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A Deterministic Analysis of an Online Convex
Mixture of Experts Algorithm

Huseyin Ozkan, Mehmet A. Donmez, Sait Tunc, and Suleyman S. Kozat

Abstract— We analyze an online learning algorithm that adaptively
combines outputs of two constituent algorithms (or the experts) running
in parallel to estimate an unknown desired signal. This online learning
algorithm is shown to achieve and in some cases outperform the mean-
square error (MSE) performance of the best constituent algorithm in
the steady state. However, the MSE analysis of this algorithm in the
literature uses approximations and relies on statistical models on the
underlying signals. Hence, such an analysis may not be useful or valid
for signals generated by various real-life systems that show high degrees
of nonstationarity, limit cycles and that are even chaotic in many cases.
In this brief, we produce results in an individual sequence manner. In
particular, we relate the time-accumulated squared estimation error of
this online algorithm at any time over any interval to the one of the
optimal convex mixture of the constituent algorithms directly tuned to
the underlying signal in a deterministic sense without any statistical
assumptions. In this sense, our analysis provides the transient, steady-
state, and tracking behavior of this algorithm in a strong sense without
any approximations in the derivations or statistical assumptions on
the underlying signals such that our results are guaranteed to hold.
We illustrate the introduced results through examples.

Index Terms— Convexly constrained, deterministic, learning
algorithms, mixture of experts, steady-state, tracking, transient.

I. INTRODUCTION

The problem of estimating or learning an unknown desired signal
is heavily investigated in online learning [1]–[7] and adaptive sig-
nal processing literature [8]–[13]. However, in various applications,
certain difficulties arise in the estimation process due to the lack of
structural and statistical information about the data model. To resolve
this issue, mixture approaches that adaptively combine outputs of
multiple constituent algorithms performing the same task are pro-
posed in the online learning literature under the mixture of experts
framework [5]–[7] and adaptive signal processing literature under the
adaptive mixture methods framework [8], [9]. Along these lines, an
online convexly constrained mixture of experts method that combines
outputs of two learning algorithms is introduced in [8]. We point out
that the mixture of experts framework refers to a different model in
another context [14], where the input space is divided into regions
in a nested fashion to each of which an expert corresponds. The
partitioning of the input space and the corresponding experts are
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learned jointly and combined such that a mixture of experts method
is obtained. On the other hand, the mixture method in [8] adaptively
combines the outputs of the constituent algorithms that run in parallel
on the same task under a convex constraint to minimize the final
mean-square error (MSE). This adaptive mixture is shown to be
universal with respect to the input algorithms in a certain stochastic
sense such that this mixture achieves and in some cases outperforms
the MSE performance of the best constituent algorithm in the steady
state [8]. However, the MSE analysis of this adaptive mixture in the
transient and steady states uses approximations, such as the separation
assumptions, and relies on strict statistical models on the signals,
e.g., stationary data models [8], [9]. In this brief, we study this
algorithm [8] from the perspective of online learning and produce
results in an individual sequence manner such that our results are
guaranteed to hold for any bounded arbitrary signal.

Nevertheless, signals produced by various real-life systems, such
as in underwater acoustic communication applications, show high
degrees of nonstationarity, limit cycles and, in many cases, are even
chaotic so that they hardly fit to assumed statistical models [15].
Hence, an analysis based on certain statistical assumptions or approx-
imations may not be useful or adequate under these conditions.
To this end, we refrain from making any statistical assumptions on
the underlying signals and present an analysis that is guaranteed to
hold for any bounded arbitrary signal without any approximations.
In particular, we relate the performance of this learning algorithm
that adaptively combines outputs of two constituent algorithms to
the performance of the optimal convex combination that is directly
tuned to the underlying signal in a deterministic sense. Naturally, this
optimal convex combination can only be chosen in hindsight after
observing the whole signal a priori (before we even start processing
the data). Since we compare the performance of this algorithm with
respect to the best convex combination of the constituent filters in
a deterministic sense over any time interval, our analysis provides,
without any assumptions, the transient, the tracking, and the steady-
state behaviors together [5]–[7]. In particular, if the analysis window
starts from t = 1, then we obtain the transient behavior; if the window
length goes to infinity, then we obtain the steady-state behavior;
and finally, if the analyze window is selected arbitrary, then we
get the tracking behavior as explained in detail in Section III. The
corresponding bounds may also hold for unbounded signals such
as with Gaussian and Laplacian distributions, if one can define
reasonable bounds such that a sample stays in the defined interval
with high probability.

After we provide a brief problem description in Section II, we
present a deterministic analysis of the convexly constrained mixture
algorithm in Section III, where the performance bounds are given as a
theorem and a corresponding corollary. We illustrate the introduced
results through examples in Section IV. This brief concludes with
certain remarks in Section V.

II. PROBLEM DESCRIPTION

In this framework, we have a desired signal {yt }t≥1 ⊂ R,
where t is the time index, and two constituent algorithms running
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TABLE I
LEARNING ALGORITHM THAT ADAPTIVELY COMBINES

OUTPUTS OF TWO ALGORITHMS

in parallel producing { ŷ1,t }t≥1 and { ŷ2,t }t≥1, respectively, as the
estimations (or predictions) of the desired signal. We assume that the
desired signal {yt }t≥1 is finite and bounded by a known constant
Y , i.e., |yt | ≤ Y < ∞. Here, we have no restrictions on ŷ1,t
or ŷ2,t , e.g., these outputs are not required to be causal, however,
without loss of generality, we assume |ŷ1,t | ≤ Y and |ŷ2,t | ≤ Y , i.e.,
these outputs can be clipped to the range [−Y, Y ] without sacrificing
performance under the squared error. As an example, the desired
signal and outputs of the constituent learning algorithms can be
single realizations generated under the framework of [8]. At each
time t , the convexly constrained algorithm receives an input vector

xt
�= [ ŷ1,t ŷ2,t ]T and outputs

ŷt = λt ŷ1,t + (1 − λt ) ŷ2,t = wT
t xt

where wt
�= [λt (1 − λt )]T , 0 ≤ λt ≤ 1, as the final estimate.

The final estimation error is given by et = yt − ŷt . The combination
weight λt is trained through an auxiliary variable ρt using a stochastic
gradient update to minimize the squared final estimation error as

λt = 1

1 + e−ρt
(1)

ρt+1 = ρt − μ∇ρt e2
t = ρt + μetλt (1 − λt )[ ŷ1,t − ŷ2,t ] (2)

where μ > 0 is the learning rate. The combination parameter λt
in (1) is constrained to lie in [λ+, (1 − λ+)], 0 < λ+ < 1/2
in [8], since the update in (2) may slow down when λt is too close
to the boundaries. We follow the same restriction and analyze (2)
under this constraint. The algorithm, presented in Table I, consists
of two steps: 1) the update step of the parameter ρ: ρt+1 =
ρt + μetλt (1 − λt )[ ŷ1,t − ŷ2,t ] and 2) the mapping of ρ back to
the corresponding combination parameter λ: λt+1 = 1/1 + e−ρt+1 .
At every time, the update step requires six multiplications and three
additions (two multiplications and one addition for calculating et );
the mapping of ρ simply requires one division and two additions
(taking the exponent is only a look-up). This is per time, i.e., the
computational complexity does not increase with time. As for the
multidimensional case, the corresponding complexity scales linearly
with the input dimensionality. Hence, the complexity is O(d), where
d is the dimension of the input regressor.

Under the deterministic analysis framework, the performance
of the algorithm is determined by the time-accumulated squared
error [5], [7], [16]. When applied to any sequence {yt }t≥1, the
algorithm of (1) yields the total accumulated loss

Ln( ŷ, y) = Ln
(
wT

t xt , y
) �=

n∑

t=1

(yt − ŷt )
2 (3)

for any n. We emphasize that for unbounded signals, such as Gaussian
and Laplacian distributions, we can define a suitable Y such that the
samples of yt are inside of the interval [−Y, Y ] with high probability.

Next, we provide deterministic bounds on Ln( ŷ, y) with respect
to the best convex combination minβ∈[λ+,1−λ+] Ln( ŷβ, y), where

Ln( ŷβ, y) = Ln(uT xt , y) =
n∑

t=1

(yt − ŷβ,t )
2

and ŷβ,t
�= β ŷ1,t + (1 − β) ŷ2,t = uT xt , u

�= [β 1 − β]T that holds
uniformly in an individual sequence manner without any stochastic
assumptions on yt , ŷ1,t , ŷ2,t , or n. Note that the best fixed convex
combination parameter

βo = arg min
β∈[λ+,1−λ+]

Ln( ŷβ, y)

and the corresponding estimator

ŷβo,t = βo ŷ1,t + (1 − βo) ŷ2,t

which we compare the performance against, can only be determined
after observing the entire sequences, i.e., {yt }, { ŷ1,t }, and { ŷ2,t }, in
advance for all n.

III. DETERMINISTIC ANALYSIS

In this section, we first relate the accumulated loss of the
mixture to the accumulated loss of the best convex combination
that minimizes the accumulated loss in the following theorem. Then,
we discuss the implications of the our theorem in a corollary to
compare the adaptive mixture [8] with the exponentiated gradient
algorithm [6]. The use of the Kullback–Leibler (KL) divergence as a
distance measure for obtaining worst case loss bounds was pioneered
in [17], and later adopted extensively in the online learning literature
[6], [7], [18]. We emphasize that although the steady-state and
transient MSE performances of the convexly constrained mixture
algorithm are analyzed with respect to the constituent learning
algorithms [8], [9], we perform the steady-state, transient, and
tracking analysis without any stochastic assumptions or use any
approximations in the following theorem.

Theorem 1: The algorithm given in (2), when applied to any
sequence {yt }t≥1, with |yt | ≤ Y < ∞, 0 < λ+ < 1/2, and
β ∈ [λ+, 1 − λ+], yields for any n and ε > 0

Ln( ŷ, y) −
(

2ε + 1

1 − z2

)
min
β

{Ln( ŷβ, y)}

≤ (2ε + 1)Y 2

ε(1 − z2)
ln 2 ≤ O

(
1

ε

)
(4)

where O(.) is the order notation, ŷβ,t = β ŷ1,t + (1 − β) ŷ2,t ,

z
�= 1 − 4λ+(1 − λ+)/1 + 4λ+(1 − λ+) < 1, and step size μ =

(4ε/2ε + 1)(2 + 2z/Y 2).
This theorem provides a regret bound for the algorithm (2) showing

that the cumulative loss of the convexly constrained algorithm is close
to a factor times the cumulative loss of the algorithm with the best
weight chosen in hindsight. If we define the regret

Rn
�= Ln( ŷ, y) −

(
2ε + 1

1 − z2

)
min
β

{Ln( ŷβ, y)} (5)
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then (4) implies that time-normalized regret

Rn

n
�= Ln( ŷ, y)

n
−

(
2ε + 1

1 − z2

)
min
β

{
Ln( ŷβ, y)

n

}

converges to zero at a rate O(1/nε) uniformly over the desired signal
and the outputs of constituent algorithms. Moreover, (4) provides the
exact tradeoff between the transient and steady-state performances of
the convex mixture in a deterministic sense without any assumptions
or approximations. Note that (4) is guaranteed to hold independent
of the initial condition of the combination weight λt for any time
interval in an individual sequence manner. Hence, (4) also provides
the tracking performance of the convexly constrained algorithm in a
deterministic sense.

From (4), we observe that the convergence rate of the right-hand
side, i.e., the bound, is O(1/nε), and, as in the stochastic case [9],
to get a tighter asymptotic bound with respect to the optimal convex
combination of the learning algorithms, we require a smaller ε, i.e.,
smaller learning rate μ, which increases the right-hand side of (4).
Although this result is well-known in the adaptive filtering literature
and appears widely in stochastic contexts, however, this tradeoff is
guaranteed to hold in here without any statistical assumptions or
approximations. Note that the optimal convex combination in (4)
depends on the entire signal and outputs of the constituent algorithms
for all n and hence it can only be determined in hindsight.

Proof: To prove the theorem, we initially assume that clipping
never happens in the course of the algorithm, i.e., it is either not
required or the allowed range is never violated by λt . Then, the
extension to the case of the clipping will be straightforward. In the
following, we use the approach introduced in [7] (and later used
in [6]) based on measuring progress of a mixture algorithm using
certain distance measures.

We first convert (2) to a direct update on λt and use this direct
update in the proof. Using e−ρt = 1 − λt/λt , the update in (2) can
be written as

λt+1 = λt eμet λt (1−λt ) ŷ1,t

λt eμet λt (1−λt ) ŷ1,t + (1 − λt )eμet λt (1−λt ) ŷ2,t
. (6)

Unlike [6, Lemma 5.8], our update in (6) has, in a certain sense,
an adaptive learning rate μλt (1 − λt ), which requires different
formulation, however, follows similar lines of [6] in certain parts.

Here, for a fixed β, we define an estimator

ŷβ,t
�= β ŷ1,t + (1 − β) ŷ2,t = uT xt

where β ∈ [λ+, 1 − λ+] and u
�= [β 1 − β]T . Defining

ζt = eμet λt (1−λt ), we have from (6)

β ln

(
λt+1

λt

)
+ (1 − β) ln

(
1 − λt+1

1 − λt

)

= ŷβ,t ln ζt − ln
(
λtζ

ŷ1,t
t + (1 − λt )ζ

ŷ2,t
t

)
. (7)

Using the inequality αx ≤ 1 − x(1 − α) for α ≥ 0 and x ∈ [0, 1]
from [7], we have

ζ
ŷ1,t
t = (

ζ 2Y
t

) ŷ1,t +Y
2Y ζ−Y

t ≤ ζ−Y
t

(
1 − ŷ1,t + Y

2Y

(
1 − ζ 2Y

t
)
)

which implies in (7)

ln
(
λt ζ

ŷ1,t
t + (1 − λt )ζ

ŷ2,t
t

)

≤ −Y ln ζt + ln

(
1 − ŷt + Y

2Y
(1 − ζ 2Y

t )

)
(8)

where ŷt = λt ŷ1,t +(1−λt ) ŷ2,t . As in [6], one can further bound (8)
using ln(1 − q(1 − ep)) ≤ pq + (p2/8) for 0 ≤ q < 1

ln
(
λtζ

ŷ1,t
t + (1 − λt )ζ

ŷ2,t
t

)

≤ −Y ln ζt + ( ŷt + Y ) ln ζt + Y 2(ln ζt )
2

2
. (9)

Using (9) in (7) yields

β ln

(
λt+1

λt

)
+ (1 − β) ln

(
1 − λt+1

1 − λt

)

≥ ( ŷβ,t + Y ) ln ζt − ( ŷt + Y ) ln ζt − Y 2(ln ζt )
2

2
. (10)

Now for the case of clipping, let us suppose without the loss of
generality λt+1 = λ+ − α, where λ+ > α > 0 so that it is set back
to λ+. We claim that the left-hand side of (10) can only increase
by clipping, and hence, (10) stays valid after clipping. Since the
derivative of ln x is monotonically decreasing with x and always
positive, ln(λt+1) must increase not less than α/λ+ after clipping.
On the other hand, ln(1−λt+1) can decrease not more than α/1 − λ+
after clipping. As a result, β ln(λt+1) + (1 − β) ln(1 − λt+1) must
increase not less than δ = βα/λ+ − (1 − β)α/1 − λ+ after clipping.
Since β ∈ [λ+, 1 − λ+], δ ≥ 0. Hence, (10) is valid even after
clipping.

At each adaptation, the progress made by the algorithm toward

u at time t is measured as D(u||wt ) − D(u||wt+1), where wt
�=

[λt (1 − λt )]T and

D(u||w)
�=

2∑

i=1

ui ln(ui /wi )

is the KL divergence [7], u ∈ [0, 1]2, and w ∈ [0, 1]2. We require
that this progress is at least a(yt − ŷt )

2 − b(yt − ŷβ,t )
2 for certain

a, b, and μ [6], [7]

a(yt − ŷt )
2 − b(yt − ŷβ,t )

2 ≤ D(u||wt ) − D(u||wt+1)

= β ln

(
λt+1

λt

)
+ (1 − β) ln

(
1 − λt+1

1 − λt

)
(11)

which yields the desired deterministic bound in (4) after telescoping.
In information theory and probability theory, the KL divergence,
which is also known as the relative entropy, is empirically shown
to be an efficient measure of the distance between two probability
vectors [6], [7]. Here, the vectors u and wt are probability vectors,

i.e., u,wt ∈ [0, 1]2, and uT 1 = wT
t 1 = 1, where 1

�= [1 1]T . This
use of KL divergence as a distance measure between weight vectors
is widespread in the online learning literature [6], [18].

We observe from (10) and (11) that to prove the theorem, it is
sufficient to show that G(yt , ŷt , ŷβ,t , ζt ) ≤ 0, where

G(yt , ŷt , ŷβ,t , ζt )
�= − ( ŷβ,t + Y ) ln ζt + ( ŷt + Y ) ln ζt

+Y 2(ln ζt )
2

2
+ a(yt − ŷt )

2 − b(yt − ŷβ,t )
2.

(12)

For fixed yt , ŷt , and ζt , G(yt , ŷt , ŷβ,t , ζt ) is maximized when
∂G/∂ ŷβ,t = 0, i.e., ŷβ,t − yt + (ln ζt/2b) = 0, since ∂2G/∂ ŷ2

β,t =
−2b < 0, yielding ŷ∗

β,t = yt − (ln ζt/2b). Note that while taking the
partial derivative of G(·) with respect to ŷβ,t and finding ŷ∗

β,t , we
assume that all yt , ŷt , ζt are fixed. This yields an upper bound on G(·)
in terms of ŷβ,t . Hence, it is sufficient to show G(yt , ŷt , ŷ∗

β,t , ζt ) ≤ 0,
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where, after some algebra [6]

G(yt , ŷ, ŷ∗
β,t , ζt ) = (yt − ŷt )

2 ×
[

a − μλt (1 − λt )

+μ2λt
2(1 − λt )

2

4b
+ Y 2μ2λt

2(1 − λt )
2

2

]
. (13)

For (13) to be negative, defining k
�= λt (1 − λt ) and

H(k)
�= k2μ2

(
Y 2

2
+ 1

4b

)
− μk + a

it is sufficient to show that H(k) ≤ 0 for k ∈ [λ+(1 − λ+), 1/4],
i.e., k ∈ [λ+(1 − λ+), 1/4] when λt ∈ [λ+, (1 − λ+)], since H(k)
is a convex quadratic function of k, i.e., ∂2 H/∂k2 > 0. Hence, we
require the interval where the function H(·) is negative should include
[λ+(1 −λ+), 1/4], i.e., the roots k1 and k2 (where k2 ≤ k1) of H(·)
should satisfy

k1 ≥ 1

4
, k2 ≤ λ+(1 − λ+)

where

k1 =
μ +

√
μ2 − 4μ2a

(
Y 2

2 + 1
4b

)

2μ2
(Y 2

2 + 1
4b

) = 1 + √
1 − 4as

2μs
(14)

k2 =
μ −

√
μ2 − 4μ2a

(
Y 2

2 + 1
4b

)

2μ2
(Y 2

2 + 1
4b

) = 1 − √
1 − 4as

2μs
(15)

s
�=

(
Y 2

2
+ 1

4b

)

.

To satisfy k1 ≥ 1/4, we straightforwardly require from (14)

2 + 2
√

1 − 4as

s
≥ μ.

To get the tightest upper bound for (14), we set

μ = 2 + 2
√

1 − 4as

s

that is, the largest allowable learning rate.
To have k2 ≤ λ+(1−λ+) with μ = 2 + 2

√
1 − 4as/s, from (15),

we require

1 − √
1 − 4as

4(1 + √
1 − 4as)

≤ λ+(1 − λ+). (16)

Equation (16) yields

as = a

(
Y 2

2
+ 1

4b

)

≤ 1 − z2

4
(17)

where

z
�= 1 − 4λ+(1 − λ+)

1 + 4λ+(1 − λ+)

and z < 1 after some algebra.
To satisfy (17), we set b = ε/Y 2 for any (or arbitrarily small)

ε > 0 that results

a ≤ (1 − z2)ε

Y 2(2ε + 1)
. (18)

To get the tightest bound in (11), we select

a = (1 − z2)ε

Y 2(2ε + 1)

in (18). Such selection of a, b, and μ results in (11)
(

(1 − z2)ε

Y 2(2ε + 1)

)

(yt − ŷt )
2 −

(
ε

Y 2

)
(yt − ŷβ,t )

2

≤ β ln

(
λt+1

λt

)
+ (1 − β) ln

(
1 − λt+1

1 − λt

)
. (19)

After telescoping, i.e., summation over t ,
∑n

t=1, (19) yields

aLn( ŷ, y) − b min
β

{
Ln( ŷβ, y)

}

≤ β ln

(
λn+1

λ1

)
+ (1 − β) ln

(
1 − λn+1

1 − λ1

)
≤ ln 2 ≤ O(1) (20)

where β ln(λn+1/λ1)+ (1−β) ln(1 − λn+1/1 − λ1) ≤ ln 2 since we
initialize the algorithm with λ1 = 1/2. Note for a random initializa-
tion that this bound would correspond to in general β ln(λn+1/λ1)+
(1−β) ln(1 − λn+1/1 − λ1) ≤ −((1−λ+) ln λ++λ+ ln(1−λ+)) =
O(1). Hence
(

(1 − z2)ε

Y 2(2ε + 1)

)

Ln( ŷ, y) −
(

ε

Y 2

)
min
β

{Ln( ŷβ, y)} ≤ ln 2 ≤ O(1).

(21)

Then, it follows that:

Ln( ŷ, y) −
(

2ε + 1

1 − z2

)
min
β

{Ln( ŷβ, y)} (22)

≤ (2ε + 1)Y 2

ε(1 − z2)
ln 2 ≤ O

(
1

ε

)
(23)

which is the desired bound.
Note that using

b = ε

Y 2 , a = (1 − z2)ε

Y 2(2ε + 1)
, s =

(
Y 2

2
+ 1

4b

)

we get

μ = 2 + 2
√

1 − 4as

s
= 4ε

2ε + 1

2 + 2z

Y 2

after some algebra, as in the statement of the theorem. �
Finally, we also define a time-normalized regret as in [6] to have

a comparison between the exponentiated gradient algorithm and the
adaptive mixture given in (2). Let us define the regret R∗

n as

R∗
n

�= Ln( ŷ, y) − min
β

{Ln( ŷβ, y)} (24)

then in the following corollary, we show that the time normalized
regret 1/n R∗

n for the algorithm proposed originally in [8] and given
in (2) improves, i.e., decreases, with O(n−1/2) in a similar manner
to the exponentiated gradient algorithm [6], except that the time-
normalized regret 1/n R∗

n is always above an error floor, i.e., it is a
linear regret with n and hence, it does not converge to 0.

Corollary 1: The algorithm given in (2), when applied to any
sequence {yt }t≥1, with |yt | ≤ Y < ∞, 0 < λ+ < 1/2, and
β ∈ [λ+, 1 − λ+], yields for any n

1

n
R∗

n ≤ 4Y ε

1 − z2 + 2Y z2

1 − z2 + Y 2 ln 2

n(1 − z2)

(
2 + 1

ε

)

≤ O
(
n

−1
2

) + O(1) (25)

where O(.) is the order notation, R∗
n is defined in (24), z

�=
(1 − 4λ+(1 − λ+))/(1 + 4λ+(1 − λ+)) < 1, ε = √

Y ln 2/4n, and
step size μ = (4ε/2ε + 1)(2 + 2z/Y 2).
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Proof: We first note that β ln(λn+1/λ1)+ (1 −β) ln(1 − λn+1/

1 − λ1) ≤ ln 2 for β, λn ∈ [0, 1],∀n since λ1 = 1/2 and
Ln( ŷβ, y) ≤ 2Y n, ∀β. Then, from (19) and (23)

Ln( ŷ, y) − Ln( ŷβ, y) ≤ γ (ε) ∀β

and

γ (ε) = 4Y εn

1 − z2 + 2Y z2n

1 − z2 + Y 2 ln 2

1 − z2

(
2 + 1

ε

)

where

γ ′(ε) = 4Y n

1 − z2 − Y 2 ln 2

1 − z2
1

ε2 = 0 ⇒ ε∗ =
√

Y ln 2

4n

is chosen to get the tightest bound since γ ′′(ε) = (2Y 2 ln 2/
1 − z2)(1/ε3) > 0, ∀ε > 0. Hence, the statement in the corollary
follows. �

We note that the algorithm given in (2), as shown in the corollary,
has an error floor 2Y z2/1 − z2, which bounds the limit of the time-
normalized regret limn→ ∞1/n R∗

n as follows. This result is due to
the nonconvexity of the loss function that uses the sigmoid function
in parameterization of λt . On the other hand, we have a certain
control over this error floor, which is given here as a function of
0 < z = (1 − 4λ+(1 − λ+))/(1 + 4λ+(1 − λ+)) < 1. Since
limλ+→1/2 z = 0, and limλ+→0 or 1 z = 1, z controls the size of
the competition class {β}, where β ∈ [λ+, 1 − λ+]. As this class
grows, the studied algorithm in this brief is affected by a larger
error floor induced on the time-normalized regret 1/n R∗

n . Therefore,
the algorithm given in (2) does not guarantee a diminishing time
normalized regret and the bound it promises is weak when compared
with the, for example, exponentiated gradient algorithm [6], whose
time normalized regret is O(n−1/2).

IV. SIMULATIONS

In this section, we illustrate the performance of the learning
algorithm (2) and the introduced results through examples.
We demonstrate that the upper bound given in (4) is asymptotically
tight by providing a specific sequence for the desired signal yt and
the outputs of constituent algorithms ŷ1,t and ŷ2,t . We also present
a performance comparison between the adaptive mixture and the
corresponding best mixture component on a pair of sequences.

In the first example, we present the time-normalized regret 1/n Rn
of the learning algorithm (2) defined in (5) and the corresponding
upper bound given in (4). We first set Y = 1, λ+ = 0.15, and ε = 1.
Here, for t = 1, . . . , 1000, the desired signal yt and the sequences
ŷ1,t , ŷ2,t , which the parallel running constituent algorithms produce
are given by

ŷ1,t = Y ; ŷ2,t = (−1)t Y ; and yt = 0.15ŷ1,t + 0.85ŷ2,t .

Note that, in this case, the best convex combination weight is
βo = 0.15. In Fig. 1(a), we plot the time-normalized regret of the
learning algorithm (2) 1/n Rn and the upper bound given in (4)
O(1/(nε)). From Fig. 1(a), we observe that the bound introduced
in (4) is asymptotically tight, i.e., as n gets larger, the gap between
the upper bound and the time-normalized regret gets smaller.

In the second example, we demonstrate the effectiveness of
the mixture of experts algorithm (2) through a comparison between
the time-normalized accumulated loss (3) of the learned mixture
and the one of the best constituent expert. To this end, we design
two experiments with t = 1, . . . , 10 000, λ+ = 0.01, ε = 0.1, and
Y = e, where

ŷ1,t = 2e−0.005t − 1, ŷ2,t = sin(0.1t)

Fig. 1. (a) Regret bound derived in Theorem 1. (b) Comparison of the
adaptive mixture (2) with respect to the best expert.

are chosen as the experts in both of the experiments. In the first
experiment, we choose the desired signal as the linear combination
y(1)

t = 0.75ŷ1,t + 0.25ŷ2,t , where β0 = 0.75. In the second exper-
iment, we choose the desired signal as the nonlinear function of the
outputs of the both experts as y(2)

t = sin(0.75ŷ1,t + 0.25ŷ2,t ). Note
that the first expert provides a better time-normalized accumulated
loss in both cases, i.e., 1/nLn( ŷ1,t , y(i)

t ) < (1/n)Ln( ŷ2,t , y(i)
t ).

In Fig. 1(b), we plot the time-normalized accumulated loss of the
best (first) expert as well as the one of the mixture returned by the
learning algorithm. From Fig. 1(b), we observe that the adaptive
mixture outperforms the best mixture component, i.e., expert one
in these examples, in both of the cases. Furthermore, the adaptive
mixture optimally tunes to the best linear combination in the first
case, which is expected since the generation of the desired output is
through a linear combination. On the other hand, the adaptive mixture
suffers from an error floor, i.e., the time-normalized accumulated
loss does not converge to 0, in the second case, since the generation
of the desired signal is through a nonlinear transformation.

In this section, we illustrated our theoretical results and the
performance of the learning algorithm (2) through examples. We
observed through an example that the upper bound given in (4)
is asymptotically tight. We also illustrated the effectiveness of the
adaptive mixture on another example by a performance comparison
between the mixture and its best component.

V. CONCLUSION

In this brief, we analyze a learning algorithm [8] that adaptively
combines outputs of two constituent algorithms running in parallel to
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model an unknown desired signal from the perspective of the online
learning theory and produce results in an individual sequence manner
such that our results are guaranteed to hold for any bounded arbitrary
signal. We relate the time-accumulated squared estimation error of
this algorithm at any time to the time-accumulated squared estimation
error of the optimal convex combination of the constituent algorithms
that can only be chosen in hindsight. We refrain from making
statistical assumptions on the underlying signals and our results are
guaranteed to hold in an individual sequence manner. To this end,
we provide the transient, steady state, and tracking analysis of this
mixture in a deterministic sense without any assumptions on the
underlying signals or without any approximations in the derivations.
We illustrate the introduced results through examples.
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