MMSE linear equalizer tuned to the underlying unknown
channel, i.e., we compete against the linear equalizer that is
constructed using the complete knowledge of the (unknown)
underlying channel. For any affine equalizer coefficients ,
we define our regret for using the linear equalizer coefficients

instead of the linear MMSE equalizer tuned to as

(19)

where (12) and (5) are used in (19). However, to make the
SDP problem formulation tractable, instead of directly using

in the regret formulation of (19),
one can use a first-order linear (Taylor) approximation around
[7], given in Appendix, as

(15)
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where and

and is the convolution ma-
trix constructed using in (8). Using this in (19) yields the
regret as

(20)

where the term is left out. Note that the first order
Taylor approximation is introduced in order to make the solu-
tion of (19) in a minimax setting tractable. Clearly, the effect of
this approximation diminishes as gets smaller. For distor-
tions with larger , one can use the higher order Taylor ap-
proximations instead, however, we have observed through our
simulations that the solution using the first order approximation
yields satisfactory results even for fairly large (when com-
pared to ).
To get the competitive linear equalizer, we minimize this

regret over all possible communication channels around the
channel estimate , i.e.

(21)

The problem in (21) that will yield the corresponding compet-
itive linear equalizer can be formulated as an SDP problem as
follows.
Theorem 2: Let , and represent the trans-

mitted, received and noise sequences in Fig. 1 such that
, where is the unknown channel impulse response

vector and is zero mean. At each time , given an estimate
of the underlying communication channel impulse response

vector satisfying , , then

(22)

where and are the coefficients of
the linear equalizer, is the convolution matrix generated

from , and
are the covariance matrices of the transmitted and noise
sequences, respectively, ,

, and 0, is equivalent to the
SDP problem

(23)

such that [see (24) at the bottom of the page]. The minimizer
in (23) yields the competitive linear equalizer coefficients

in (21).
The proof of the theorem is provided in Section III-D. We

note that in Theorem 2, for notational simplicity, we have
dropped the time indices from and . The same formulation
equally applies to time varying . Note that to get the cor-
responding , one needs to replace with

in (16) and (17).
The proof of the theorem is given in Section III-D. As in

Section III-C, instead of solving the SDP problem for all ,
one can approximate the time varying correlation matrix
with a time invariant correlation matrix or .
Then, assuming a time invariant channel estimate , the SDP
problem in (23) can be solved only once. The linear equalizer

calculated under this approximation can then be used
over the whole block of received data with the corresponding
SDP problem formulation

(25)

such that (see the first equation at the bottom of the next page)
where and are computed using time invariant and .
The required number of computations at each time , per re-

ceived symbol , for and is given in Fig. 2.

D. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1: We first observe that the MSE expres-
sion in (13) can be written as

such that

(26)

(24)
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and . Using Lemma 2 from Appendix in (26) yields

(27)
Applying Lemma 2 from Appendix to (27) for the

term yields

(28)

Applying Lemma 2 to (28) for the term yields

(29)
However, (29) can be written as

(30)

Applying Lemma 3 from Appendix to (30) yields (31), shown
at the bottom of the page, with the constraint . Hence,

using (31) in (26) results Theorem 1. This completes the proof
of Theorem 1.
Proof of Theorem 2: The proof of Theorem 2 follows the

proof of Theorem 1. The MSE expression in (22) can be written
as

such that

(32)

and . Applying Lemma 2 to (32) for
and suc-

cessively two times yields the first equation at bottom of the
next page, and (33), shown at the bottom of the next page.
Since (33) can be written as

(34)

(31)
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with . Using Lemma 3 from Appendix in (35), shown
at the bottom of the page. Using (35) in (32) yields Theorem 2.
This completes the proof of Theorem 2.

IV. SIMULATIONS

In this section, we illustrate the performance of the introduced
algorithms under different settings. For all examples, we use the
simulation setup from [26] with the channel examples from [3,
Ch. 10]. Here, bits to be transmitted are encoded using a convo-
lutional encoder with a generator matrix
[26]. An 8-random interleaver is used to shuffle the coded bits
such that any consecutive bits will have a minimum distance
of 8 bits after interleaving [23]. The coded bits are then BPSK
modulated. We use linear equalizers introduced in the text and
a MAP-based algorithm for decoding [3], [26].
In the first set of experiments, the modulated bits are trans-

mitted through the ISI channel from [3, Ch. 10]

(36)

with , and the noise variance is determined
by

The channel estimates are constructed using , where
the distortion is randomly generated using a zero mean
Gaussian distribution. In the first set of experiments, the norm
of is randomly scaled to give for each trial,
the length of is selected as 2048 and the SNR is set to
15 dB. For all equalizers , and . In
Fig. 2(a), we plot the sorted MSEs, i.e., , at the

equalizer output for the first iteration of the turbo equalization
with respect to 100 randomly selected ’s. Here, we have
from (8) labeled “mmse”, from (11) labeled “minimax”
and from (21) labeled “regret.” For the same algorithms,
we also plot the sorted BERs at the decoder output with respect
to randomly selected ’s in Fig. 2(b). We observe that, as
expected, the worst case MSE under channel distortion is
minimized for the “minimax” algorithm. The same behavior
is observed in BER plot in Fig. 2(b). However, although the
“minimax” algorithm has the best worst case performance, its
average performance over randomly selected channel distor-
tions is worse than the “regret” and the “mmse” algorithms: the
worst case and the average BERs for the “mmse” algorithm are
0.3542 and 0.0748, respectively; for the “minimax” algorithm
are 0.1194 and 0.0847, respectively; for the “regret” algorithm
are 0.2798 and 0.0682, respectively. Note that the worst case
BER performance of the “regret” algorithm is worse than the
“minimax” method but better than the plug-in MMSE. How-
ever, the average BER of the competitive approach is better than
the “minimax” algorithm and the “mmse” algorithm. Hence,
for these simulations, the competitive approach provides a
trade-off between the worst case performance and the average
case performance. We then plot the corresponding sorted BERs
for the second and fourth iterations of turbo equalization. We
observe similar results for the second and fourth iterations
in Fig. 2(c) and Fig. 2(d), respectively, such that the robust
methods outperform the plug-in “mmse” method for these sim-
ulations. We note that the performance improvement due to the
robust methods becomes more noticeable as the turbo iteration
count increases. We observe that since the “minimax” method
is able to minimize the worst case performance over all random
distortions (even in the first turbo iteration), it is able to further

(33)

(35)
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Fig. 3. Equalization results and average BERs for the channel in (36) under BPSK signaling and different SNRs. Here, the first iteration (the straight lines), the
second iteration (dashed lines) and the fourth iteration (the dotted lines). (a) Included algorithms are from (8) labeled “mmse,” from (11) labeled “minimax”
and from (21) labeled “regret.” (b) Algorithms with low computational complexity: from (10) labeled “mmse,” from (18) labeled “minimax”
and from (25) labeled “regret.”

minimize the BERs (forcing them to zero) as turbo iteration
count increases for all random distortions in these simulations.
In the next set of experiments, we simulate the performance

of the introduced algorithms under different SNRs values over
the channel in (36). However, since the channel estimates usu-
ally deteriorate with low SNR [27], we scale the bound for the
norm of inversely proportional to SNR to give
for and for , i.e.,

(based on some empirical values). For
these simulations, at each SNR, BERs are averaged over 200
random and random with packet length 1024. Here,

, and . In Fig. 3(a), we present average
BERs corresponding to the linear equalizers from (8) labeled
“mmse,” from (11) labeled “minimax” and from (21)
labeled “regret.” We present BERs for the first iteration (the
straight lines), the second iteration (dashed lines) and the fourth
iteration (the dotted lines). We observe that although the robust
algorithms are “optimized” with respect to the worst case MSE
or to the worst case regret, their average performance is compa-
rable and in certain SNRs much better than the plug-in method.
We repeat the previous experiments with the same channels and
the same system parameters to test the performance of the ap-
proximate implementations. In Fig. 3(b), we plot the BERs with
respect to different SNRs over the channels from (36) for al-
gorithms with low computational complexity: from (10)
labeled “mmse,” from (18) labeled “minimax” and

from (25) labeled “regret.” For all equalizers, we use
. We present BERs corresponding to the first iteration

(the straight lines), the second iteration (dashed lines) and the
fourth iteration (the dotted lines). Although, as expected, the
performance of the approximate implementations are inferior to
exact implementations, we observe that the “regret” and “min-
imax” algorithms provide similar or better BERs with respect
to the time invariant plug-in MMSE equalization algorithm for
these simulations.
We next repeat the same set of experiments over a different

channel from [3]

(37)

For these simulations, we run the experiments over 200 ran-
domly selected channel distortions with packet length 4096. For
this three tap channel, we choose , , and .
The other system parameters are set to the same values as in the
first set of experiments. As in the previous example, we scale the
norm of randomly generated inversely proportional to SNR
such that for and for

, i.e., . The BERs with re-
spect to different SNRs are plotted in Fig. 4(a). Note that since
this channel introduces less severe ISI than (36), the BERs are
better than the first channel. We observe similar behavior as in
Fig. 3(a) such that the robust methods provide comparable or
better BERs with respect to the plug-in method. In Fig. 4(b), we
plot the BERs with respect to different SNRs over the channels
from (37) for algorithms with low computational complexity
and for all algorithms.
As the last set of examples, we perform robust turbo equal-

ization in conjunction with the iterative channel estimation al-
gorithm from [28]. We emphasize that our methods can be used
along with such adaptive algorithms since usually the channel or
system parameters cannot be learned perfectly by the adaptive
algorithms and the uncertainty in learning can be incorporated
in the equalizer design as done in this paper. In this setup, un-
like the previous examples, each data block has a certain number
of training samples known to both transmitter and receiver for
channel estimation along with the test samples. At each turbo it-
eration, we perform channel estimation using the training data,
the test data and the soft information provided by the SISO de-
coder. In particular, for channel estimation, we use a stochastic
gradient update (which is suggested to be superior or compa-
rable to the Newton based updates in [28] in the context of turbo
equalization)

(38)

where is the length estimated channel vector, for
some which may not be equal to the true channel
length, in the training mode,

in the first turbo iteration, where
are the hard or quantized decisions (since no a priori

statistics is available yet), i.e., the decision directed mode,
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Fig. 4. Equalization results and average BERs for the channel in (36) under BPSK signaling and different SNRs. Here, the first iteration (the straight lines), the
second iteration (dashed lines) and the fourth iteration (the dotted lines). (a) Included algorithms are from (8) labeled “mmse,” from (11) labeled “minimax”
and from (21) labeled “regret.” (b) Algorithms with low computational complexity: from (10) labeled “mmse,” from (18) labeled “minimax”
and from (25) labeled “regret.”

Fig. 5. Equalization results for the channel in (36) for 150 random independent realization of . Here, . Included algorithms are from (8)
labeled “mmse,” from (11) labeled “minimax” and from (21) labeled “regret.” (a) Sorted BERs for the 3rd iteration. (b) Sorted BERs for the 5th iteration.

in the test data mode after the first
turbo iteration, and is the learning rate. We
emphasize that our methods are generic with respect to how
the channel estimation is performed. At each iteration after
the final channel estimates are constructed for all methods, the
estimated channels are used to construct the equalizers. Note
that we get a different channel estimate for each equalization
method, since the soft information from the SISO decoder are
different. Naturally the channel estimates, ’s, are not error
free. To apply the introduced robust equalization algorithms,
we define uncertainty in the channel around the final channel
estimate based on the (conditional) mean square estimation
error given by

(39)

around the final channel estimate. The Wiener solution and the
correspondingMSE for the time varying (39), as well as the lim-
iting values, are given in [29] for converged filters. Note that
while performing equalization using the soft information, the
received signal can be written as

. Under independence assumptions and as-
suming convergence, the correspondingmean square estimation
error in (39) can be approximated for stationary data [30, Ch. 6]
as

(40)

at convergence. However, since (40) is time varying, i.e., the un-
derlying process is not stationary, we further approximate (40)
with

(41)

We define the “practical radius” of the channel uncertainty set,
, in terms of the square root of the approximate MSE expres-
sion in (41). This scaling would also reflect the effect of using
the estimated and in (41). We emphasize that at each it-
eration, and (41) are updated using the most recently avail-
able soft information to construct the linear MMSE and robust
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estimators. For the experiments, we use the channel (36) with
, , and for all methods

and SNR is set to 10 dB. The learning parameter in (38) is set to
in the training mode and to in the data mode

to assure convergence. We choose the length of the training data
512 and the test data 1024 for each packet of . Given the
channel, we generate 150 independent realizations of and
then perform estimation and equalization using the introduced
algorithms. In Fig. 5, we plot the sorted BERs with respect to
independent trials. The sorted BERs for the third and fifth iter-
ations are displayed in Fig. 5(a) and in Fig. 5(b), respectively.
In these simulations, as in the previous examples, we observe
that the worst case BER performance of the regret algorithm
is worse than the minimax method but better than the plug-in
MMSE. Both robust methods provide better performance com-
pared to the plug-in MMSE method by limiting the worst-case
BER through the iterations.

V. CONCLUSION

In this paper, we investigate robust linear turbo equalization
problem when the coefficients of the underlying discrete time
communication channel are not accurately known. In order to
incorporate the uncertainty in the channel coefficients in the
equalizer design, we study a minimax approach and a compet-
itive approach, which are centered around certain MSE opti-
mality criteria. For both approaches, the problem of obtaining
the linear equalizer coefficients is posed as an SDP problem.
We observe through simulations that the introduced methods
improve over the plug-in MMSE estimators for the examples
from [3] under different distortions and SNRs. The performance
gains of the introduced algorithms become more apparent as the
iteration count increases.

APPENDIX

Lemma 1: The first order linear approximation of
around the channel estimate

is given by

Proof: The derivation of Lemma 1 is similar to the deriva-
tion of [7, Lemma 1]. The first order linear approximation is
given by

(42)

where and is
the convolution matrix generated from . The gradient term
is derived in [7, Lemma 1] as

(43)

Using (43), we have

(44)

where the second line is due to the properties of the trace op-
eration, the third line follows from (8), the fourth line follows
since is a convolution matrix and is the convolution ma-
trix constructed using . Then, using (44) in (42) we get

This completes the proof of Lemma 1.
Lemma 2: The inequality

(45)

where , , and is equivalent to

(46)

Proof of Lemma 2: Assume and

. Then, using the nonsingular matrix ,

one can establish the congruence transformation

(47)

Assuming yields and to have the same inertia.
Since by assumption , we conclude that
.
Lemma 3: Given matrices , , and with

if and only if there exists a such that

This lemma is from [5, Prop. 2].
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