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Universal Switching Linear Least Squares Prediction
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Abstract—In this paper, we consider sequential regression of in-
dividual sequences under the square-error loss. We focus on the
class of switching linear predictors that can segment a given indi-
vidual sequence into an arbitrary number of blocks within each of
which a fixed linear regressor is applied. Using a competitive al-
gorithm framework, we construct sequential algorithms that are
competitive with the best linear regression algorithms for any seg-
menting of the data as well as the best partitioning of the data into
any fixed number of segments, where both the segmenting of the
data and the linear predictors within each segment can be tuned to
the underlying individual sequence. The algorithms do not require
knowledge of the data length or the number of piecewise linear seg-
ments used by the members of the competing class, yet can achieve
the performance of the best member that can choose both the parti-
tioning of the sequence as well as the best regressor within each seg-
ment. We use a transition diagram (F. M. J. Willems, 1996) to com-
pete with an exponential number of algorithms in the class, using
complexity that is linear in the data length. The regret with respect
to the best member is per transition for not knowing
the best transition times and for not knowing the best
regressor within each segment, where is the data length. We con-
struct lower bounds on the performance of any sequential algo-
rithm, demonstrating a form of min–max optimality under cer-
tain settings. We also consider the case where the members are re-
stricted to choose the best algorithm in each segment from a finite
collection of candidate algorithms. Performance on synthetic and
real data are given along with a Matlab implementation of the uni-
versal switching linear predictor.

Index Terms—Piecewise continuous, prediction, transition dia-
gram, universal.

I. INTRODUCTION

I N this paper, we apply a competitive algorithm framework
to signal processing tasks in attempt to achieve the perfor-

mance of the best algorithm from a large class of candidate al-
gorithms for each individual sequence, rather than turning the
given signal processing task into an intermediate parameter es-
timation problem and averaging over some assumed statistical
knowledge of the signals of interest. This competitive approach
has extensive roots in the machine learning [2]–[4], adaptive
signal processing [5], and information theory [6], [7] literature,
much of which builds on the seminal work of Hannan on pre-
diction of individual sequences [8]. The individual sequence
approach has been applied with much success in the universal
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data compression literature starting with the pioneering work of
Fittingoff [9], Davisson [10], Elias [11], Ziv [12] and later Ziv
and Lempel [13], Krichevsky and Trofimov [14], Rissanen and
Langdon [15], and others [16]–[20]. The connections between
universal source coding and sequential decision problems with
other loss functions can be traced back to the work of Cover
[21], Rissanen [22], Rissanen and Langdon [15], and Ryabko
among others [23]–[25]. In the computational learning theory
literature, following the work of Vovk on competitive algorithms
and aggregating strategies [26], Foster [27], Cesa-Bianchi et al.
[28], and Haussler et al. [29], a number of results for general loss
functions have been obtained using mathematical tools that are
similar in spirit to those developed in the lossless source coding
literature.

Here, the performance measure considered is with respect to
the best from this class instead of the usual parametric mod-
eling error between the output of the modeling algorithm and
the signal observations. For a number of related problems, it
has been shown that by not forcing the algorithms to make hard
decisions about a set of parameters at each step, but rather by
competing against a rich class of approaches, algorithms can
be constructed that compete well with respect to all candidates
from a given class such that they sequentially achieve the per-
formance of the best candidate from that class. That is, they per-
form as well as the best “batch” algorithm that had the ability to
observe all of the data in advance, and select the best candidates
before even beginning to process the data.

To further define this approach, consider a game in which a
player is required to make a set of decisions and based on
these decisions the player incurs some loss that de-
pends on the sequence of outcomes that are selected by na-
ture. For example, for the predic-
tion problem under the square-error loss. The goal of the game is
for the player to outperform (or perform at least as well as) every
algorithm in some class , against which the player competes.
If each algorithm in the class has a set of decisions , ,
then the total sequentially accumulated loss for each competing
algorithm would be given by .
The goal of the game is for the player to achieve a sequentially
accumulated loss such that

uniformly, for every individual sequence . If
the player can achieve a sequentially accumulated loss such that
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and , , then we say that the player has a
strategy that is “universal” with respect to the class of com-
peting strategies for individual sequences in under the loss

.
For linear regression of real-valued data, several individual

sequence results have been obtained under various loss func-
tions in [4], [30], and [31], where the accumulated loss is shown
to be asymptotically as small as the best fixed linear regressor
for each sequence, taken from the class of all linear regres-
sors of a given order . In [31], these algorithms are shown to
be min–max optimal in a certain sense for regression, and in
[30], they are shown to be min–max optimal for prediction of
real-valued sequences. In [27], a restricted form of linear re-
gression (via convex combination) is considered for binary data,
with a regret that is slightly larger than that in [31] and [30].
These algorithms are constructed by considering a hypothetical
performance-weighted (Bayesian) combination of all linear re-
gressors and selecting a prediction based on this “mixture pre-
dictor.” This mixture approach is different than the classical ap-
proach, which typically involves recursively estimating the pa-
rameters of a linear regressor based on data observed up to the
point at which each decision must be made. This mixture ap-
proach has also successfully been applied to problems other than
prediction, including portfolio selection [6], lossy source coding
[7], and nonlinear signal modeling [5]. We refer to algorithms
such as these that are universal with respect to a fixed class of
algorithms as static universal algorithms, in that the competing
class contains a fixed set of algorithms, and performance is com-
pared with the single best, fixed element of the class ,

.
In this paper, we consider the case when the underlying com-

peting class has the added ability to switch among the various
static elements. Here, each competing algorithm can divide the
observation sequence into an arbitrary collection of segments,
say of them, and fit each contiguous segment with the
best algorithm from a given class of static algorithms, such as a
fixed linear regressor, for that segment. For a path that contains

transitions, there exist segments. The loss incurred by a
class member for any such partition with segments is
then the sum of the losses of the fixed static algorithms associ-
ated with each segment, i.e.,

(1)

where the partition is represented by
and for some competition class . The best par-

tition with a given number of transitions is then the one which
gives the minimum total loss. In this paper, we focus primarily
on parametrically continuous linear regressions as the class of
experts. Specifically, given a set of observations
and a sequence of outcomes , a static algorithm in each seg-
ment is given as , where and

. Now, the loss incurred by a class member in (1)
becomes

(2)

under the square-error loss, where is the class of all th order
linear regressors. The competing algorithms can determine each

independently for each segment. Here, we choose to com-
pete against such a switching class without knowing the value
of or in advance. A natural restriction for the number of
possible transitions (switches) is , where is the length
of the observation sequence. Unlike the approaches in [3] and
[30]–[36], we try to exploit the time-varying nature of the best
choice of algorithms for any given realization, since the choice
of best algorithm from a class of static algorithms can locally
change over time. Once again, rather than trying to find the best
partition (possible best switching points) or the best number of
transitions, our objective is simply to achieve the performance
of the best partition directly and simultaneously for all . The
algorithms we provide are strongly sequential such that they do
not need to know the number of transitions, times of these tran-
sitions, or length of the data a priori. While we focus on para-
metrically continuous classes of linear regressors as well as ar-
bitrary finite classes of algorithms in (2), the methodology in-
troduced here can be extended to a wide variety of more general
competition classes as in [37] or to more general loss functions
as in [31]. Our algorithms are generic such that other static uni-
versal algorithms as in [3], [31], [33], and [38] can be incorpo-
rated to generalize their respective bounds for the static case to
the switching framework studied in this paper.

When the competing class can select a different fixed
th-order linear regressor for each segment in a given

partition of the data from all th-order linear regressors,
with segments, the sequential algorithms introduced
here will be shown to have an excess loss, or regret, of

, [and
, ], over the performance of the

best partition (for data bounded by ). For a partition with
segments, we also provide a corresponding lower bound

on the excess loss of ,
[and , ], for the performance of
any sequential algorithm without prior knowledge of or .
When , i.e., no transitions, these upper and lower bounds
match, and the approach is min–max optimal in this sense. The
algorithms discussed here have complexity linear in data length

, i.e., per sample. A version with fixed complexity per
sample can be produced using a different weighting method
that was introduced in [39] with normalized excess loss of

over the performance of the best parti-
tion. However, we observe that even a simplified version of our
algorithms with fixed complexity per sample, i.e., where

is the size of the linear regressors in the class, introduced in
Section II-A, nearly achieves the performance of the universal
algorithms with the full transition diagram with complexity

per sample.
A closely related problem was investigated in [38] and [40]

under the restricted framework of “tracking the best linear pre-
dictor.” In [38] and [40], three algorithms are investigated and
compared with algorithms from [41] and [42]. In [38], the static
bounds of these algorithms are extended to the switching case
considered here. However, for the bounds in [38] to hold, the
underlying competition class is restricted to have ’s in (2)
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in certain convex regions. These convex regions are fairly re-
strictive and only satisfied in certain scenarios, e.g., algorithms
that can only choose one algorithm from a finite set for each
segment. Even in this restricted case, the performance over that
of the best switching algorithm has excess loss of [not

], where is the total loss of the best partition and
the underlying switching parameters of each algorithm should
be chosen a priori based on the number of switches and the
length of the data . The bounds developed in this paper are
in terms of the regret with respect to the performance of the
best partition and the time-averaged excess loss over the best
partition asymptotically vanishes. Furthermore, the static algo-
rithms used in [38] and [40] can also be lifted to the switching
case using our algorithms with the same order of growth in the
upper bounds, rather than the additional . Through simula-
tions, we also demonstrate that our algorithms with complexity

and the simplified algorithms with complexity sig-
nificantly outperform the algorithms introduced in [38] and [40]
with similar complexity.

When the static class of algorithms has a finite number of
elements as in [32] and the competition class is restricted to
choose a single element for each segment from a finite number,
this problem has been extensively investigated in the compu-
tational learning theory literature and referred to as “tracking
the best expert” [4], [40]–[44]. We investigate this framework
in Section III. For a process and ex-
perts to choose from (for each segment), one can enumerate all
the partitions of the sequence and assign different experts to

each segment in order to construct algo-

rithms for each partition–expert pairing. This finite number of
possible algorithms can then be combined by a static universal
algorithm, as in [32] and [33] to yield an algorithm with a re-
gret of over the performance
of the best switching algorithm. Nevertheless, this naive al-
gorithm [42] is naturally unimplementable due to exponential
number of possible algorithms to combine. To overcome this
complexity problem, in [42], the authors generalize Vovk’s ag-
gregating algorithm (AA) [33] and introduce two main algo-
rithms with complexity per sample, whose excess loss
are of the same order of the naive algorithm. These algorithms
have excess loss of and

, however, certain parameters should be
optimized a priori based on and . A natural quasi-proba-
bilistic interpretation of these algorithms is given in [41], where
improved versions of these algorithms are introduced that do not
need a priori knowledge of or and attain the performance of
the naive algorithm. Nevertheless, these improved algorithms
have complexity growing linearly in data length, i.e., in-
stead of , per sample.

In [41], Vovk demonstrates that the algorithms in [38] are in
fact an application of the AA [33] to combine (or derandomize)
a continuum of certain elementary predictors. Taken literally,
this combination is infeasible due to the continuum of elemen-
tary predictors to combine. However, when the class has a finite
number of elements, the algorithms in [42] actually perform this
implementation. In this sense, our algorithms extend this notion.
In the construction of our algorithms, we begin with the result

that a weighted average over a continuum of all such elementary
predictors indeed achieves the performance of the best predictor
in the class. This is a straightforward result and again directly in
analogy with the naive algorithm. Our main contribution is that
this literally infeasible mixture can be efficiently and sequen-
tially implementable for wide variety of competition classes.
The key difference between this related work and that developed
here is the constructive nature of our results. We illustrate a pre-
diction algorithm with a time complexity that is linear in the data
length, which is strongly sequential such that it does not need
any knowledge of data length or switching times and whose al-
gebraic operations are explicitly given in the text. For a finite
competition class, we present algorithms whose regret are of the
same order as those in [42], i.e.,
without the need to optimize parameters a priori. We also pro-
vide corresponding upper and lower bounds when the number of
segments is large, e.g., comparable to . Finally, modifications
of the algorithms of [42] are introduced in [44] for the case of
large, structured expert classes for which there exist efficient im-
plementations of the exponential weighting, and in [43], to track
a small set of experts from a larger set of experts by mixing past
posteriors, each with bounds of the same order as [40]. Tracking
the best disjunction is investigated by [45] using similar ideas to
[42] and tracking the best portfolio is investigated by [46] using
similar ideas to [41].

We begin by studying the prediction problem when the static
competition class contains fixed-order linear regressors, in
Section II. We then continue to provide corresponding lower
bounds. In Section III, we investigate the case when the static
class contains a finite set of algorithms. This paper is then
concluded with simulations of the algorithms on synthetic and
real data.

II. SWITCHING LINEAR REGRESSION

In this section, we investigate linear regression with the
square-error loss in a competitive framework for determin-
istic unknown data. The main results of this section are
given in Theorems 1 and 2 as an upper bound and a lower
bound on performance, respectively. Here, the real-valued
sequence and the real-valued vector sequence

are assumed to be bounded but otherwise arbi-
trary, in that for some and ,

, for some . For given sequences and
, a competing algorithm with a transition path with
transitions, represented by , partitions into

segments such that and are represented by the
concatenation

and



192 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

respectively. Given the past values of and , a competing
algorithm forms an estimate of the desired signal in each seg-
ment as

where , , ,
, , , and
. For simplicity, we assume and

. Given and , there exist such possible transition

paths . We identify the best competing algorithm for any
as the one optimized by selecting the transition path and
the constants based on observing and in advance. As
such, we try to minimize the regret

where is the prediction at time of any sequential algo-
rithm, is any transition path representing with

transitions, and . In the linear pre-
diction problem, the observation sequence is formed by the
past observations, i.e., . We can
also consider a particular choice of for all , which
corresponds to competition against fixed constant predictions
in each segment such that , , for each sample
of the sequence for . Here, each can
be selected independently for each region (we
denote constant predictors using the variable to avoid confu-
sion with the scalar linear regression problem). Theorem 1 and
the final universal piecewise linear predictor can be extended to
this case to construct a sequential algorithm for which the regret
over the performance of the best piecewise constant predictor is
at most for any of

, or and with no knowledge of , or a priori.
For switching linear regression, we have the following result.
Theorem 1: For all , , a sequential algorithm

with complexity linear in data length can be constructed
such that for and bounded, real-valued arbitrary scalar
and vector sequences, such that and ,

, for all and

satisfies

(3)

and

(4)

for any representing transition path and any ,
such that does not depend on , or .

The parameter in (3) and (4) is used for regularization pur-
poses and can be selected arbitrarily, such that ; in
(3) and (4) controls the weight assignments to each transition
path and can be set to any value . The upper bound in
(3) is better (tighter) when the number of transitions is small,
i.e., . If the number of transitions is closer to ,
then the upper bound in (4) is better. Theorem 1 states that
the average squared prediction error of the universal linear re-
gressor is within of the best batch piecewise
linear th-order regression algorithm with transitions (tuned
to the underlying sequence), uniformly, for every individual se-
quence and vector sequence .

Proof of Theorem 1: For each possible transition path
representing with transitions and data length ,
we consider a family of predictors , each with its own
regressor vectors where each repre-
sents a fixed regression vector for the th region, such that for
th segment . For each pairing of and , a

measure of the sequential prediction performance or loss of the
corresponding competition algorithm is defined as

(5)

We next define a function of the loss, namely, the “probability”

which can be viewed as a probability assignment of a predictor
with transition path and with parameters , to the data

, for , induced by the performance of the corre-
sponding algorithm with and on the sequence , where
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is a positive constant. Given any , the competing algo-
rithm with best fixed predictor in each region assigns to the
largest such probability , i.e.,

where

and and
. Maximizing over all

(with transitions) yields

Here, corresponds to
the probability assigned by the best predictor in the class with
transitions. Our goal is to demonstrate a sequential algorithm
which achieves for any and without
knowledge of either or . We will accomplish this result using
a double mixture approach. We first demonstrate an algorithm
achieving the performance of the competing algorithm with the
best fixed linear regressor in each region given any , i.e.,

. Then, we will show that a proper weighted com-
bination of all such algorithms over all , , can
be used to find a sequential algorithm achieving
for any .

For any given , the probability assigned by the al-
gorithm with the best fixed linear regressors in each region

can be asymptotically obtained by a sequential
predictor that is universal with respect to the class of fixed
linear regressors [30], independently for each segment , i.e.,

(6)

where

for some . In each segment, this universal algorithm
achieves the following regret against the performance of the best
fixed predictor for that region [30]

for any . Applying this result for all segments and defining

(7)

yields

(8)

where . Hence, given , using
in each segment defines a sequential algorithm that

asymptotically achieves the performance of the algorithm with
the best fixed linear regressors for each segment. For all
and , we construct a similar sequential predictor yielding a
total of such sequential predictors.

We then define a sequential probability assigned to by a
performance-weighted mixture of the probabilities assigned by
all such sequential predictors over all possible and

(9)

with a suitable prior over the partitions , . It will
be convenient in later calculations if the weighting is
nonnegative and satisfies

Now, we have a probability assignment to the sequence in-
duced by the class of all possible state-constant (fixed) predic-
tors and all possible transition paths. By (9), we can conclude
that this probability assignment satisfies

(10)

for any transition path , since
. Combining (10) and (8) yields

(11)

for any transition path including .
The assigned probability for directly contributes to the

regret (excess negative log probability) as
over the best batch predictor given any path. Hence, it is
desirable that the probability of the “best path” be assigned a
large probability. This probability assignment should also be
constructed so that the overall probability assignment and the
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resulting predictor can be sequentially computable. Although
many approaches exist, we will investigate only two such
assignments in detail. We focus on these assignments since they
yield sequential prediction algorithms with linear complexity
in .

As the first weighting method, we will use a form of es-
timated probability for with transitions, i.e., the
Krichevsky–Trofimov (KT) weighting used in [1] and [47].
The KT estimate of the probability of a binary independent and
identically distributed source of length with ones and

zeros is defined as

This probability assignment admits the sequential updates

(12)

for all and . For a given path , we construct
a binary string in which we represent each transition as a one
and each instant without a transition as a zero, forming a binary
sequence of length ; e.g., for , there exist ones and
a total of zeros. We then define for any

as

(13)
This probability is composed of KT estimates. Here, we
first estimate the probability of the first transition as

due to the transition at time which ends the first
segment and then we repeat this process for segments to get
the final probability assignment in (13). In the last segment,
there is no transition, hence . It can be shown
[1] that and this probability assign-
ment yields [1], [47]

(14)

for any .
By using the bound in (14), we can provide an upper bound

for in (11) as

(15)

Two different probability assignments introduced in [39] yield
tighter upper bounds for

(16)

and

(17)

for all (which is a parameter used by the probability as-
signment algorithm), which would give tighter upper bounds on
the total regret over the best partition. Here, the upper bound
due to the KT probability assignment can be viewed as a spe-
cial case of (17) when . Other weighting methods used
in [1] and [39] (such as the reduced state, quadratic complexity
probability assignment) can be extended to yield prediction al-
gorithms using the same methodology used in this paper. For
the reduced state algorithm, we can obtain upper bounds on

that are larger than both (16) and (17); how-
ever, the reduced state algorithm has considerably lower com-
plexity, i.e., complexity that does not grow with .

We now have a method of assigning a probability to the se-
quence that achieves, to first order in the exponent, the same se-
quential probability as that assigned by the best batch predictor,
for any partition , as shown in (15). In this sense, the prob-
ability assignment is a “universal” probability assign-
ment. It still remains to find a sequential prediction algorithm
whose associated probability assignment is as large as .

For this purpose, we will show that the “conditional
probability”

from which can be calcu-
lated sequentially in closed form. We will then describe a pre-
dictor that achieves this conditional probability for all , thereby
achieving .

At each time , we divide the set of all possible paths ,
, into disjoint sets. We label each set by a state

variable representing the most recent transition of a corre-
sponding path within the period such that for
any , . Given , there can be at most states

. At time , all transition paths with the same last
transition instant are represented by the state .
We then define as the assigned probability of all
predictions at state at time . For example, is the
weighted sum of all probabilities assigned to by the sequen-
tial predictors whose transition paths ended up at state;
i.e., for all paths such that the last transition was at
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Fig. 1. Transition diagram for . Each circle represents a state; the number
inside is the time of the last transition.

Since the states partition the set of paths

To obtain a closed-form expression for , we
will show that , , can be calculated
recursively by using a linear transition diagram, similar to that
used in [1], and as shown in Fig. 1 (after assigning appropriate
weights to each branch). Each box in the Fig. 1 represents a state
variable with the corresponding probability . In
this figure, any directed path represents a transition path where
a horizontal move denotes no transition, while an upward move
represents a transition. As such, state represents the most
recent transition within the period .

We now derive a recursive update for each ,
. From Fig. 1, we see that there exist only two possible

transitions from each state. At time , all the paths that ended
at state , , will end up in state if
no transition happens at time , i.e., a horizontal move in Fig. 1.
From (12) and (13), we obtain the transition probability as

(18)

since only the last part of (13) should be changed in all paths.
Given that , paths ending up at state can only
come from a horizontal move from .

If there exists a transition at time , i.e., an upward
move, the probabilities of all paths from state ,

, should be adjusted to get ,
i.e.,

Naturally,
For the probability assignments of [39], used in (16) and (17),
only the transition probabilities need to be changed.
Hence, we will use rather than its evaluation to maintain
a generic representation.

In addition to updating path probabilities for the corre-
sponding sequential predictors of (7), the probabilities induced
by these predictors in should also be up-
dated by the prediction of leading to . For any
path , , when there is no switch, we
need to multiply (7) with

where . When there is a switch at time , the
corresponding probabilities from should be
adjusted by multiplying them with

After combining the update for path probabilities and update
for prediction probabilities, we conclude for

(19)

where

(20)

and for some ,
yielding a sequential update for , when .

When , there exist possible transitions (to gen-
erate this new path) from each state , ,
at time to form the state at time

(21)

since , hence the sequential update for ,
when .

A closer look at Fig. 1 and (19) and (21) reveals that
can be written as

where
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Hence

where

Then

(22)

where the weights are defined as

(23)

and are a form of performance-weighting for the states
, emphasizing those states that have the largest

and, therefore, those states that have
the lowest prediction error (i.e., performing well) on the data
observed thus far.

If we can find a prediction algorithm with prediction
such that

(24)

then the result is proven by simply taking the logarithm of both
sides. We now introduce two different approaches to finding a
suitable satisfying (24). The first is based on a concavity
argument and results an algorithm which can be constructed by
a simple linear mixture. The second approach is based on the
AA of [31] using a search procedure with polynomial-time com-
plexity to construct its final output. This second approach re-
sults in the tighter upper bound introduced in Theorem 1. Both
approaches use the same transition diagram and states, only dif-
fering in the last stage to form the final output.

Observe that can be written as

(25)

where is defined as

(26)

Since

is sum of a function evaluated at a convex
combination of values. In the first method, if the function
is concave and , then

by Jensen’s inequality. The function defined in (26) will be con-
cave for values of such that . This corre-
sponds to

where is any prediction in (25). Since the signal
, then the prediction values in (25) can be chosen such that

. Therefore, by Jensen’s inequality, whenever
, the function will be concave at all points of the pre-

diction and

which gives the universal predictor as
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since . By using (9) and (14) [or (16) or (17)], we
conclude that

(27)

for any transition path , for any number of transitions
. The term in the upper bound can be

viewed as the parameter regret resulting from maximizing
over . The algorithm is

sequential such that it does not require knowledge of or
a priori, but asymptotically achieves the performance of the

best batch algorithm, for all , sequentially.
For the second method, in (25) is in the

form of the a posteriori prediction algorithm (APA) of [31]. For
values of from [31], there exists an interval of
that satisfies (24) and a value in this interval can be found in
polynomial time. Using this value of yields an upper bound
with one fourth of the regret per transition in (27). Hence, using
AA in the final stage instead of the convex combination will
result in

Using the probability assignment from (16) [or (17)] with the
AA algorithm yields the bound in Theorem 1

This completes proof of Theorem 1.
We next provide a lower bound for any sequential algorithm

competing against the class of piecewise linear predictors.
Theorem 2: Let be the prediction from any se-

quential prediction algorithm applied to and
, a bounded, real-valued arbitrary sequence

and vector sequence, such that and ,
, for all . Then, for any , there exists a

constant such that

where is the class of all sequential algorithms and
.

Outline of proof of Theorem 2: We begin by noting that, for
any distribution on

(28)

where is the expectation taken with respect to any dis-
tribution on . Hence, to obtain a lower bound on the total re-
gret, we need only to lower bound the right-hand side of (28).
Given any transition path , consider the following way of
generating the sequence . For each segment , let be a
random variable drawn from a beta distribution with parameters

. For each segment, we generate from a Markov
distribution with parameter and we let to have only two
possible values, i.e., or . In the th segment, we gen-
erate such that with probability and

with probability . At the boundary
point of each segment, we select or
with equal probability. The result now follows from Theorem 2
of [30].

A. Algorithmic Description

In this section, we give a Matlab implementation of the
switching linear regression algorithm using th order re-
cursive least squares (RLS) regressors in (20). For one-step
ahead prediction, the regression vectors should be replaced
by and for piecewise con-
stant prediction . The complete algorithm is given
in Fig. 2. The corresponding implementation uses Willems’
[1] weighting for transition probabilities. For other weighting
methods, only the calculation of the transition vector needs
to be changed, i.e., in Fig. 2. For this particular imple-
mentation, at time , we have a vector of state probabilities

, a vector
of state predictions , and
a vector of state transitions

. For each time,
contains the normalized

state probabilities as in (24). These vectors are updated at each
iteration and the size of each vector is expanded by one for
each new sample.

The complexity of the universal algorithm in Fig. 1 is ,
i.e., the complexity grows with data length. A simplified version
of this algorithm with a constant complexity per sample (e.g.,
complexity linear in the prediction order) can be constructed by
pruning the low probably states from the full transition diagram.
In this version of the algorithm, at each time instant , we sort
the state probabilities and keep only the states corresponding
to top states. Only these states remain for the next sample
and all other states are dropped. The update equations for
remain the same, except now is calculated based on only
these state probabilities and final prediction is given as the
weighted combination of the prediction from these states.

III. SWITCHING ADAPTIVE FILTERS

In this section, we investigate competing against a finite
set of static algorithms in each region. Given a real-valued,
bounded sequence , , we now consider a
class of different algorithms producing estimates ,

, . For an observation sequence
and outputs of these algorithms

, in the class, a tran-
sition path with transitions, represented by ,
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Fig. 2. Complete implementation of the universal piecewise linear algorithm for linear regression.

divides and into segments such that and each
can be represented as a concatenation of

and

respectively. A more general class of competing algorithms
could then independently select for each segment a different
algorithm from the class of algorithms.

Given any , the best competing algorithm with minimum
total square error would choose the best algorithm for each seg-
ment from the class of algorithms. Here, we demonstrate a
sequential algorithm with no knowledge of , , or a priori
that asymptotically achieves the performance of

(29)

for any transition path such that the difference between
the total loss of this sequential algorithm and the loss defined
in (29), normalized with , will vanish as goes to infinity.
Here, is the best algorithm for the th segment such that

if

(30)

for , .
Theorem 3: For all , a sequential algorithm with

complexity linear in the data length per prediction can be con-
structed for any bounded, real-valued arbitrary sequence ,

, using predictions of arbitrary algorithms ,
, at time such that
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and

for any represented by and , without any
knowledge of , or a priori, where is the predic-
tion of the best algorithm in the sense of (30) and does not
depend on , or .

The proof follows from Theorem 1 in [33]. We note that a
linear complexity lattice filter-based algorithm [32] can achieve

Proof of Theorem 3: The proof of Theorem 3 parallels that
of Theorem 1, so we only highlight the main differences. Sup-
pose the predictions of the algorithms are given as ,

, . Since we consider the predic-
tion of a bounded signal , i.e., , any pre-
diction made by any of the constituent algorithms in the
mixture which is outside the interval can be replaced by

if or if . This replacement will
only improve the performance of the underlying predictor .
Hence, without loss of generality we can assume that each con-
stituent prediction algorithm outputs a bounded prediction in

. Here, an algorithm from the competing class with tran-
sition path will select a single algorithm for each segment
independently. Then, for each such transition path , with
transitions, a measure of the sequential prediction performance
of the best competing algorithm is constructed

where is the best algorithm for each segment as in (30).
For such a path , we define the probability

which can be viewed as a probability assignment of and the
best competing algorithm to the data . Maximizing

over all (with transitions) yields .
Here, corresponds to the best predictor in the
competition class with transitions. Our goal is to demonstrate

a sequential algorithm that achieves for all and
without a priori knowledge of or .
Given any , if we use the AA of [33] to combine the
static algorithms in each segment, the AA for that segment

achieves the performance of the best predictor for that segment,
i.e.,

where is the prediction of the AA running on the
constituent algorithms starting from time to time .
Applying this result for all segments

(31)
yields

For a given , running an independent AA for each segment
yields a sequential predictor, similar to the sequential predictor
represented in (7). After this point, the derivation follows the
proof of Theorem 1, where we combine sequential algorithms
as in (31) with proper probability assignment . For con-
struction of the universal algorithm, we only need to replace the
prediction algorithm in (20) with the AA

where is the AA operating on the constituent algo-
rithms from time to .

IV. SIMULATIONS

In this section, we demonstrate the performance of the
universal algorithms with several different examples. We first
investigate the one-step-ahead prediction of a second-order
process that switches its parameters every 150 samples, i.e., the
process switches between

(32)

every 150 samples. Here, is a sample function of a
Gaussian process with zero mean and unit variance. For
this process, the number of transitions is small compared to
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Fig. 3. (a) Prediction result of a sample function of a second-order autoregressive process as in (33) switching every 150 samples. (b) Normalized accumu-
lated sequential prediction error for universal piecewise linear predictor “uni,” universal predictor with reduced transitions diagram “red-uni,” C-EGU
“C-EGU,” C-EG “C-EG,” derandomized algorithm by Vovk “vovk,” fading RLS “RLS-fading,” and normalized accumulated power of from (33) “noise.” (c)

in (24). (d) Distribution of the weights in (24) at .

the data length, i.e., . A sample function is given in
Fig. 3(a). Since the main results of this paper are on prediction
of individual sequences, in Fig. 3(b), we plot the normalized
accumulated square prediction error of several algorithms
for a sample function of the process in (32). In Fig. 3(b), we
plot normalized mean square prediction error of the universal
algorithm with full transition diagram, the universal algorithm
with a reduced transition diagram as introduced in Section II-A,
two algorithms introduced in [38] including constraint un-
normalized exponentiated gradient (C-EGU) and constraint
normalized exponentiated gradient (C-EG), an improved ver-
sion of the fixed share algorithm by Vovk [41], and an RLS
predictor with fading memory; and the sample noise floor,
i.e., normalized accumulated power of . For each of these

algorithms, we chose . We also
simulated the constraint gradient descent (C-GD) algorithm
from [38], however, the performance of this algorithm was
significantly worse than the rest. Although we observe this in
our simulations, it is shown in [38] that the GD algorithm can
do better than EG on certain types of data. We note that for
these types of data one expects that C-GD should give better
results than C-EG. Since the algorithms introduced in [38]
have complexity , , the universal algorithm with
reduced transition diagram keeps only two paths (or states) in
order to make a fair comparison. The fading parameter of the
RLS algorithm is selected as based on the length
of the stationary segments. The switching rates are given by
1/100 and 1/100 for C-EG and C-EGU, respectively, and 4 for
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C-GD. The learning rate chosen for C-EG is larger (and gives
better results) than the optimal switching rate prescribed in [38]
since the optimal switching rate suggested in [38] is usually
overly pessimistic. However, we avoided further optimizing
the switching rates to be fair to the other algorithms. For the
universal algorithm, the parameter is estimated based on the
observation sequence using standard deviation of the process
observed so far (i.e., sequentially); however, we observed that
the performance of the algorithm was fairly insensitive to
changes in . We observe that the universal algorithm suffers
considerably less mean square error (MSE) at each transition
of the underlying process. Although not as good as the full
algorithm, the universal algorithm with the reduced diagram
keeping only the top two states also suffers considerably less
MSE at each transition. This behavior can be seen in Fig. 3(c),
where we plot for each time , the index of the state on the
transition diagram with the largest weight, i.e.,
from (23) for the universal algorithm and the universal algo-
rithm with reduced transition diagram. In this figure, the -axis
represents the sample since the last transition. The universal
algorithm assigns, and continues to assign, the largest weight

in (23) to the transition paths that switch exactly at the
transition times of the underlying process, i.e., every 150 sam-
ples. We also plot the distribution of the weights in (32)
among the states in Fig. 3(d). The universal algorithm appears
to prefer the paths which have switching times in accordance
with the transition times of the underlying process. We point
out that although the reduced state algorithm correctly selects
the paths with the switching pattern in accordance with the
switching pattern of the underlying process, its performance
is not as good as the full universal algorithm. Although, it is
not a fair comparison, the extended version of the fixed share
algorithm by [41] was included for completeness.

As the next example, we investigate the performance of the
reduced state universal algorithm as a function of the number of
states kept at each step. Here, the underlying second-order au-
toregressive (AR) process in (32) switches its parameters every
25 or 150 samples randomly, i.e., the duration of each stationary
segment can be either 25 samples or 150 samples. In Fig. 4(a),
we plot the normalized total squared prediction error of the uni-
versal piecewise linear prediction algorithm with the full tran-
sition diagram and universal algorithms with reduced state dia-
grams that keep only states. As the number
of the alive states that we keep on the diagram increases, the per-
formance of the reduced state universal algorithms approaches
to the performance of the universal algorithm with full transi-
tion diagram. The performance of the reduced state algorithm
with is nearly identical to the performance of the uni-
versal algorithm with full diagram. Furthermore, in Fig. 4(b),
we plot for each time , the index of the state on the transi-
tion diagram with the largest weight, i.e., from
(23) for the universal algorithm and universal algorithm with
a reduced transition diagram when . In the same plot,
we also show the underlying process, at the bottom, and the
duration of the randomly selected stationary segments, on the
top. For this process, the switching times are given as

. The universal algo-
rithm assigns, and continues to assign, the largest weight in (23)

Fig. 4. Prediction result for a sample function of a second-order autoregressive
process as in (33) switching randomly every 25 or 150 samples. (a) Normalized
accumulated sequential prediction error for universal piecewise
linear predictor with full transition diagram “full,” universal piecewise linear
predictors with reduced transition diagrams, with
states, and normalized accumulated power of from (33) “noise.”
(b) in (24) for the universal predictor with full diagram and
for the reduced state universal predictor with . The stationary segment
of the process are also shown in the same figure on the top and the underlying
sample process is shown on the bottom.

to the transition paths that switch exactly at the transition times
of the underlying process. This is also true for the reduced state
universal algorithm for .

As the next example, we consider prediction of a process that
switches between a second- and fourth-order process every 100
samples, i.e.,

(33)

where is a sample function of a Gaussian process with zero
mean and unit variance. Here, we simulate the performance of
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Fig. 5. (a) Prediction results for a sample function of the process switching
between second- and fourth-order process for every 100 samples as in (9). The
normalized accumulated sequential prediction error for a universal
algorithm with full diagram for a finite class of algorithms as in Section III
“transition,” a universal algorithm with five states alive on the transition
diagram “reduced,” fixed-share algorithm with optimal switching parameter
“fixed,” variable-share algorithm with optimal switching parameter “variable,”
fixed-share algorithm extended by Vovk [41] “randomized,” fixed-share
algorithm with nonoptimal switching parameter “share-unmatched,” and nor-
malized accumulated power of from (33) “noise.” (b) Same algorithms
when the process changes its parameters every 20 samples.

universal algorithms introduced in Section III, i.e., competing
against a finite class of algorithms. As the competition class,
we select first- to fifth-order RLS predictors, running in parallel
on the underlying sequence. In Fig. 5(a), we plot the normal-
ized MSE for the universal algorithm using the full transition
diagram, the universal algorithm with the reduced transition
diagram, two algorithms, fixed share and variable share from
[42] with switching parameter tuned to the underlying switching
rate of the process, i.e., 1/100, the fixed-share algorithm with the
switching parameter different (much larger) from the underlying
switching rate of the process, i.e., 10/100, and the noise floor,

i.e., the normalized power of . For the universal algorithm
with the reduced diagram, we keep only five paths to make a fair
comparison with other algorithms. When the switching rate of
the fixed- and variable-share algorithms are selected based on
the switching rate of the underlying process, their performance
is identical to the performance of the universal algorithms de-
veloped in this paper. Nevertheless, when the switching rate
does not match, their performance degrades. We observe that
the performance of the universal algorithm with the reduced
transition diagram is nearly identical to the universal algorithm
with the full transition diagram and the algorithm by Vovk [41],
although, they have complexity , , and , respec-
tively. Hence, we suggest using the universal algorithm with
the reduced diagram for applications when the computational
resources are limited. We observed that maintaining a fixed
number (ten in our simulations) or more states in the full dia-
gram gives nearly identical performance results to the algorithm
using the full diagram. We next simulate the performance of the
same algorithm when the underlying process switches every 20
samples. The normalized MSE of the algorithms are given in
Fig. 5(b). In this figure, we observe similar behavior as before.

We next try to predict the daily closing value of the NASDAQ
Composite Index. In Fig. 6(a), we plot the daily closing value of
the NASDAQ Composite Index from January 2005 to January
2006 [48]. We present the MSE of the following four different
algorithms in Fig. 6(b): the universal algorithm using 20th-order
RLS predictors (without fading), the RLS predictor with optimal
fading where the optimal fading parameter is selected a priori
using all the available data from January 2005 to January 2006,
the RLS predictor with optimal transition paths where the op-
timal transition paths are selected a priori using all the available
data for each time , and an ordinary RLS algorithm. The op-
timal path for the RLS algorithm is determined individually for
each time , , using dynamic programming. The
performance of the universal algorithm outperforms the perfor-
mance of the ordinary RLS predictor, the RLS predictor with
optimal fading and is as good as the RLS predictor with the
best transition paths. We also plot the difference between the
MSE of the universal algorithm and the RLS algorithm with the
optimal transition paths in Fig. 6(d). We see that although the
optimal transition paths are selected in hindsight for each time
to minimize the MSE, the universal predictor is as good as this
algorithm in several regions and outperforms it at the start of
the process. Hence, combining several paths and using a perfor-
mance-weighted mixture, the universal algorithm can outper-
form the algorithm with the best transition paths. We also plot
the distribution of the weights in (23) in Fig. 6(c) for days
20, 70, 120, 170, and 220.

V. CONCLUSION

In this paper, we investigated sequential regression of in-
dividual sequences under square-error loss. We developed
strongly sequential algorithms, without a priori knowledge of
the data length or the number of piecewise constant segments
that achieve the performance of the best switching linear
(or constant) regression algorithm tuned to the underlying
sequence. To achieve this, a performance-weighted mixture
of an exponential number of sequential predictors, one for
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Fig. 6. Prediction of Nasdaq Composite Index using 20th-order predictors. (a) Daily closing value of Nasdaq Composite Index from January 2005 to January 2006.
(b) Running average prediction results: universal piecewise linear predictor (solid line), an RLS algorithm with optimal fading (dashed line), an RLS predictor
with the optimal transition paths (dotted line), and an ordinary RLS predictor (dotted–dashed line). (c) Weights in (23) assigned by the universal algorithm
to the transition paths at days 20, 70, 120, 170, and 220. (d) Difference between the MSE of the universal algorithm and the RLS algorithm with the best transition
paths at each time.

each transition path, was shown to asymptotically achieve the
performance of the best algorithm given any number of piece-
wise constant segments. We then showed that this exponential
number of algorithms can be implicitly implemented with
linear complexity in the data length using a transition diagram
similar to [1]. We then considered the case when the members
of the static class include only a finite collection of algorithms;
we demonstrated an algorithm that can asymptotically achieve
the best subpartitioning of the data into segments within which
the best among the finite collection of algorithms are chosen.
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