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We study the problem of estimating an unknown deterministic signal that is observed through 
an unknown deterministic data matrix under additive noise. In particular, we present a minimax 
optimization framework to the least squares problems, where the estimator has imperfect data matrix 
and output vector information. We define the performance of an estimator relative to the performance of 
the optimal least squares (LS) estimator tuned to the underlying unknown data matrix and output vector, 
which is defined as the regret of the estimator. We then introduce an efficient robust LS estimation 
approach that minimizes this regret for the worst possible data matrix and output vector, where we 
refrain from any structural assumptions on the data. We demonstrate that minimizing this worst-case 
regret can be cast as a semi-definite programming (SDP) problem. We then consider the regularized 
and structured LS problems and present novel robust estimation methods by demonstrating that these 
problems can also be cast as SDP problems. We illustrate the merits of the proposed algorithms with 
respect to the well-known alternatives in the literature through our simulations.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we investigate estimation of an unknown deter-
ministic signal that is observed through a deterministic data matrix 
under additive noise, which models a wide range of problems in 
signal processing applications [1–14]. In this framework, the data 
matrix and the output vector are not exactly known, however, es-
timates for both of them as well as uncertainty bounds on the 
estimates are given [2,8,15–19]. Since the model parameters are 
not known exactly, the performances of the classical LS estimators 
may significantly degrade, especially when the perturbations on 
the data matrix and the output vector are relatively high [9,15,16,
20–22]. Hence, robust estimation algorithms are needed to obtain 
a satisfactory performance under such perturbations. This generic 
framework models several real-life applications, which require es-
timation of a signal observed through a linear model [9,16]. As an 
example, this setup models realistic channel equalization scenar-
ios, where the data matrix represents a communication channel 
and the data vector is the transmitted information. The channel 
is usually unknown, especially for wireless communications ap-
plications, and possibly can be time-varying. Hence, in practical 
applications, the communication channel is estimated, where this 
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estimate is usually subject to distortions [9,16]. Under such pos-
sible perturbations, robust equalization methods can be used to 
obtain a more consistent and acceptable performance compared 
to the LS (or MMSE) equalizer. In this sense, this formulation is 
comprehensive and can be used in other applications such as in 
feedback control systems to estimate a desired data under imper-
fect system knowledge.

A prevalent approach to find robust solutions to such estima-
tion problems is the robust minimax LS method [8,9,16,23–27], in 
which the uncertainties in the data matrix and the output vec-
tor are incorporated into optimization framework via a minimax 
residual formulation and a worst-case optimization within the un-
certainty bounds is performed. Although the robust LS methods 
are able to minimize the LS error for the worst-case perturbations, 
they usually provide unsatisfactory results on the average [15,
23–27] due to their conservative nature. This issue is significantly 
exacerbated especially when the actual perturbations do not re-
sult in significant performance degradation. Another well-known 
approach to compensate for errors in the data matrix and the out-
put vector is the total least squares method (TLS) [15], which may 
yield undesirable results since it employs a conservative approach 
due to data de-regularization. On the other hand, the data matrix 
usually has a known special structure, such as Toeplitz and Han-
kel, in many linear regression problems [9,15]. Hence, in [9,15], the 
authors illustrate that the performances of the estimators based 
on minimax approaches improve when such a prior knowledge on 
data matrix structure is integrated into the problem formulation. 
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In all these methods, LS estimators under worst case perturbations 
are introduced to achieve robustness. However, due to this conser-
vative problem formulation, in many practical applications, these 
approaches yield unsatisfactory performances [2,8,18,28–30].

In order to counterbalance this conservative nature of the ro-
bust LS methods [9], we propose a novel robust LS approach that 
minimizes a worst case “regret” that is defined as the difference 
between the squared residual error and the smallest attainable 
squared residual error with an LS estimator [2,8,18,28–30]. By this 
regret formulation, we seek a linear estimator whose performance 
is as close as possible to that of the optimal estimator for all pos-
sible perturbations on the data matrix and the output vector. Our 
main goal in proposing the minimax regret formulation is to pro-
vide a trade-off between the robust LS methods tuned to the worst 
possible data parameters (under the uncertainty bounds) and the 
optimal LS estimator tuned to the underlying unknown model 
parameters. Minimax regret approaches have been presented in 
signal processing literature to alleviate the pessimistic nature of 
the worst case optimization methods [2,8,18,28–30]. In [18,29], 
linear minimax regret estimators are introduced to minimize the 
mean squared error (MSE) under imperfect knowledge of chan-
nel statistics and true parameters, respectively. In [28], a minimum 
mean squared error (MMSE) estimation technique under imperfect 
channel and data knowledge is investigated. In [2], these robust 
estimation methods are extended to flat fading channels to per-
form channel equalization. These methods are shown to provide a 
better average performance compared to the minimax estimators, 
whereas under large perturbations the robustness of the mini-
max estimators are superior to these competitive methods. On the 
other hand, in this paper, the optimization frameworks investi-
gated here are significantly different than [9,16,23–27], where the 
regret terms are directly adjoined in the cost functions. In particu-
lar, unlike [2,18,28,29], where the uncertainties are in the statistics 
of the transmitted signal or channel parameters, in this paper, the 
uncertainty is both on the data matrix and the output vector with-
out any statistical assumptions. While in [8], the authors have con-
sidered a similar framework, the results of this paper build upon 
them and provide a complete solution to the regret based robust 
LS estimation methods unlike [8]. We emphasize that perturbation 
bounds on the data matrix and the output vector heavily depend 
on the estimation algorithms employed to obtain them. Since our 
methods are formulated for given perturbation bounds, different 
estimation algorithms can be readily incorporated into our frame-
work with the corresponding perturbation bounds [16].

Our main contributions in this paper are as follows. i) We intro-
duce a novel and efficient robust LS estimation method in which 
we find the transmitted signal by minimizing the worst-case re-
gret, i.e., the worst-case difference between the residual error of 
the LS estimator and the residual error of the optimal LS estimator 
tuned to the underlying model. In this sense, we present a robust 
estimation method that achieves a tradeoff between the robust LS 
estimation methods and the direct LS estimation method tuned to 
the estimates of the data matrix and output vector. ii) We next 
propose a minimax regret formulation for the regularized LS es-
timation problem. iii) We then introduce a structured robust LS 
estimation method in which the data matrix is known to have 
a special structure such as Toeplitz or Hankel. iv) We demon-
strate that the robust estimation methods we propose can be cast 
as SDP problems, hence our methods can be efficiently imple-
mented in real-time [31]. v) In our simulations, we observe that 
our approaches provide better performance compared to the ro-
bust methods that are optimized with respect to the worst-case 
residual error [9,32], and the conventional methods that directly 
solve the estimation problem using the perturbed data.

The organization of the paper is as follows. An overview to the 
problem is provided in Section 2. In Section 3.1, we first introduce 
the LS estimation method based on our regret formulation, and 
then present the regularized LS estimation approach in Section 3.2. 
We then consider the structured LS approach in Section 3.3 and 
provide the explicit SDP formulations for all problems. The nu-
merical examples are demonstrated in Section 4. Finally, the paper 
concludes with certain remarks in Section 5.

2. System overview

2.1. Notation

In this paper, all vectors are column vectors and represented 
by boldface lowercase letters. Matrices are represented by boldface 
uppercase letters. For a matrix H, HH is the conjugate transpose, 
‖H‖ is the spectral norm, H+ is the pseudo-inverse, H > 0 rep-
resents a positive definite matrix and H ≥ 0 represents a positive 
semi-definite matrix. For a square matrix H, Tr(H) is the trace. Nat-
urally, for a vector x, ‖x‖ = √

xH x is the �2-norm. Here, 0 denotes 
a vector or matrix with all zero elements and the dimensions can 
be understood from the context. Similarly, I represents the appro-
priate sized identity matrix. The operator vec(·) is the vectorization 
operator, i.e., it stacks the columns of a matrix of dimension m × n
into an mn × 1 column vector. Finally, the operator ⊗ is the Kro-
necker product [33].

2.2. Problem description

We investigate the problem of estimating an unknown deter-
ministic vector x ∈ C

n which is observed through a deterministic 
data matrix. However, instead of the actual data matrix and the 
output vector, their estimates H ∈ C

m×n and y ∈ C
m and uncer-

tainty bounds on these estimates are provided. In this sense, our 
aim is to find a solution to the following data estimation problem

y ≈ Hx,

such that

y + �y = (H + �H)x,

for deterministic perturbations �H ∈ C
m×n , �y ∈ C

m . Although 
these perturbations are unknown, a bound on each perturbation 
is provided, i.e.,

‖�H‖ ≤ δH and ‖�y‖ ≤ δY ,

where δH , δY ≥ 0. In this sense, we refrain from any assumptions 
on the data matrix and the output vector, yet consider that the 
estimates H and y are at least accurate to “some degree” but their 
actual values under these uncertainties are completely unknown to 
the estimator.

Even in the presence of these uncertainties, the symbol vector 
x can be naively estimated by simply substituting the estimates H
and y into the LS estimator [10]. For the LS estimator we have

x̂ = H+y,

where H+ is the pseudo-inverse of H [33]. However, this approach 
yields unsatisfactory results, when the errors in the estimates of 
the data matrix and the output vector are relatively high [9,18,29,
32]. A common approach to find a robust solution is to employ a 
worst-case residual minimization [9]

x̂ = arg min
x∈Cn

max‖�H‖≤δH ,‖�y‖≤δY

∥∥(y + �y) − (H + �H)x
∥∥2

,

where x is chosen to minimize the worst-case residual error in 
the uncertainty region. However, since the solution is found with 
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respect to the worst possible data matrix and output vector in the 
uncertainty regions, it may be highly conservative [15,18,29].

Here, we propose a novel LS estimation approach that pro-
vides a tradeoff between performance and robustness in order to 
mitigate the conservative nature of the worst-case residual mini-
mization approach as well as to preserve robustness [18,29]. The 
regret for not using the optimal LS estimator is defined as the dif-
ference between the residual error with an estimate of the input 
vector and the residual error with the optimal LS estimator, i.e.,

R(x;�H,�y) �
∥∥(y + �y) − (H + �H)x

∥∥2

− min
w∈Cn

∥∥(y + �y) − (H + �H)w
∥∥2

. (1)

By making such a regret definition, we force our estimator not 
to construct the symbol vector according to the worst possible 
scenario considering that it may be too conservative. Instead, we 
define the regret of any estimator by the difference in the estima-
tion performances of that estimator and the “smartest” estimator 
knowing both data matrix and output vector in hindsight, so that 
we achieve a tradeoff between robustness and estimation perfor-
mance.

We emphasize that the regret defined in (1) is completely dif-
ferent than the regret formulation introduced in [18,29]. In (1), the 
uncertainty is on the data matrix where the desired data vector x
is completely unknown, unlike [18,29]. We emphasize that we use 
the residual error ‖(y + �y) − (H + �H)x‖2 instead of the estima-
tion error ‖x̂ − x‖ since the estimation error directly depends on 
the vector x and cannot be used in the regret formulation since x
is assumed to be unknown in the presence of data uncertainties. 
Moreover, in our formulation, the estimate x̂ is not constrained 
to be linear unlike [18,29] since our regret formulation is well-
defined without any limitations on the estimated x̂.

In the next sections, the proposed approaches to the robust 
LS estimation problems are provided. We first introduce the re-
gret based unstructured LS estimation method. We next present 
the unstructured regularized LS estimation approach in which the 
worst-case regret is optimized. Finally, we investigate the struc-
tured LS estimation approach.

3. Robust least squares estimation methods

3.1. Unstructured robust least squares estimation

In this section, we provide a novel robust unstructured LS esti-
mator based on a certain minimax criterion. We consider the most 
generic estimation problem

min
x∈Cn

max‖�H‖≤δH ,‖�y‖≤δY

R(x;�H,�y), (2)

where R(x; �H, �y) is defined as in (1). Now considering the sec-
ond term in (1), we define H̃ � H + �H, ỹ � y + �y, where H̃ is 
a full rank matrix, and denote the estimation performance of the 
optimal LS estimator for some given H̃ and ỹ by

f (H̃, ỹ) � min
w∈Cn

‖ỹ − H̃w‖2.

Since we consider an unconstrained minimization over w, we have 
[10]

w∗ � arg min
w∈Cn

‖ỹ − H̃w‖2

= H̃+ỹ, (3)

as the optimal data vector minimizing the residual error. Then we 
have
f (H̃, ỹ) = ∥∥ỹ − H̃w∗∥∥2

= (
ỹ − H̃w∗)H(

ỹ − H̃w∗)
= ỹH(

ỹ − H̃w∗)
= ỹH P̃ỹ,

where the third line follows from H̃H H̃w∗ = H̃H ỹ [10] and P̃ �
I − H̃H̃+ is the projection matrix of the space perpendicular to the 
range space of H̃. If we use the Taylor series expansion based on 
Wirtinger calculus [33] for f (H̃, ̃y) around H̃ = H and ỹ = y, then

f (H̃, ỹ) = f (H,y) + 2 Re
{

Tr
(∇ f (H̃, ỹ)|H

H̃=H,ỹ=y
[�H �y])}

+ O
(∥∥[�H�y]∥∥2)

. (4)

Note that the first order Taylor approximation is introduced in 
order to obtain a tractable solution. Clearly, the effect of using 
this approximation vanishes as ‖[�H �y]‖ decreases and for dis-
tortions with larger ‖[�H �y]‖, one can easily use higher order 
approximations instead. However, we observe through our simu-
lations that even for relatively large perturbations, a satisfactory 
performance is obtained using this approximation.

We now introduce the following lemma in order to obtain the 
first order Taylor approximation in (4) in a closed form.

Lemma 1. Let H̃ = H +�H be a full rank matrix and ỹ = y +�y, where 
H̃ ∈ C

m×n and ỹ ∈ C
m. Then defining f (H̃, ̃y) � ỹH P̃ỹ, where P̃ � I −

H̃H̃+ , we have

∂ f (H̃, ỹ)

∂H̃

∣∣∣∣
H̃=H,ỹ=y

= −Py
(
H+y

)H
,

and

∂ f (H̃, ỹ)

∂ ỹ

∣∣∣∣
H̃=H,ỹ=y

= Py,

where P � I − HH+ .

Proof of Lemma 1. Since H̃ is full rank and m ≥ n, the pseudo-
inverse of H̃ is found by [33]

H̃+ �
(
H̃H H̃

)−1
H̃H .

Hence, we have [33]

D = ∂

∂H̃

(
ỹH ỹ − ỹH H̃

(
H̃H H̃

)−1
H̃H ỹ

)∣∣∣∣
H̃=H,ỹ=y

= H
(
HH H

)−1
HH yyH H

(
HH H

)−1 − yyH H
(
HH H

)−1

= HH+y
(
H+y

)H − y
(
H+y

)H

= −Py
(
H+y

)H
, (5)

and

b = ∂

∂ ỹ

(
ỹH ỹ − ỹH H̃

(
H̃H H̃

)−1
H̃H ỹ

)∣∣∣∣
H̃=H,ỹ=y

= Py, (6)

where the last line of the equality follows since HH+ is a sym-
metric matrix according to the definition of the pseudo-inverse 
operation. This concludes the proof of Lemma 1. �

Now turning our attention back to (4), we denote

D � ∂ f (H̃, ỹ)

∂H̃

∣∣∣∣ ˜
,

H=H,ỹ=y
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and

b � ∂ f (H̃, ỹ)

∂ ỹ

∣∣∣∣
H̃=H,ỹ=y

,

where we emphasize that the closed form definitions of D and 
b can be obtained from Lemma 1. We then approximate (4) and 
obtain the first order Taylor approximation as follows

f (H̃, ỹ) ≈ f (H,y) + 2 Re
{

Tr
([D b]H [�H �y])}

= κ + 2 Re
{(

vec(D)H vec(�H) + bH�y
)}

= κ + dH�h + �hH d + bH�y + �yH b, (7)

where κ � f (H, y), d � vec(D), and �h � vec(�H). Hence we can 
approximate the regret in (1) as follows

R(x;�H,�y) ≈ ‖ỹ − H̃x‖2

− (
κ + dH�h + �hH d + bH�y + �yH b

)
. (8)

In the following theorem, we illustrate how the optimization 
(or equivalently estimation) problem in (8) can be put in an SDP 
form.

Theorem 1. Let H ∈C
m×n and y ∈ C

m be the estimates of the data ma-
trix and the output vector, respectively, both having deterministic addi-
tive perturbations �H ≤ δH and �y ≤ δY , respectively, i.e., H̃ = H +�H
and ỹ = y +�y, where H̃ is the full rank data matrix, ỹ is the output vec-
tor, and m ≥ n. Then the problem

min
x∈Cn

max‖�H‖≤δH ,‖�y‖≤δY

R(x;�H,�y), (9)

where R(x; �H, �y) is defined as in (8), is equivalent to solving the 
following SDP problem

minγ

subject to

τ1 ≥ 0, τ2 ≥ 0, and⎡
⎢⎣

γ + κ − τ1 − τ2 (y − Hx)H δY bH δH dH

y − Hx I −δY I δH X
δY b −δY I τ1I 0
δH d δH XH 0 τ2I

⎤
⎥⎦ ≥ 0, (10)

where X is the m × mn matrix defined as X � xH ⊗ I.

The proof of Theorem 1 is provided in Appendix A.

Remark 1. In the proof of Theorem 1, we use Proposition 1 that re-
lies on the lossless S-procedure. However, S-procedure is lossless 
with two constraints when the corresponding two quadratic (Her-
mitian) forms on the complex linear space [34]. However, classical 
S-procedure for quadratic forms is, in general, lossy with two con-
straints in the real case [35]. Hence, Theorem 1 cannot be extended 
for real linear space.

Now we can consider two important corollaries of Theorem 1. 
First, a special case of Theorem 1 in which the uncertainty is only 
in the data matrix. We emphasize that the perturbation errors only 
in the data matrix are also common in a wide range of real life 
applications [10]. Here, we can define the regret as follows

R(x;�H) � ‖y − H̃x‖2 − min
w∈Cn

‖y − H̃w‖2
, (11)

and similar to the previous case, we calculate the optimal estima-
tion performance under a given uncertainty bound
f (H̃) � min
w∈Cn

‖y − H̃w‖2

≈ κ + 2 Re
{

Tr
(∇ f (H̃,y)

∣∣H
H̃=H �H

)}
= κ + 2 Re

{
vec

(
DH)

vec(�H)
}

= κ + dH�h + �hH d.

Hence we approximate the regret in (11) as follows

R(x;�H) ≈ ‖y − H̃x‖2 − (
κ + dH�h + �hH d

)
. (12)

Corollary 1. Let H ∈ C
m×n and y ∈ C

m be the estimates of the data 
matrix and the output vector, respectively, where m ≥ n. Suppose there is 
a bounded uncertainty on the full rank data matrix H̃, i.e., H̃ = H + �H, 
‖�H‖ ≤ δH . Then the problem

min
x∈Cn

max‖�H‖≤δH

R(x;�H), (13)

where R(x; �H) is defined as in (12), is equivalent to solving the follow-
ing SDP problem

minγ

subject to

τ ≥ 0 and

[
γ + κ − τ (y − Hx)H δH d

y − Hx I δH X
δH d δH XH τ I

]
≥ 0. (14)

Outline of the proof of Corollary 1. The proof of Corollary 1 can be 
explicitly derived from the proof of Theorem 1 by simply setting 
δY = 0 and τ1 = 0, hence is omitted. �

Second, we consider another special case of Theorem 1 in 
which the uncertainty is only in the output vector. We empha-
size that similar to the previous case, this one is also a common 
case in a wide range of real-life applications [10], and studied un-
der a similar framework in [18]. Here, we can define the regret as 
follows

R(x;�y) � ‖ỹ − Hx‖2 − min
w∈Cn

‖ỹ − Hw‖2, (15)

and similar to the previous case, we calculate the optimal also per-
formance under a given uncertainty bound

f (ỹ) � min
w∈Cn

‖ỹ − Hw‖2

≈ κ + 2 Re
{

Tr
(∇ f (H, ỹ)

∣∣H
ỹ=y �y

)}
= κ + 2 Re

{
bH�y

}
= κ + bH�y + �yH b.

Hence we approximate the regret in (15) as follows

R(x;�y) ≈ ‖ỹ − Hx‖2 − (
κ + bH�y + �yH b

)
. (16)

Corollary 2. Let H ∈C
m×n and y ∈C

m be the estimates of the data ma-
trix and the output vector, respectively, where m ≥ n. Suppose there is a 
bounded uncertainty on the output vector ỹ, i.e., ỹ = y +�y, ‖�y‖ ≤ δY . 
Then the problem

min
x∈Cn

max‖�y‖≤δY

R(x;�y), (17)

where R(x; �y) is defined as in (16), is equivalent to solving the follow-
ing SDP problem



86 N.D. Vanli et al. / Digital Signal Processing 36 (2015) 82–92
minγ

subject to

τ ≥ 0 and

[
γ + κ − τ (y − Hx)H δY bH

y − Hx I −δY I
δY b −δY I τ I

]
≥ 0. (18)

Outline of the proof of Corollary 2. The proof of Corollary 2 can be 
explicitly derived from the proof of Theorem 1 by simply setting 
δH = 0 and τ2 = 0, hence is omitted. �
Remark 2. Corollaries 1 and 2 follow from the proof of Theorem 1, 
which relies on the lossless S-procedure. Under the frameworks 
presented in Corollaries 1 and 2, one can safely extend the same 
conclusions for the real case also, since S-procedure is lossless 
for quadratic forms with one constraint both in complex and real 
spaces [36,37].

3.2. Unstructured robust regularized least squares estimation

In this section, we introduce a worst-case regret optimization 
approach to solve the regularized LS estimation problem in [32]. 
The regret for not using the optimal regularized LS estimator is 
defined by

R(x;�H,�y) �
{‖ỹ − H̃x‖2 + μ‖x‖2}
− min

w∈Cn

{‖ỹ − H̃w‖2 + μ‖w‖2}, (19)

where μ > 0 is the regularization parameter. We emphasize that 
there are different approaches to choose μ, however, for the focus 
of this paper, we assume that it is already set before the opti-
mization so that these methods can be readily incorporated in our 
framework. Hence, we solve the regularized LS estimation problem 
for an arbitrary μ > 0 and note that we have already covered the 
μ = 0 case in Section 3.1.

Similar to the previous case, we denote the estimation error of 
the optimal LS estimator for some estimated data matrix H and 
output vector y by

f (H,y) � min
w∈Cn

‖y − Hw‖2 + μ‖w‖2

= ∥∥P−1 y
∥∥2

= yH P−1 y,

where P � I + μ−1HHH . Considering the first order Taylor series 
expansion based on Wirtinger calculus [33] for f (H̃, ̃y) around H̃ =
H and ỹ = y

f (H̃, ỹ) ≈ κ + 2 Re
{

Tr
(∇ f (H̃, ỹ)

∣∣H
H̃=H,ỹ=y[�H �y])},

= κ + dH�h + �hH d + bH�y + �yH b,

where d � vec(DH ), �h � vec(�H),

D � ∂ f (H̃, ỹ)

∂H̃

∣∣∣∣
H̃=H,ỹ=y

= −P−1yyH P−1H, (20)

and

b � ∂ f (H̃, ỹ)

∂ ỹ

∣∣∣∣
H̃=H,ỹ=y

= P−1y,

where the last line follows since P is symmetric. Hence we can 
approximate the regret in (19) as follows
R(x;�H,�y) ≈ ‖ỹ − H̃x‖2 + μ‖x‖2 − (
κ + dH�h

+ �hH d + bH�y + �yH b
)
, (21)

similar to (8). In the following theorem, we illustrate how the op-
timization problem in (21) can be put in an SDP form.

Theorem 2. Let H ∈C
m×n and y ∈C

m be the estimates of the data ma-
trix and the output vector, respectively, both having deterministic addi-
tive perturbations �H ≤ δH and �y ≤ δY , respectively, i.e., H̃ = H +�H
and ỹ = y +�y, where H̃ is the full rank data matrix, ỹ is the output vec-
tor, and m ≥ n. Then the problem

min
x∈Cn

max‖�H‖≤δH ,‖�y‖≤δY

R(x;�H,�y), (22)

where R(x; �H, �y) is defined as in (21), is equivalent to solving the 
following SDP problem

minγ

subject to

τ1 ≥ 0, τ2 ≥ 0, and⎡
⎢⎢⎢⎣

γ + κ − τ1 − τ2 (y − Hx)H xH δY bH δH dH

y − Hx I 0 −δY I δH X
x 0 μI 0 0

δY b −δY I 0 τ1I 0
δH d δH XH 0 0 τ2I

⎤
⎥⎥⎥⎦ ≥ 0. (23)

Proof of Theorem 2. The proof of Theorem 2 follows similar lines 
to the proof of Theorem 1, hence is omitted here. �
Remark 3. Under the framework introduced in this section, one 
can straightforwardly obtain the corollaries similar to Corollaries 1
and 2 by considering cases in which the uncertainty is either only 
on the data matrix or only on the output vector, i.e., δY = 0 and 
δH = 0 cases, respectively. The derivations follow similar lines to 
Corollaries 1, 2 and Theorem 2, hence is omitted. However, similar 
results can be readily derived from the result in Theorem 2 with 
suitable changes in the SDP formulations.

3.3. Structured robust least squares estimation

There are various communication systems where the data ma-
trix and the perturbation on it have a special structure such as 
Toeplitz, Hankel, or Vandermonde [9,15]. Incorporating this prior 
knowledge into the estimation framework could improve the per-
formance of the regret based minimax LS estimation approach [9,
15]. Hence, in this section, we investigate a special case of the 
problem in (2), where the associated perturbations for the data 
matrix H and the output vector y have special structures. The 
structure on the perturbations is defined as follows

�H =
p∑

i=1

αiHi, (24)

and

�y =
p∑

i=1

βiyi, (25)

where Hi ∈ C
m×n , yi ∈ C

m , and p are known but αi, βi ∈ C, 
i = 1, . . . , p, are unknown. However, the bounds on the norm of 
α � [α1, . . . , αp]H and β � [β1, . . . , βp]H are provided as ‖α‖ ≤ δα
and ‖β‖ ≤ δβ , where δα, δβ ≥ 0. We emphasize that this formu-
lation can represent a wide range of constraints on the structure 
of perturbations of the data matrix and the output vector such as 
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Toeplitz and Hankel [9,10]. Our aim is to solve the following opti-
mization problem

min
x∈Cn

max
‖α‖≤δα,‖β‖≤δβ

R(x;�H,�y),

where

R(x;�H,�y) � ‖ỹ − H̃x‖2 − min
w∈Cn

‖ỹ − H̃w‖2, (26)

H̃ � H + �H = H +
p∑

i=1

αiHi, (27)

ỹ � y + �y = y +
p∑

i=1

βiyi . (28)

After following similar lines to Section 3.1, and introducing 
the first order Taylor approximation to f (H̃, ̃y) around α = 0 and 
β = 0, we obtain

f (H̃, ỹ) ≈ κ + 2 Re
{

Tr
(∇ f (H̃, ỹ)

∣∣H
α=0,β=0[α β])}, (29)

where f (H̃, ̃y) = ỹH P̃ỹ and P̃ = I − H̃H̃+ . We next introduce the 
following lemma to calculate the first order Taylor approximation 
in (29) in a closed form.

Lemma 2. Let H̃ = H +�H be a full rank matrix and ỹ = y +�y, where 
H̃ ∈ C

m×n, ỹ ∈ C
m, �H and �y are defined as in (24) and (25), respec-

tively. Then denoting f (H̃, ̃y) � ỹH Pỹ, where P̃ � I − H̃H̃+ , we have

∂ f (H̃, ỹ)

∂α

∣∣∣∣
α=0,β=0

= [−yH PH H1H+y, . . . ,−yH PH HpH+y
]H

,

(30)

and

∂ f (H̃, ỹ)

∂β

∣∣∣∣
α=0,β=0

= [
yH Py1, . . . ,yH Pyp

]H
, (31)

where P � I − HH+ .

Proof of Lemma 2. Note that the derivative of f (H̃, ̃y) is taken with 
respect to [α β], hence we can use the Chain Rule to calculate the 
derivatives by using the results we have obtained in Lemma 1.

First, we consider the derivative of f (H̃, ̃y) with respect to αi , 
i = 1, . . . , p, i.e.,

di �
∂ f (H̃, ỹ)

∂αi

∣∣∣∣
α=0,β=0

= Tr

((
∂ f (H̃, ỹ)

∂H̃

)H
∂H̃

∂αi

∣∣∣∣
α=0,β=0

)
= Tr

(−H+yyH PH Hi
)

= −yH PH HiH
+y,

where the last line follows from the cyclic property of the trace 
operator.

Similarly, we next consider the derivative of f (H̃, ̃y) with re-
spect to βi , i = 1, . . . , p, i.e.,

bi �
∂ f (H̃, ỹ)

∂βi

∣∣∣∣
α=0,β=0

= Tr

((
∂ f (H̃, ỹ)

∂ ỹ

)H
∂ ỹ

∂βi

∣∣∣∣
α=0,β=0

)
= yH Pyi .

This concludes the proof of Lemma 2. �
Now turning our attention back to (29), we denote

d � ∂ f (H̃, ỹ)

∂α

∣∣∣∣
α=0,β=0

,

and

b � ∂ f (H̃, ỹ)

∂β

∣∣∣∣
α=0,β=0

,

where we emphasize that the closed form definitions of d and b
can be obtained from Lemma 2. We then approximate (29) and 
obtain the first order Taylor approximation as follows

f (H̃, ỹ) ≈ κ + dHα + αH d + bHβ + βH b.

Therefore, we can approximate the regret in (26) as follows

R(x;�H,�y) ≈ ‖ỹ − H̃x‖2

− (
κ + dHα + αH d + bHβ + βH b

)
. (32)

In the following theorem, we illustrate how the optimization 
problem in (32) can be put in an SDP form.

Theorem 3. Let H, H1, . . . , Hp ∈C
m×n, y, y1, . . . , yp ∈ C

m, δH , δY ≥ 0, 
m ≥ n, where H̃ is the full rank data matrix defined as in (27), ỹ is the 
output vector defined as in (28), with the corresponding estimates H and 
y, respectively. Then the problem

min
x∈Cn

max
‖α‖≤δα,‖β‖≤δβ

R(x;�H,�y), (33)

where R(x; �H, �y) is defined as in (32), is equivalent to solving the 
following SDP problem

minγ

subject to

τ1 ≥ 0, τ2 ≥ 0, and⎡
⎢⎣

γ + κ − τ1 − τ2 (y − Hx)H δαdH δβbH

y − Hx I −δαG δβQ
δαd −δαGH τ1I 0
δβb δβQH 0 τ2I

⎤
⎥⎦ ≥ 0, (34)

where G � [H1x, . . . , Hpx] and Q � [y1, . . . , yp].

Proof of Theorem 3. The proof of Theorem 3 follows similar lines 
to the proof of Theorem 1, hence is omitted here. �
Remark 4. Under the framework introduced in this section, one 
can straightforwardly obtain the corollaries similar to Corollaries 1
and 2 by considering cases in which the uncertainty is either only 
on the data matrix or only on the output vector, i.e., δβ = 0 and 
δα = 0 cases, respectively. The derivations follow similar lines to 
Corollaries 1, 2 and Theorem 3, hence is omitted. However, similar 
results can be readily derived from the result in Theorem 3 with 
suitable changes in the SDP formulations.

Remark 5. The proofs of Theorem 2 and Theorem 3 follow from 
the results of Theorem 1, which relies on the lossless S-procedure. 
However, S-procedure is lossless with two constraints when the 
corresponding two quadratic (Hermitian) forms on the complex 
linear space [34]. However, classical S-procedure for quadratic 
forms is, in general, lossy with two constraints in the real case 
[35]. Hence, Theorem 2 and Theorem 3 cannot be extended for 
real linear space. On the other hand, under the frameworks de-
scribed in Remark 3 and Remark 4, one can safely extend the 
same conclusions for the real case also, since S-procedure is loss-
less for quadratic forms with one constraint both in complex and 
real spaces [36,37].
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Fig. 1. Sorted residual errors for the rgrt-LS, rbst-LS, LS, and TLS estimators over 
1000 trials when δH = δY = 1.2, m = 5, and n = 3.

4. Simulations

We provide numerical examples in different scenarios in order 
to illustrate the merits of the proposed algorithms. In the first set 
of the experiments, we randomly generate a data matrix of size 
m × n, and an output vector of size m × 1, which are normalized 
to have unit norms. Then, we generate 1000 random perturbations 
�H, �y, where ‖�H‖ ≤ δH , ‖�y‖ ≤ δY , m = 5, n = 3, and δH =
δY = 1.2. Here, we label the algorithm in Theorem 1 as “rgrt-LS”, 
the robust LS algorithm of [9] as “rbst-LS”, the total LS algorithm 
[9] as “TLS”, and finally the LS algorithm tuned to the estimates of 
the data matrix and the output vector as “LS”, where we directly 
use x̂ = H+y.

For each algorithm and for each random perturbation, we find 
the corresponding x̂ and calculate the error ‖H̃x̂ − ỹ‖2. After we 
calculate the errors for each algorithm and for all random pertur-
bations, we plot the corresponding sorted errors in ascending order 
in Fig. 1 for 1000 perturbations. Since the rbst-LS algorithm opti-
mizes the worst-case residual error with respect to worst possible 
disturbance, it usually yields the smaller worst-case residual er-
ror among all algorithms for these simulations. On the other hand, 
since the LS algorithm directly uses the estimates, it usually yields 
the smaller residual error when the perturbations on the data ma-
trix and the output vector are significantly small.

These results can be observed in Fig. 1, where in one extreme, 
the largest residual errors are observed as 2.9762 for the TLS es-
timator, 2.2557 for the LS estimator, 1.9275 for the rbst-LS esti-
mator, and 1.9325 for the rgrt-LS estimator. In the other extreme, 
i.e., when there is almost no perturbation, the smallest estima-
tion errors are observed as 0.3035 for the LS estimator, 0.4036
for the TLS estimator, 0.8727 for the rbst-LS estimator, and 0.6387
for the rgrt-LS estimator. While the LS estimator can be prefer-
able when there is relatively smaller perturbations and the rbst-LS 
estimator can be preferable when there is significantly higher per-
turbations, the introduced algorithm provides a tradeoff between 
these algorithms and achieve a significantly smaller average error 
performance. The average residual error of the rgrt-LS estimator is 
observed as 1.1928, whereas this value is 1.2180 for the LS es-
timator, 1.2708 for the rbst-LS estimator, and 1.3826 for the TLS 
estimator. Hence, the rgrt-LS estimator is not only robust but also 
efficient in terms of the average error performance compared to its 
well-known alternatives. Owing to the competitive formulation of 
our estimators, we achieve such average performance gains espe-
cially when the perturbations are moderate.
Fig. 2. Averaged residual errors for the rgrt-LS, rbst-LS, LS, and TLS estimators over 
2000 trials for m = 5 and n = 3, when δ = δH = δY ∈ [0.5, 1].

Fig. 3. Averaged residual errors for the rgrt-LS, rbst-LS, LS, and TLS estimators over 
2000 trials for m = 5 and n = 3, when δH ∈ [0.5, 1] and δY = 1.

In the second set of experiments, we illustrate the perfor-
mances of the proposed algorithms under various δH and δY val-
ues. For these experiments, we generate 2000 random perturba-
tions �H, �y, where ‖�H‖ ≤ δH , ‖�y‖ ≤ δY , m = 5, n = 3 for 
different perturbation bounds and compute the averaged error over 
2000 trials for the rgrt-LS, LS, rbst-LS, and TLS algorithms. In Fig. 2, 
we present the averaged residual errors of these algorithms for dif-
ferent values of perturbation bounds, i.e., δ = δH = δY ∈ [0.5, 1]. 
We observe that the proposed rgrt-LS algorithm has the best aver-
age residual error performance over different perturbation bounds 
compared to the LS, the rbst-LS and the TLS algorithms. Further-
more, in Fig. 3 and Fig. 4, we present the averaged residual errors 
of these algorithms for different perturbation bounds, i.e., when 
δH �= δY . Particularly, in Fig. 3, we set δH ∈ [0.5, 1], δY = 1 and in 
Fig. 4, we set δH = 1, δY ∈ [0.5, 1].

As can be observed from Fig. 2, as the perturbation bounds 
increase, the performances of the LS and the TLS estimators sig-
nificantly deteriorate, whereas the rgrt-LS estimator provides an 
excellent performance. The residual error of the rbst-LS estimator, 
on the other hand, slightly increases as the perturbation bounds 
increase, i.e., it is the most robust algorithm against the perturba-
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Fig. 4. Averaged residual errors for the rgrt-LS, rbst-LS, LS, and TLS estimators over 
2000 trials for m = 5 and n = 3, when δH = 1 and δY ∈ [0.5, 1].

Fig. 5. Sorted residual errors for the str-rgrt-LS, str-rbst-LS, SLS-BDU, and LS estima-
tors over 1000 trials when δH = δY = 0.75, m = 5, and n = 3.

tions due to its highly conservative nature. Yet, the performance 
of this estimator is significantly inferior to the rgrt-LS estimator. 
Furthermore, the rgrt-LS estimator provides the best performance 
under different δH and δY values. Particularly, in Fig. 3, we ob-
serve a similar behavior to the one in Fig. 2, where our algorithm 
provides a robust performance while also providing the smallest 
residual error (especially for high δH ). On the other hand, in Fig. 4, 
we observe that the performance of rgrt-LS estimator is less sen-
sitive to the changes in δY compared to the rbst-LS, LS, and TLS 
estimators.

In the next experiment, we examine a system identification 
problem [15], which can be formulated as H0x = y0, where H =
H0 + W is the observed noisy Toeplitz matrix and y = y0 + w is 
the observed noisy output vector. Here, the convolution matrix H
(which is Toeplitz) constructed from h which is selected as a ran-
dom sequence of ±1’s. We then generate 1000 random structured 
perturbations for H0 and y0, where ‖α‖ ≤ 0.75‖H0‖, and plotted 
the sorted estimation errors in ascending order in Fig. 5.

The average residual errors are observed as 1.1155 for the struc-
tured regret LS estimator “str-rgrt-LS” of Remark 4, 1.1807 for the 
structured robust LS algorithm “str-rbst-LS”, 1.1138 for the LS es-
Fig. 6. Sorted residual errors for rgrt-reg-LS, rbst-reg-LS, and LS estimators over 
1000 trials when δH = δY = 0.65, μ = 0.5, m = 3, and n = 2.

timator, and 1.2576 for the structured least squares bounded data 
uncertainties estimator “SLS-BDU” of [15]. Therefore, we observe 
that the str-rgrt-LS algorithm yields a smaller average residual er-
ror with respect to other robust estimators and achieves the aver-
age performance of the LS estimator. In addition, we observe that 
the maximum residual errors are observed as 1.5554 for the str-
rgrt-LS estimator, whereas it is 1.6659 for the LS estimator. Hence, 
the introduced algorithm can be used to obtain robustness with-
out significant losses in the average estimation performance unlike 
the conventional robust estimation methods. Nevertheless, we em-
phasize that for a structured system, the performance of these 
algorithms are highly sensitive to the structures of the matrices 
and the vectors. If the perturbation bound is quite high, the ro-
bustness may not be preserved under large perturbations.

In the fourth experiment, i.e., in Fig. 6, we provide errors sorted 
in ascending order for the algorithm in Theorem 2 as “rgrt-reg-LS”, 
for the robust regularized LS algorithm in [16] as “rbst-reg-LS” and 
finally for the regularized LS algorithm as “reg-LS” [10], where the 
experiment setup is the same as in the first experiment except the 
perturbation bounds are set to 0.65 and the regularization param-
eter is chosen as μ = 0.5. In Fig. 6, we observe that the robustness 
and the performance tradeoff (between the rbst-reg-LS and the 
reg-LS algorithms) of the introduced rgrt-reg-LS algorithm.

When there is small perturbations on the data matrix and the 
output vector, i.e., in the best-case scenario, the residual error of 
the reg-LS estimator is 0.1045, whereas it is 0.2416 for the rgrt-
reg-LS estimator and 0.4282 for the rbst-reg-LS estimator. As can 
be observed from Fig. 6, for higher perturbations, the performance 
of the reg-LS estimator significantly deteriorates, whereas the rgrt-
reg-LS and rbst-reg-LS algorithms provide a robust performance. 
On the other hand, the rgrt-reg-LS estimator significantly outper-
forms the rbst-reg-LS estimator in terms of the average error per-
formance and achieves even a more desirable error performance 
compared to the reg-LS estimator. The average residual errors are 
calculated as 0.9059 for the rgrt-reg-LS estimator, 0.9177 for the 
reg-LS estimator, and 1.0316 for the rbst-reg-LS estimator. This ex-
periment illustrates the sensitivity of the reg-LS estimator to the 
perturbations. On the other hand, the rgrt-reg-LS and rbst-reg-LS 
estimators provides more robust performances compared to the 
reg-LS estimator. Yet, the highly pessimistic nature of the rbst-reg-
LS estimator deteriorates its estimation performance and yields an 
unacceptable performance. Our algorithm, on the other hand, not 
only yields a robust performance compared to the reg-LS estima-
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Fig. 7. BER performances of the rgrt-LS, rbst-LS, and TLS estimators (equalizers) over 
1 000 000 trials under various SNRs, when m = 3 and n = 2.

tor but also does not cause any average performance degradations 
unlike the conventional robust estimation methods.

Finally, we illustrate the possible applications of our algorithm 
into different frameworks. Particularly, we consider the channel 
equalization problem and illustrate the bit error rate (BER) perfor-
mance of our algorithm with respect to its well-known alternatives 
in the literature as follows.

In these simulations, we define the signal-to-noise ratio (SNR) 
as follows

SNR = 20 log

(‖x‖
δ

)
,

where ‖H‖ = 1 and log(·) is the common (i.e., base 10) logarithm. 
For a given SNR, we generate 1 000 000 symbol vectors of x (having 
length 2) from a binary alphabet and 1 000 000 estimates of the 
(MIMO) channel matrix H (sized 3 × 2) both having unit norms, 
randomly. For every symbol vector and channel estimate couple, 
we randomly generate perturbations �H and �y, calculate the cor-
responding perturbed output vector, and feed this information to 
the algorithms. We quantize the estimate of the symbol vector x̂
and consider the number of incorrect bits as the BER (i.e., we con-
sider the BER rather than the symbol error rate).

In Fig. 7, we provide the BERs for various SNRs. We observe that 
the proposed algorithm outperforms its competitors in terms of 
equalization performance and successfully reconstructs the trans-
mitted bits. While Fig. 7 illustrates the BER of the proposed al-
gorithms averaged over a huge number of channel uses, we also 
illustrate the robustness of our algorithm over small number of 
channel uses in Fig. 8 and Fig. 9. In these experiments, we perform 
100 independent trials in each of which 10 000 symbol vectors and 
channel matrix estimates are generated and sent over the channel 
as in the previous experiment for SNR = 20 and SNR = 25, respec-
tively.

In Fig. 8 and Fig. 9, we observe that our algorithm not only 
provides a superior averaged performance with respect to its well-
known alternatives but also provides a robust performance. The 
conventional robust LS estimators provide unsatisfactory results 
since these algorithms adapt themselves to the worst-case sce-
nario. However, the rgrt-LS estimator has a significantly smaller 
BER compared to the rbst-LS and TLS estimators, since our algo-
rithm does not tune itself to the worst possible perturbation, but 
considers the worst possible regret. Particularly, when the pertur-
bation on the estimates are relatively small, our algorithm provides 
Fig. 8. Sorted BERs for the rgrt-LS, rbst-LS, and TLS estimators (equalizers) over 100
trials, where in each trial 10 000 symbol vectors are send for SNR = 20, m = 3, and 
n = 2.

Fig. 9. Sorted BERs for the rgrt-LS, rbst-LS, and TLS estimators (equalizers) over 100
trials, where in each trial 10 000 symbol vectors are send for SNR = 25, m = 3, and 
n = 2.

significant performance improvements compared to the conven-
tional methods as can be seen in Fig. 8 and Fig. 9.

5. Conclusion

In this paper, we introduce a robust approach to LS estimation 
problems under bounded data uncertainties based on a novel re-
gret formulation. We study the robust LS estimation problems in 
the presence of unstructured and structured perturbations under 
residual and regularized residual error criteria. In all cases, the 
data vectors that minimize the worst-case regrets are found by 
solving certain SDP problems. In our simulations, we observed that 
the proposed estimation methods provide an efficient tradeoff be-
tween the performance and robustness. Owing to the regret based 
formulation of the proposed method, we obtain significant im-
provements in terms of the average estimation performance with 
respect to the conventional robust minimax estimation methods, 
while maintaining the robustness as shown in our experiments.
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Appendix A. Proof of Theorem 1

Before we introduce the proof of Theorem 1, we need the fol-
lowing proposition that follows Proposition 2 of [18].

Proposition 1. Given matrices P1, Q1 , P2 , Q2 , N, where N is a Hermitian 
matrix, i.e., N = NH ,

N ≥ PH
1 Z1Q1 + QH

1 ZH
1 P1 + PH

2 Z2Q2 + QH
2 ZH

2 P2,

∀Z1, Z2 : ‖Z1‖ ≤ δ1, ‖Z2‖ ≤ δ2 , if and only if there exist τ1, τ2 ≥ 0 such 
that[N − τ1QH

1 Q1 − τ2QH
2 Q2 −δ1PH

1 −δ2PH
2−δ1P1 τ1I 0

−δ2P2 0 τ2I

]
≥ 0. (A.1)

Proof of Proposition 1. Following similar lines to [18], we first 
note that

N ≥ PH
1 Z1Q1 + QH

1 ZH
1 P1 + PH

2 Z2Q2 + QH
2 ZH

2 P2,

∀Z1, Z2 : ‖Z1‖ ≤ δ1, ‖Z2‖ ≤ δ2, if and only if for every u we have

uH Nu ≥ max‖Z1‖≤δ1, ‖Z2‖≤δ2

{
uH PH

1 Z1Q1u + uH QH
1 ZH

1 P1u

+ uH PH
2 Z2Q2u + uH QH

2 ZH
2 P2u

}
= 2δ1‖P1u‖‖Q1u‖ + 2δ2‖P2u‖‖Q2u‖, (A.2)

where the last line follows from the Cauchy–Schwartz inequality 
by choosing

Z1 = δ1P1uuH QH
1

‖P1u‖‖Q1u‖ ,

and

Z2 = δ2P2uuH QH
2

‖P2u‖‖Q2u‖ .

Furthermore, from the Cauchy–Schwartz inequality, (A.2) can be 
written as

uH Nu − 2
(
δ1yH

1 P1u + δ2yH
2 P2u

) ≥ 0, (A.3)

∀u, y1, y2 : ‖y1‖ ≤ ‖Q1u‖, ‖y2‖ ≤ ‖Q2u‖. Note that the constraint 
‖y1‖ ≤ ‖Q1u‖ is equivalent to

uH QH
1 Q1u − yH

1 y1 ≥ 0,

and similarly, ‖y2‖ ≤ ‖Q2u‖ is equivalent to

uH QH
2 Q2u − yH

2 y2 ≥ 0.

Hence, after some algebra we obtain (A.3) as follows[ u
y1
y2

]H [ N −δ1PH
1 −δ2PH

2−δ1P1 0 0
−δ2P2 0 0

]
︸ ︷︷ ︸

�F0

[ u
y1
y2

]
︸ ︷︷ ︸
�y

≥ 0,

∀y such that[ u
y1
y2

]H [QH
1 Q1 0 0
0 −I 0
0 0 0

]
︸ ︷︷ ︸

�F1

[ u
y1
y2

]
≥ 0,

and
[ u
y1
y2

]H [QH
2 Q2 0 0
0 0 0
0 0 −I

]
︸ ︷︷ ︸

�F2

[ u
y1
y2

]
≥ 0.

Then applying S-procedure [31], we have

yH F0y ≥ 0,

∀y: yH F1y ≥ 0, yH F2y ≥ 0,

where ∃y0 : yH
0 F1y0 > 0,yH

0 F2y0 > 0. (A.4)

Note that due to the structures of F1 and F2, the regularity con-
ditions can be easily verified. Since F0, F1, and F2 are Hermitian 
matrices, i.e., Fi = FH

i , i = 0, 1, 2, by Theorem 1.1 in [34], (A.4) is 
satisfied if and only if ∃τ1, τ2 ≥ 0 such that

F0 − τ1F1 − τ2F2 ≥ 0.

That is[N − τ1QH
1 Q1 − τ2QH

2 Q2 −δ1PH
1 −δ2PH

2−δ1P1 τ1I 0
−δ2P2 0 τ2I

]
≥ 0.

This concludes the proof of Proposition 1. �
Now we consider the minimax problem defined in (9), and re-

formulate it as follows

min
x∈Cn

max‖�H‖≤δH ,‖�y‖≤δY

R(x;�H,�y) = min
x,γ

γ ,

subject to

R(x;�H,�y) ≤ γ , ∀�H,�y : ‖�H‖ ≤ δH ,‖�y‖ ≤ δY , (A.5)

where

R(x;�H,�y) = ‖ỹ − H̃x‖2 − (
κ + dH�h + �hH d

+ bH�y + �yH b
)
, (A.6)

and κ � f (H, y). By applying the Schur complement to the con-
straints in (A.5), we can compactly denote (A.5) in the matrix form 
as follows[
γ + κ + dH�h + �hH d + bH�y + �yH b (ỹ − H̃x)H

ỹ − H̃x I

]
≥ 0,

(A.7)

∀�H, �y : ‖�H‖ ≤ δH , ‖�y‖ ≤ δY . Rearranging terms in (A.7), we 
obtain[

γ + κ (y − Hx)H

y − Hx I

]

≥ −
[

dH

X

]
�h [ 1 0 ] −

[
1
0

]
�hH [ d XH ]

−
[

bH

−I

]
�y [ 1 0 ] −

[
1
0

]
�yH [ b −I ] , (A.8)

∀�H, �y : ‖�H‖ ≤ δH , ‖�y‖ ≤ δY , where we used �Hx = X�h, 
�h = vec(�H), and X � xH ⊗ I. By applying Proposition 1 to (A.8), 
it follows that (9) is equivalent to

minγ

subject to

τ1 ≥ 0, τ2 ≥ 0, and⎡
⎢⎣

γ + κ − τ1 − τ2 (y − Hx)H δY bH δH dH

y − Hx I −δY I δH X
δY b −δY I τ1I 0

H

⎤
⎥⎦ ≥ 0,
δH d δH X 0 τ2I
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hence the desired result. Therefore, this concludes the proof of 
Theorem 1. �
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