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Abstract—We study online sequential regression with nonlinearity and time varying statistical distribution when the regressors lie in a

high dimensional space. We escape the curse of dimensionality by tracking the subspace of the underlying manifold using a

hierarchical tree structure. We use the projections of the original high dimensional regressor space onto the underlying manifold as the

modified regressor vectors for modeling of the nonlinear system. By using the proposed algorithm, we reduce the computational

complexity to the order of the depth of the tree and the memory requirement to only linear in the intrinsic dimension of the manifold. The

proposed techniques are specifically applicable to high dimensional streaming data analysis in a time varying environment. We

demonstrate the significant performance gains in terms of mean square error over the other state of the art techniques through

simulated as well as real data.

Index Terms—Big data, regression on high dimensional manifolds, online learning, tree based methods
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1 INTRODUCTION

ONLINE learning is widely investigated in adaptive sig-
nal processing [1], [2], [3], [4], [5], neural networks [6],

[7], [8], [9], [10], [11], [12], [13], data engineering [14], [15],
[16], [17], and machine learning [18], [19], [20] literatures
and is the core for several research themes. Nonlinear mod-
els are considered for applications where linear models are
inadequate. However, non-linear models usually suffer
from overfitting, stability and convergence issues [1], [6],
[7], [8], [9], [10]. Furthermore, for applications involving big
data [14], [15], [16], for instance, when the input vectors are
high dimensional, the non-linear modeling offers substan-
tial challenges. These challenges include computational
complexity, which is usually beyond manageable, and time
varying statistical distributions [11].

In this paper, we study non-linear regression using high
dimensional data assuming that the data lies on a manifold.
We partition the regressor space into several regions to con-
struct a piecewise linear model as an approximation of the
non-linearity between the observed and the desired data.
However, instead of fixing the boundaries of the regions,
we partition the space in a hierarchical manner [24]. We use
the notion of context trees [25], [27] to represent a broad

class of all possible partitions for the piecewise linear mod-
els. We specifically introduce an algorithm that incorporates
context trees for online learning of the high dimensional
manifolds and perform regression on the big data. In this
approach, regression directly adapts to the intrinsic lower
dimension of the data while operating in the original regres-
sor space. The algorithm achieves the performance of the
best partitioning of the regressor space, competing against a
broader class of piecewise linear algorithms. This broader
class consists of various partitioning methods, region
boundaries and regression algorithms for each region as
explained later in the paper.

In most modern applications, where high dimensional
data is involved, learning and regression on themanifolds are
widely investigated [32], [33]. For instance, in network traffic
[29], large amounts of high dimensional, time varying data
from various nodes are used to identify certain trends.
Another example is video surveillance [30] (which involves
high dimensional, time varying images from various cam-
eras). The high dimensional data from security cameras is
analyzed for any mischievous activity in a sensitive area [31].
However, online regression on high dimensional data suffers
from performance degradation and computational complex-
ity, known as Bellman’s curse of dimensionality, and is statisti-
cally challenging [11], [40], [41], [42]. The problem ofmanifold
learning and regression is rather easy when all the data is
available in advance (batch), and lies around the same single
static submanifold [37]. In onlinemanifold learning, however,
it is difficult to track the variation in data because of the high
dimensionality and time varying statistical distributions [36],
[37]. Therefore, we introduce a comprehensive solution that
includes online learning and adaptive regression over high
dimensional feature vectors in a dynamic setting. The algo-
rithm is best suitable for distributed/parallel learning since a
linear base estimator is used for each node, that can be imple-
mented in parallel by using different cores and the final
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estimator combines these weak learners. The algorithm’s low
computational complexity and faster learning results in high
performance computing.

For applications involving high dimensional data, vari-
ous approaches are studied to escape the curse of
dimensionality and perform online learning [16], [17], [21],
[22], [23], [41], [42], [43]. In [36], the authors performed
online tracking of high dimensional data by approximating
the underlying submanifolds as union of subsets of the high
dimensional space. The low dimensional approximation is
used as a pre-processing step for the change point detection
[37] and logistic regression [38] for high dimensional time
series. In our approach, however, we use context trees to
perform non-linear regression, which adapts automatically
to the intrinsic low dimensionality of the data by maintain-
ing the “geodesic distance” [34], [35] while operating on the
original regressor space. Note that context trees perform a
hierarchical, nested partitioning of the regressor space for
the piecewise linear models [25], [27]. However, unlike [36],
[37], [38] where a single partitioning is used with varying
depth, context trees construct a weighted average of all pos-
sible partitions defined on a tree [25], [27], and the partition-
ing in [36], [37], [38] is a subclass of our tree structure. We
propose an algorithm where the weights assigned to each
node as well as the partitions vary according to variations
in the data. Furthermore, we use a piecewise linear model,
i.e., different linear regression parameters in each region
defined by the tree, whereas in [38], the same logistic regres-
sion model is used in each subset or region. In this manner,
our algorithm inherently uses weighted combination of all
possible partitions defined by trees of various depths, and
compete well against a doubly exponential class yet with a
complexity linear in the depth of the tree [27]. For instance,
an adaptive hierarchical tree (AHT) of depth K also inher-
ently incorporates trees with depths less than K, i.e.,
0; 1; . . . ; K � 1. This makes the algorithm suitable for vari-
ous ranges of complexity in the data structure.

In the domain of online non-linear regression, context
trees have been used to partition the regressor space hierar-
chically, and to construct a competitive algorithm among a
broader class of algorithms [27]. Although we also use the
context tree weighting (CTW) of Willems [25] as [27], there
are major differences between our method and themethod in
[27]. In contrast to non-linear regression using context trees,
we use a hierarchical tree structure to track and learn the
manifold in a high dimensional setting. We use the regions
defined by the tree to learn the underlying low dimensional
projection and perform piecewise linear regression whereas
in [27], the tree is used to learn the actual piecewise regions
where the data lie in a D�dimensional space. Furthermore,
the regions defined by our algorithm are time varying ellip-
soids and a parent region on the tree is not necessarily a union
of its children. Unlike [27], the actual data does not belong to
the regions defined by the tree and we use a quadratic dis-
tancemeasure to decide on themembership of a data instance
to a certain region. Moreover, for the test data, where the
desired labels are not available, the algorithm in [27] does not
update the tree structure aswell as the node estimators.How-
ever, in our algorithm,we update the node performancemea-
sure by the tracking performance of the submanifold
structure in the observed data. We finally use the projection

of the actual data on the low dimensional regions for the
regression. In addition to solving the problem of high
dimensionality by incorporatingmanifold learning, our algo-
rithm also performs online piecewise regression.

We first introduce an algorithm that is guaranteed to
asymptotically achieve the performance of the best combi-
nation of a doubly exponential number of different models
that can be represented by a depth-K tree with computa-
tional complexity only linear in the depth of the tree. We
use a tree structure to hierarchically partition the high
dimensional regressor space. We then incorporate an
approximate Mahalanobis distance as in [36], [37], [38] to
adapt the regressor space to its intrinsic lower dimension.

The Mahalanobis distance is a measure of the distance
between a point P and a distribution D, which is unit-less
and scale-invariant (unlike the euclidean distance), and
takes into account the correlations in the data set. Therefore,
for general classification of data points, the Mahalanobis
distance is shown to perform better than the Minkowski dis-
tances [44]. Furthermore, we can effectively track the true
curvature of each submanifold by using the Mahalanobis
distance instead of the euclidean distance (as a special case
of the Minkowski distance [44]), since the Mahalanobis dis-
tance takes into account the spreading of data in each direc-
tion (resulting in a non-symmetric ellipsoid for each
submanifold). Our algorithm also adapts to the correspond-
ing regressors in each region to minimize the final regres-
sion error. We then prove that as the data length increases,
the algorithm achieves the performance of the best parti-
tioning by providing an upper bound on the performance
of the algorithm. We show that the method used is truly
sequential and generic in the sense that it is independent of
the statistical distribution or structure of the data. More-
over, the algorithm does not presume the structure or varia-
tion of the manifolds and adapts to the underlying data
sequentially. In this sense, the algorithm learns iÞ the struc-
ture of the manifolds, iiÞ the structure of the tree, iiiÞ the
low dimensional projections in each region, ivÞ the linear
regressors in each region, and vÞ the linear combination
weights of all possible partitions, to minimize the final
regression error. We also show that a perfect manifold
tracking for the regression purpose is not only unnecessary
but also increases the complexity of the algorithm and may
even increase the final error due to overfitting. This is in
contrast to [37], [38] where the ultimate goal is to reduce the
tracking error as much as possible.

The paper is organized as follows. In Section 2, we for-
mally describe the problem setting in detail. We model the
non-linear regression on big data mathematically and pro-
pose piecewise models to approximate the non-linear
model. We discuss piecewise linear regression and intro-
duce the context tree algorithm for piecewise linear regres-
sion. In Section 3, we extend the context tree algorithm to
the high dimensional case and describe the tools that we
use such as approximate Mahalanobis distance, and define
our parameters. Then, we formally propose our algorithm.
In Section 4, we perform online regression on several syn-
thetic high dimensional datasets using the proposed algo-
rithm. We also provide the performance analysis of our
proposed algorithm over benchmark real data sets, e.g.,
computer activity [46] and KDD CUP99 [47]. We analyze
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the performance of our algorithm using computational com-
plexity and mean square error (MSE) by comparing them
with the previously proposed algorithms and demonstrat-
ing significant gains [27], [28].

2 PROBLEM DESCRIPTION

All vectors used in this paper are column vectors, denoted
by boldface lowercase letters. Matrices are denoted by bold-
face uppercase letters. For a vector v, kvk2 = vTv is squared

euclidean norm and vT is the ordinary transpose. Ik repre-
sents a k� k identity matrix.

We investigate online non-linear regression using high
dimensional data, i.e., when the dimension of data D � 1.
We observe a desired sequence fy½n�gn�1, y½n� 2 IR, and

regression vectors fx½n�gn�1, x½n� 2 IRD, where D denotes

the ambient dimension. The data x½n� are measurements of
points lying on a submanifold Sm½n�, where the subscript

m½n� denotes the time varying manifold, i.e., x½n� 2 Sm½n�.
The intrinsic dimension of the submanifolds Sm½n� are d,

where d � D. The submanifolds Sm½n� can be time varying.

At each time n, a vector x½n� is observed. The estimate of the
desired sequence y½n� is given by:

ŷ½n� ¼ fnðx½n�Þ; (1)

where fnð:Þ is a non-linear, time varying function. The
instantaneous regression error is given by: e½n� ¼ y½n� � ŷ½n�.

The non-linear model of (1) could establish a perfect fit to
the underlying relationship between the desired and
observed data in certain situations. However, identifying
this non-linear relationship could be challenging, and it
may be unnecessary and computationally complex to use
the perfect model [41]. Furthermore, the non-linear model
of (1) may suffer from overfitting, stability and convergence
issues [1]. Therefore, we use a piecewise linear model as an
approximation of the non-linear relationship between the
observed sequence and the desired data. We begin our dis-
cussion of piecewise linear modeling with a fixed partition-
ing of the regressor space, i.e., IRD. We next use the context
tree algorithm to include arbitrary partitions from a large
class of possible partitions, as explained later in the Section

2.1. Finally, we extend our results to the case when the input
data is high dimensional.

In piecewise linear modeling, we partition the regressor
space into J regions, where a linear relationship is assumed
between the desired data and the observed data within each
region. Since the statistical distribution of data and the
dimension of regressor space vary with time, our partition-
ing method as well as the linear model in each region
should be dynamic. To this end, we use a tree structure to
hierarchically partition the regressor space. One such tree
structure to partition a two dimensional regressor space is
shown in Fig. 1. Here, a depth-2 tree is used to partition the

IR2 regressor space, i.e., D ¼ 2 for this figure. We define a
“partition” of the D-dimensional regressor space as a spe-

cific partitioning Pi ¼ fRi;1; . . . ; Ri;Jig, where
S Ji

j¼1Ri;j ¼
R, Ri;j is a region in the D-dimensional regressor space and

R 2 IRD is the complete D-dimensional regressor space.
Fig. 1 shows all possible partitionings of the two dimen-
sional regressor space with a tree of depth-2. In general, for

a tree of depth K, there are as many as 1:52
K
possible parti-

tions, Pi, where i 2 f1; . . . ; 1:52Kg. Each of these doubly
exponential number of partitions can be used to construct a
piecewise linear model.

To clarify the notation, as an example, we consider a
sample partition P3 in Fig. 1, where the regressor space is
divided into three regions. At jth region of a specific parti-
tion, e.g., P3, we generate the estimate:

ŷj½t� ¼ xT ½t�vj½t�; (2)

where vj½t� is the regressor weight vector for the jth region,
t ¼ fn; x½n� 2 Rjg, j 2 f1; . . . ; Jg and J ¼ 3 is the number of
regions the regressor space is divided into by the partition
P3. The final estimate of y½n� is given by:

ŷP3
½n� ¼ xT ½n�vj½n�; (3)

for j 2 f1; 2; 3gwhen x½n� 2 Rj. For a fixed partition, e.g., P3,
we try to achieve the performance of the best piecewise lin-
ear regressor. We then extend these results to all possible
partitions.

We try to achieve the performance of the best piecewise
linear model when there is a large class of possible parti-
tions of the regressor space, i.e., over all Pi. We specifically
minimize the following regret over any n [27]:

Xn
t¼1

ðy½t� � ŷq½t�Þ2 � inf
Pi

Xn
t¼1

ðy½t� � ŷPi
½t�Þ2; (4)

where ŷPi
½t� is the estimation of y½t� from the partition Pi,

i ¼ 1; . . . ; 1:52
K
and ŷq½i� is the estimation from a sequential

algorithm. We seek a sequential algorithm that can estimate
the desired sequence y½n� from x½n�, as well as the best piece-
wise linear model. However, instead of brute-forcing over
all possible partitionings, we seek an algorithm with linear
complexity in the depth of the tree. For this purpose, we use
a context tree approach [25], [27].

Fig. 1. A full tree of depth 2 that represents all possible partitions of the

two dimensional space, P ¼ fP1; :::;PNK
g and NK 	 ð1:5Þ2K , where K

is the depth of the tree. HereNK ¼ 5.

KHAN ETAL.: UNIVERSAL NONLINEAR REGRESSION ON HIGH DIMENSIONAL DATA USING ADAPTIVE HIERARCHICALTREES 177



2.1 Context Tree Algorithm for Piecewise Linear
Regression

The context tree algorithm achieves the performance of the
best partition among the doubly exponential class of parti-
tions with a complexity linear in the depth of the tree [27].
We use a full tree of depth K with up to 2K finest partition

bins as shown in Fig. 2. Each node h ¼ 1; . . . ; 2Kþ1 � 1 on

the tree represents a certain region among the 2Kþ1 � 1

regions. The 2K nodes corresponding to the finest partition-
ing of the regressor space are called the leaf nodes. The
union of two leaf nodes hl and hu is a node one level above
these nodes and is called the parent node of hl and hu, i.e.,
Rhp ¼ Rhl [Rhu . If a data sample x½n� 2 Rh
 , where h
 is one
of the leaf nodes, it also belongs to the ancestor nodes of h
.
In principle, x½n� is an element of a single node on each level
of tree. These K þ 1 nodes are called the “dark nodes”. We
define the set of dark nodes by K , fh
; fixðh
=2Þ; fix
ðh
=4Þ; . . . ; 1g, where we use the MATLAB notation \mco-
defix(.) that rounds off the expression to the nearest integer
towards zero. Linear regression is applied on each dark
node and the final estimate is computed as a weighted com-
bination of estimates from each of theseK þ 1 regressors,

ŷ½n� ¼
X
k

vk½n� 1�ŷk½n�; (5)

where k 2 K, the weights vk½n� 1� correspond to the perfor-
mance of each node in the past and the regression error is
used as a performance measure [27]. Here, ŷk½n� is the esti-
mate of y½n� by the regressor of node k. As an example, in
the beginning of the adaptation when there is a small
amount of input data available, the nodes on the upper level
of the tree may perform better and are given more weights
[25], [27]. The calculation and update of these weights is
explained in Section 3.2.

However, if the input regressor vectors are high
dimensional, i.e., D � 1, the regression process can be
challenging due to the curse of dimensionality [11], [41].
Hence, we dynamically map the high dimensional input
vectors to lower dimension for the regression. We intro-
duce an algorithm that performs piecewise linear regres-
sion in the high dimensional setting while inherently
exploiting the underlying manifold structure. Further-
more, in contrast to the context tree algorithm, where
regions of each partition are fixed, we learn these regions
dynamically according to the submanifold variation in
the data. In the following sections, we propose an algo-
rithm that uses adaptive hierarchical trees tuned to the

dynamics of the data and performs piecewise linear
regression.

3 MANIFOLD LEARNING AND REGRESSION USING

ADAPTIVE HIERARCHICAL TREES

To escape the curse of dimensionality, we perform regression
on high dimensional data bymapping the regressor vectors to
low dimensional projections. We assume that the observed
data x½n� 2 IRD lies on time varying submanifolds Sm½n�. We
can solve the problem of non-linear regression by using piece-
wise linear modeling as explained in Section 2.1, where the

regressor space, i.e., IRD can be partitioned into several reg-
ions. However, in the new setting, since the data lies on sub-
manifolds with a lower intrinsic dimension, we use the lower

dimensional projections instead of the original IRD regressor

space. We define the piecewise regions in IRd for each node
that correspond to the low dimensional submanifolds. How-
ever, since the submanifolds are time varying, the regions are
not fixed.Wedefine these regions by the subsets [37], [38]:

<j½n� ¼ fx½n� 2 IRD : x½n� ¼ Qj½n�bbj½n� þ cj½n�;
bbT
j ½n�LL�1

j ½n�bbj½n� � 1;bbj½n� 2 IRdg; (6)

where each subset <j½n� is a d�dimensional ellipsoid

assigned to each node of the tree. The matrix Qj½n� 2 IRD�d

is the subspace basis in d�dimensional hyperplane and the
vector cj½n� is the offset of the ellipsoid from the origin. The

matrix LLj½n� , diagf�ð1Þ
j ½n�; . . . ; �ðdÞ

j ½n�g with

�
ð1Þ
j ½n� � ::: � �

ðdÞ
j ½n� � 0, contains the eigen-values of the

covariance matrix of the data x½n� projected onto each
hyperplane. The subspace basisQj½n� specify the orientation

or direction of the hyperplane and the eigen-values specify
the spread of the data within each hyperplane [37], [38]. The
projections of x½n� on the basisQj½n� are used as new regres-

sion vectors, ~xj½n� ¼ QT
j ½n�x½n� and bbj½n� ¼ ~xj½n� � cj½n�. We

represent these regions by a tree structure, where the leaf
nodes correspond to these regions.

We use a tree structure to learn the underlying time vary-
ing manifold structure and the best piecewise linear model,
however, instead of using Fig. 3, we use the notion of con-
text trees given in Fig. 2 that represents the doubly exponen-
tial class in an efficient manner. We emphasize that each
node on the tree is assigned a particular subset <h, with

Fig. 2. A two dimensional context tree of depth 2.
Fig. 3. A doubly exponential number of partitions defining the piecewise
models on time varying submanifold, each leaf node represents a subset
defined by (6).
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h 2 f1; . . . ; 2Kþ1 � 1g, in a hierarchical manner. However,
unlike a regular tree introduced in Section 2.1, in this frame-
work, the subset belonging to the parent node is not the
union of its children nodes. The subset belonging to the par-
ent node does not cover the space spanned by its two chil-
dren and may not be in the same space as shown in Fig. 4a.
Moreover, the subsets defined by the nodes of the tree are
low dimensional submanifolds while the actual data is of
high dimension. In this sense, as shown in this paper, we
can update the tree according to the variation in the
observed data. We next use adaptive hierarchical trees for
the partitioning of high dimensional regressor space and
learning the submanifolds. We show that the proposed
algorithm significantly improves the performance of piece-
wise linear regression operating in the high dimensional
setting.

The adaptive hierarchical tree shown in Fig. 4b partitions
the time varying manifold into d�dimensional subsets.
However, the regions belonging to each subset are not fixed.

Each node of the tree, h 2 f1; . . . ; 2Kþ1 � 1g, corresponds to
a d�dimensional ellipsoid, <h½n�, with parameters
fQh½n�;LLh½n�; ch½n�g as defined in (6). These subsets are

evolving in time according to the dynamics of the data,
hence their parameters, fQh½n�;LLh½n�; ch½n�g, are adaptively

updated with time. In the following, we explain that instead
of updating all the subsets, we only update the recent K þ 1
subsets that are defined by the dark nodes defined in Sec-
tion 2.1. Each subset partially contributes to approximate
the underlying submanifold with the leaf nodes represent-
ing finer approximations. The levels of the tree are chosen
dynamically according to the curvature of the submani-
folds. However, at a certain time n, instead of choosing a
single level, we use the context tree weighting method [25]
to assign weights to the subsets on each level, i.e., we use all
possible partitions. We assign more weight to the children
node when there is more curvature in the submanifold. The
nodes of the tree structure shown in Fig. 4b represent ellip-
soids that may all be in different d�dimensional subspaces.

The actual data samples x½n� 2 IRD do not lie in the space

of <h½n� as <h½n� 2 IRd. Therefore, we seek to determine the
nearest region among the subsets in terms of a certain dis-
tance measure. After selecting the nearest regions, we then
use the projection of x½n� on the specific region as our regres-
sor input vectors,

~xh½n� ¼ QT
h ½n�x½n�; (7)

where Qh½n� is the basis for the region <h½n�. We proceed to
use the context tree algorithm for piecewise linear regres-
sion, given in [25], [27] that is briefly explained in Section
2.1.

With the arrival of a new data sample x½n�, we determine

which region <h½n� among the leaf nodes h 2 f2K; . . . ;
2Kþ1 � 1g it is nearest to by calculating the quadratic dis-
tance between x½n� and <h, i.e.,

h
 ¼ argminhDMðx½n�;<h½n�Þ; (8)

where DMðx½n�;<h½n�Þ is the distance between x½n� and the

subset <h½n�, h ¼ 2K; . . . ; 2Kþ1 � 1. We use the approximate
Mahalanobis distance [36], [37], [38] as the distance measure
[see Appendix A, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TBDATA.2016.2555323]. The approximate Mahala-
nobis distance is defined by,

DMðx;<Þ , dðx� cÞTQ1L
�1
1 QT

1 ðx� cÞ þ kQT
2 ðx� cÞk2; (9)

where L1 ¼ diagf�ð1Þ; . . . ; �ðdÞg, �ð1Þ; . . . ; �ðdÞ are the largest d
eigenvalues of the covariance matrix of x 2 < with mean c,
and Q1 is the corresponding eigenvector matrix and is the
subspace basis for the d�dimensional hyperplane, d > 0 is
the average of the remaining eigenvalues, typically a small
number and Q2 is the corresponding eigenvector matrix
representing the residual subspace basis [37]. We use the
minimum distance node, h
, as the fK þ 1gth dark node in
the context tree algorithm [27] and the rest of K dark nodes
are the ancestor nodes of h
 till the root node h ¼ 1. For
instance, in Fig. 4b, if <h
 ¼ <7, then the remaining K dark
node regions are <3 and <1. We then project the observed

sample x½n� 2 IRD on the basis of each dark node k for
k 2 K, the set of dark nodes defined in Section 2.1, i.e.,

~xk½n� ¼ QT
k ½n�x½n�; (10)

where ~xk½n� 2 IRd. We train a linear regressor using each
~xk½n� to learn the regressor weight vectors and estimate y½n�:

wk½n� ¼ wk½n� 1� þ n~xk½n�ðy½n� �wT
k ½n� 1�~xk½n�Þ; (11)

where n is the step-size of the Least Mean Square (LMS)

algorithm and wk½n� 2 IRd is the regressor weight vector for
node k, k 2 K. The estimate of y½n� from each dark node
regressor is given by:

ŷk½n� ¼ wT
k ½n�~xk½n�: (12)

Finally, we use the context tree weighting method to esti-
mate y½n� as a weighted combination of the estimates of the
dark nodes using (5). The complete algorithm is given in
Algorithm 1. The construction of the proposed algorithm is
based on the following theorem whereas the complexity of
the algorithm is linear in the depth of the hierarchical tree
structure.

Theorem 1. Let fx½n�gn�1 is the observed D� dimensional
sequence and fy½n�gn�1 2 IR is the desired sequence, where

jy½n�j � Ay. Then the Algorithm 1, whose complexity is linear
in the depth of the tree, yields

Fig. 4. (a) A parent node and its two children in an adaptive hierarchical
tree. Each node (subset) is a two dimensional ellipsoid defined by its
parameters fQh½n�;LLh½n�; ch½n�g. (b) A dynamic hierarchical tree of depth
K where each h represents a subset defined by (6) and h 2 f1; 2; :::;
2Kþ1 � 1g.
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XN
n¼1

ðy½n� � ŷ½n�Þ2 � min
Pi

 XN
n¼1

ðy½n� � ŷPi
½n�Þ2

þ 8A2
yCðPiÞ lnð2Þ

!
þOð1Þ;

(13)

for any N , where ŷ½n� is the estimate of y½n� as given by (5), Pi

is the ith partition from the doubly exponential class of Fig. 3
with the cost of partition CðPiÞ, and ŷPi

½n� is the estimate of
y½n� by the partition Pi. The cost of partition Pi is given by,
CðPiÞ ¼ Ji þ hi � 1; where Ji is the number of regions in the
partition Pi and hi is the number of branches of the tree that
are not fully grown [26], [27].

This theorem is a basic application of Theorem 1 of [27].
The weights vk½n� 1� in (5) assigned to each dark node
regressors are determined by the performance of these
nodes until the current time. Therefore, we sequentially
measure the performance of each node that is used for esti-
mation and update them after each iteration. In the next
section we explain how to measure the performance of
each node in estimating the desired sequence y½n�. We then
use this performance measure to assign combination
weights to each node.

3.1 Node Performance Measure

In our method, instead of using fixed partitions for the
piecewise linear regression and manifold learning, we use a
tree structure that dynamically partitions the regressor
space on each level of the tree. We then use the context tree
weighting method to linearly combine the estimates of each
node. The weights assigned to each node in (5) are deter-
mined by the node performance in the previous iterations.
We assign Ch to each node as a measure of performance,
which is an exponential function of the regretPnh�1

i¼1 y½i� � ŷh½i�
� �2

. These Ch are used to calculate the

weight or portion of each node regressor in the mixture of
(5). The universal performance measure, Cu is a weighted
combination of all Ch below the root node and Cr ¼ Cu,
where Cr represents the performance of the root node [27].
We represent the desired data y½t� for t ¼ 1; . . . ; n by yn, i.e.,
yn ¼ fy½1�; y½2�; . . . ; y½n�g. For a specific partition, Pi, among
the doubly exponential class of possible partitions, the per-
formance is measured by [27]:

Cðynjŷn;PiÞ , exp � 1

2a

Xn
t¼1

ðy½t� � ŷ½t�Þ2
( )

; (14)

which is the performance of the partition Pi in estimating
the desired sequence yn. Here, a is a constant that depends

on Ay ¼ maxfjy½n�jg and a , 4A2
y [27]. For a given Pi, the

best predictor is the one with the minimum loss function,Pn
t¼1ðy½t� � ŷ½t�Þ2 , i.e.,

C
ðynjPiÞ , exp � 1

2a
minŷn

Xn
t¼1

ðy½t� � ŷ½t�Þ2
 !

: (15)

The best partition can be chosen among all Pi by maximiz-
ing C
ðynjPiÞ over all Pi, i.e., C


ðynjP

i Þ , maxPi

C
ðynjPiÞ.

In the context tree algorithm, the performance measure
of a leaf node is defined as [27]:

~ChðynÞ , exp � 1

2a

Xnh
t¼1

ðy½t� � ŷh½t�Þ2
 !

; (16)

where nh are the number of past input samples closest to the
leaf node h. Here, ŷh½t� is the estimate of y½t� from the node h
and is given by (12). The performance measure of an inner
node is defined as [27],

~ChðynÞ , 1

2
~ChuðynÞ ~ChlðynÞ

þ 1

2
exp � 1

2a

Xnh
t¼1

ðy½t� � ŷh½t�Þ2
 !

;
(17)

which is a weighted combination of the performance meas-
ures assigned to the node h and its two children nodes, hu
and hl. This way we define the universal performance mea-
sure as a weighted combination of all the leaf and inner
nodes. The universal performance measure [27] for y½n�,
given past observations till n� 1, is given by:

~Cuðy½n�jyn�1Þ ¼
X
k

mk½n� 1�exp � 1

2a
lðyn�1; ~yn�1

k Þ
� �

; (18)

where lðyn�1; ~yn�1
k Þ ¼ ðy½n� 1� � ~yk½n� 1�Þ2. The weights

mk½n� 1� are defined as:

mk½n� 1� ,
sk½n� 1�exp � 1

2a

Pnk�1
t¼1 ðy½t� � ~yk½t�Þ2

� �
~Cuðyn�1Þ (19)

where s1½n� 1� ¼ 1
2 and sk½n� 1� ¼ 1

2
~Cs½n� 1�sk�1½n� 1� for

k > 1. Here, ~Cs denotes the performance measure of the
sibling node of k. The estimate of y½n� is given by the
weighted combination of the regressor outputs from each
dark node,

~y½n� ¼
X
k

mk½n� 1�ŷk½n� (20)

which is the same as (5) with vk½n� ¼ mk½n� and mk½n� are
defined in (19).

Alternatively, we can use the approximate Mahalanobis
distance (9) to define the node performance measure. For
the leaf nodes,

~ChðynÞ , exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DMðx½n�;<h½n�Þ

q� �
; (21)

and for the inner nodes,

~ChðynÞ ¼ 1

2
~ChuðynÞ ~ChlðynÞ

þ 1

2
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DMðx½n�;<h½n�Þ

q� �
:

(22)

In the next section, we describe the update mechanism
for all the parameters of the submanifolds and the nodes.

3.2 Update Node Parameters

There are two layers of parameters which we update before
the next data sample x½nþ 1� arrives, iÞ the submanifold
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shape parameters fQh; ch;LLhg and iiÞ the context tree and

regressor parameters, i.e., Ch and wh. Since x½n� only affects
the performance measure and regressors associated with
the dark nodes of the context tree, we use a greedy

approach instead of updating all 2Kþ1 � 1 nodes, and
update the tree only for the dark nodes in K þ 1 operations
[27], [36], [37]. For the subsets shape parameters associated
with each node, i.e., Qh; ch;LLh, we update Qh while keeping

LLh and mean vectors ch fixed. Then we update LLh and ch by
considering Qh fixed and using the data sample x½n� and the

projections bbh. These updates are detailed in the Algorithm

2. For instance, we update ch½n� as follows:

ch½n� ¼ ach½n� 1� þ ð1� aÞx½n�; (23)

where 0 < a � 1 is a small positive constant that deter-
mines the dependence of ch on its past values. In general, a
should be close to 1 as in the Recursive Least Squares (RLS)
algorithm [4], [5]. We choose small a for the fast evolving
manifold and large a for the slow evolving manifold [37].

We update the subspace basisQh for each dark node using
Parallel Estimation and Tracking by REcursive Least Squares
with fast orthogonalization (PETRELS-FO) [37], [45]. The
details of using the subspace tracking algorithm can be found
in [36], [37], [38], [45]. After updating the node parameters for
the dark nodes, Algorithm 1 is repeated for the next data sam-
ple, x½nþ 1� to estimate y½nþ 1�. Our algorithm achieves the
performance of the best partition among the doubly exponen-
tial class with a complexity linear in the depth of the hierar-
chical tree structure, as given by the Theorem 1.

Remark. Note that the actual regression value y½n� is needed
to update the performance measure C of each node. How-
ever, if we use the tree for classification purposes, then we
can choose the closest value to ŷ½n� among all possible val-
ues as the true value of y½n� in the decision directed mode
[39]. Nevertheless, even for the regression task, once the
training phase is complete, our algorithm still adapts to the
structure of the data x½t�, i.e., the node shape parameters
Qh;Lh; ch are updated based on the new data sample x½t�.
To update the node performance measure C when y½n� is
not available, we use 21 and (22).

Remark. Note that if we use the euclidean distance to decide
on the membership of the data to the regions, we may end
up having two very similar nodes, since we update only
the dark nodes at each iteration. However, since we use the
Mahalanobis distance, we do not encounter this issue. This
is because the Mahalanobis distance takes into acount the
correlation among data points. Hence, if the means of the
data assigned to two different nodes are very similar (i.e.,
the euclidean distance between the means is small), the
Mahalanobis distance between them is still large enough.
Hence, the nodesmay not be very similar.

Algorithm 1.Main Algorithm

Variables:
1: h ¼ 1; . . . ; 2Kþ1 � 1 : All node indices, complete tree of

depth K.
2: Ch½n� 1� , ~Chðyn�1Þ: Total node confidence
3: Eh½n� 1� , exp � 1

2a

Pnh�1
t¼1 ðyh½t� �wT

h ½t� 1�~xh½n�Þ2
� �

:
Prediction performance of node h

4: yh½n� 1� , wT
h ½n� 1�bbh½n�: Prediction of node h for y½n�

5: bbh½n� ¼ QT
h ½n�ðx½n� � ch½n�Þ

6: ~xh½n� ¼ QT
h ½n�x½n� : Projection of x on the basis of h

7: gg½n� ¼ ðI�Qh½n�QT
h ½n�Þðx½n� � ch½n�Þ : Projection residual

8: wh½n� ¼ wh½n� 1� þ n�xh½n�ðy½n� �wT
h ½n� 1��xh½n�Þ:

regressor weight vectors for each node h.wh½n� 2 Rd

9: d; d1; d2 : small positive real constants
10: dðkÞ : kth component of vector d
11: Qh : basis of the subspace with node index h

12: <h½n� : Subsets of the regressor space in RD

13: DMðx½n�;<h½n�Þ ¼ bbT
h ½n�L�1

h ½n�bbh½n� þ d�1
h ½n�kx?½n�k2

14: hl ¼ 1; . . . ; 2K : Leaf nodes
15: h
 ¼ argminhlDMðx½n�;<hl ½n�Þ
Initialization:
1: for h ¼ 1 to 2Kþ1 � 1; do
2: Ch½0� ¼ d�1

1

3: Eh½0� ¼ d�1
2

4: ŷh½0� ¼ 0
5: wh½0� ¼ 0 (initial weight vector for node h)
6: end for
7: for k ¼ 1; . . . ;K þ 1; do
8: mk½0� ¼ 0; sk½0� ¼ 0
9: Lh½0� ¼ diagf�1; . . . ; �dg : here �1; . . . ; �d are the

eigen-values of covariance matrix S of initial training
samples.

10: ch½0� ¼ Efxg : x are the training samples and x 2 Rh

11: Qh½0� ¼ eigen-vector matrix of covariance matrix S
12: end for
Algorithm:
1: for n ¼ 1; . . . ; N; do
2: d ¼ ½ �; vector containing indices of dark nodes.
3: for h ¼ 2K; 2K þ 1; . . . ; 2Kþ1 � 1 : i.e. 2K leaf nodes do
4: DMðx½n�; Sh½n� 1�Þ ¼ bbT

h ½n� 1�L�1
h ½n� 1� bbh½n� 1�

þd�1
h ½n� 1�kggh½n� 1�k2

5: end for
6: dðK þ 1Þ ¼ argminhDMðx½n�; Sh½n� 1�Þ for h ¼ 2K; 2K

þ1; . . . ; 2Kþ1 � 1
The remaining K dark nodes are determined by climb-
ing up the tree till the root node:

7: dðKÞ : parent node of dðK þ 1Þ
8: dðK � 1Þ : parent node of dðKÞ, till
9: dð1Þ : root node

Find weights for each dark node:
10: s1½n� 1� ¼ 1

2

11: for h ¼ dð2Þ; . . . ;dðK þ 1Þ; OR k ¼ 2; . . . ;K þ 1; do
12: if k ¼ K þ 1, then
13: sk½n� 1� ¼ Cs½n� 1�sk�1½n� 1� : s is the sibling

node of dðkÞ
14: else if k < K þ 1, then
15: sk½n� 1� ¼ 1

2Cs½n� 1�sk�1½n� 1� : s
16: end if
17: mk½n� 1� ¼ sk½n�1�Ek½n�1�

C1½n�1�
18: end for

Estimation of y½n� from x½n� :
19: ~yk½n� 1� ¼ wT

k ½n� 1�~xk½n� : Prediction of each dark node
k

20: ~y½n� ¼PKþ1
k¼1 mk½n� 1�~yk½n� 1� : Weighted combination of

the individual nodes prediction based on their past
performance.

21: Update the parameters using Algorithm 2.
22: end for
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Algorithm 2. Update Parameters

1: for k ¼ K þ 1; . . . ; 1, (Dark nodes of the previous iteration),
do

2: wk½n� ¼ wk½n� 1� þ n~xk½n�ðy½n� �wT
k ½n� 1�~xk½n�Þ :

Updated regressor weight vectors for kth node. n is the
step size,
a small positive constant.

3: Ek½n� ¼ Ek½n� 1�exp � 1
2a ðy½n� � ~yk½n� 1�Þ2

� �
Update node performance measure

4: if k ¼ K þ 1, then
5: Ck½n� ¼ Ek½n�
6: else if k 6¼ K þ 1, then
7: Ck½n� ¼ 1

2Cku ½n� 1�Ckl ½n� 1� þ 1
2Ek½n�, k is inner

node, and ku and kl are the two children nodes of k.
8: end if

Update Subspace and manifold parameters
9: ck½n� ¼ ack½n� 1� þ ð1� aÞx½n�
10: �

ðmÞ
k ½n� ¼ a�

ðmÞ
k ½n� 1� þ ð1� aÞ bbk½n�ð Þ2m where

m ¼ 1; . . . ; d and bbk½n�ð Þm is the mth component of vec-
tor bbk½n�

11: dk½n� ¼ adk½n� 1� þ ð1� aÞ kggk½n�1�k2
ðD�dÞ

12: Qk are updated using PETRELS-FO.
13: end for

3.3 Initialization and Choice of Parameter Values

The algorithm may be initialized by using a small training
set to fix the initial values for Qh; ch;LLh and dh. However,
for large data lengths, the effect of initialization is negligible
and unnecessary, and the algorithm can be randomly initial-
ized. For the first example used in this paper, we use a small
training set of length N ¼ 1; 000, and use the k-means algo-

rithm to bi-partition the data till the data is divided into 2K

regions. For the rest of the examples, the subspace and the
regressor parameters are initialized either randomly or with
zeros. We choose the parameter a for updating the subspace
parameters that ranges from 0:8 to 0:95 based on the speed
of variation in the submanifold. To update the regressor
weight vectors, we use RLS [4], [5] with a forgetting factor
between 0:5 and 0:75 in different examples.

Remark The choices of d and K are very crucial as they are
directly related to the performance and complexity of the
algorithm. In practice, one can use a few samples of the
regressor vectors to compute the covariance matrix and
obtain d. To this end, one can compute the Singular Value
Decomposition (SVD) of the covariance matrix and put a
threshold based on the values of the eigenvalues. Then, for
the kth node, the number of eigenvalues greater than the
threshold can be used as the dimensionality dk. Moreover,
in order to use the same dimensionality for all nodes, one
can choose the largest dk as the intrinsic dimensionality d.
However, we do not determine d using the SVD, since it is
computationally prohibitive in big data applications.
Instead, we choose a fixed value for d (the same dimension-
ality for all nodes) and, as shown in the experiments, our
algorithm is robust tomismatch in the true and our selected
intrinsic dimension. In real life data, the intrinsic dimension
as well as the curvature of the manifold is usually not
known and can even be time varying. However, a suffi-
ciently large K can also accommodate for the mismatch

between the intrinsic dimension of the manifold and the
chosen d. An adaptive hierarchical tree of depth K inher-
ently incorporates all the possible trees of depths less than
K, therefore in a time varying environment, our algorithm
adapts to the fluctuations in data without changing K as
shown by the real data tests in Section 4. By this, we achieve
a significant regression performance over a wide range of
time varying data without increasing the complexity of the
algorithm.

4 EXPERIMENTS

In this section, we illustrate the performance of the adaptive
hierarchical tree algorithm with several real and synthetic
examples. The first set of experiments involves a high
dimensional sequence that lies on a time varying submani-
fold [37]. The dimension of the submanifold is D ¼ 10 and
the intrinsic dimension is dintrinsic ¼ 1. Let u be a uniformly
distributed random variable, i.e., u � U½�2; 2�. We define

fv½n�gn�1; v½n� 2 IRD with it’s pth element,

vp½n� ¼ 1ffiffiffiffiffiffi
2p

p e�ðzp�uÞ2=ð2k2½n�Þ; (24)

where zp ¼ �2þ 4p=D; p ¼ 1; . . . ; D; corresponds to regu-
larly spaced points between �2 and 2 and

v½n� ¼ ½v1½n�; v2½n�; . . . ; vD½n��T . Here, fk½n�gn�1; k½n� 2 IR con-

trols the variation in the submanifold since the curvature of
the submanifold increases with increase in k and decreases
when k decreases. We define k½n� by:

k½n� ¼ 100� kojðnmod 2sÞ � sj; for n ¼ 1; 2; . . . ; (25)

where s ¼ 100=ko and ko determines the speed of variation
of the submanifold. Here, k½n� corresponds to values
between 0 and 100 following a triangular waveform. For the
first s points, k½n� increases linearly till it reaches 100 and for
the next s points it decreases till 0, where the period of the
triangular wave is 2s and s is the number of points to reach
from 0 to 100. The vector sequence x½n� is obtained by

x½n� ¼ v½n� þ rr½n�;
where rr½n� 2 IRD is white Gaussian noise with autocovar-

iance SSrr ¼ 4� 10�4ID. The resultant vector sequence x½n�
lies on a time varying submanifold with ambient dimension,
D ¼ 10 while dintrinsic ¼ 1. We generate the desired scalar
sequence fy½n�gn�1; y½n� 2 IR by the following piecewise

model,

y½n� ¼
wT

1 x½n� þ %1½n�; if k½n� � 25
wT

2 x½n� þ %2½n�; if 25 < k½n� � 50
wT

3 x½n� þ %3½n�; if 50 < k½n� � 75
wT

4 x½n� þ %4½n�; if 75 < k½n� � 100;

8>><
>>: (26)

where wj 2 IRD; j ¼ 1; . . . ; 4; and %j for j ¼ 1; . . . ; 4; is zero

mean white Gaussian noise with variance s2 ¼ 1� 10�4.
Note that for this example, there is a piecewise linear struc-
ture that can be perfectly modeled by the leaves of the tree.
Moreover, the algorithm can perfectly match the underlying
time varying submanifold using the adaptive tree structure.
The curvature of the submanifold increases and decreases

182 IEEE TRANSACTIONS ON BIG DATA, VOL. 2, NO. 2, APRIL-JUNE 2016



with k½n� in a cyclic manner and yet the algorithm is able to
track the variations in the submanifold.

We use d ¼ 1 as the dimension of projection and use PET-
RELS algorithm for subspace tracking [45] with fast orthog-
onalization, and hence we denote it by PETRELS-FO [37],
[38]. We apply piecewise linear regression using the context

tree weighting method on IRd by projecting the observed
vectors x½n� on the estimated subspace for each region of the
tree with K ¼ 3 as described in Algorithm 1 and Algorithm
2. We display the results in Fig. 5. Here, we use ko ¼ 0:04
and plot the normalized accumulated mean square errors
against 2; 000 samples of the data. We also calculate the
mean square errors using the regression on the finest parti-
tions. The adaptive hierarchical trees algorithm is particu-
larly useful for short data records. As expected, the
performance of the finest partition suffers when the data
length is small, due to overfitting. Since, our algorithm
adaptively combines predictors for each different partition
based on their performance, it is able to favor the coarser
models with a small number of parameters during the ini-
tial phase of the algorithm. This avoids the overfitting prob-
lems faced by the sequential algorithms using the finest
partition. As the data length increases, both algorithms
almost converge to the same minimum error rate. Hence,
the tree based adaptation is attractive for adaptive process-
ing in a time varying environments for which a windowed
version of the most recent data is typically used. The perfor-
mance of the algorithm improves with increasing the depth
of the tree, however, it saturates at a specificK, i.e., when the
piecewise model of (26) can be perfectly modeled by the pro-
posed algorithmwith a certain number of regions. In our cur-
rent example, we observe that choosing K ¼ 2 must be
sufficient since it divides the regressor space into a maxi-
mum four regions. However, due to the time varying nature
of the submanifold, choosing K > 2 improves the perfor-
mance. The error rate reaches the saturation point at K ¼ 3
and further increasing the depth of the tree results in overfit-
ting. This behavior can be seen in Fig. 6.

We next compare the performance of our algorithm for
various choices of the dimension of projection using the
same dataset. We plot the normalized MSE for d ¼ 1; 2; 3
as shown in Fig. 7. We observe that for the dimension of
projection higher than the intrinsic dimension of the subma-
nifold, i.e., d > dintrinsic, there is an improvement in the per-
formance of the algorithm for the same K. Since the
manifold data is corrupted with D�dimensional noise,
although the intrinsic dimension is dintrinsic ¼ 1, we record a
significant performance improvement for the same values of
K. The submanifold subspaces are better tracked when the
dimension of projections is chosen higher than the intrinsic
dimension of the submanifold, resulting in better perfor-
mance overall. Hence, we can deduce that the prediction per-
formance of our algorithm can be increased by either
increasing d or K, yet at the cost of complexity and memory

Fig. 5. Sequential piecewise linear prediction of the desired data ŷ½n� of
(26) with d ¼ 1 and tree depth, K ¼ 3, sequential piecewise linear pre-
dictor with finest partitions on the tree.

Fig. 6. Piecewise linear prediction on high dimensional, time varying sub-
manifolds using adaptive hierarchical trees. D ¼ 10; dintrinsic ¼ 1; d ¼ 1,
andK ¼ 2; 3; 4.

Fig. 7. Sequential piecewise linear prediction of the desired data ŷ½n� of
(26) with d ¼ 1; 2; 3 and tree depth, K ¼ 3. The intrinsic dimension is
dintrinsic ¼ 1.
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requirement. However, increasing d orK beyond an optimal
value results in overfitting, and in turn degrades the perfor-
mance. In the current example, the algorithmperforms better
when d ¼ 2, yet worse when d ¼ 3 as compared to d ¼ 1.
These phenomena can further be explained by the subse-
quent experiments.

In the next example, we use a D ¼ 100 dimensional data
that lies on a time varying submanifold with the intrinsic
dimension dintrinsic ¼ 1. We generate the datasets in the same
manner as 24 and (26). We choose the tree depth, K ¼ 4 and
plot the normalized mean square errors for various choices
of d while d � dintrinsic. Fig. 8 shows a significant decrease in
MSE for d ¼ 2 over d ¼ 1. Furthermore, the algorithm
attains the minimum error rate faster for larger d. This
makes the choice of larger d attractive for adaptive process-
ing in time varying environment for which a shorter length
of the most recent data is used. However, even with d ¼ 1,
the algorithm attains almost the same minimum error rate
but for a larger data length. Still choosing d as large as possi-
ble is not recommended and rather makes the algorithm
inefficient since larger d results in overfitting and may even
increase the error rate. This is evident from Fig. 8, where
choosing d > 3 increases the process complexity and mem-
ory requirement yet the performance is degraded.

We next compare the performance of Adaptive Hierar-
chical Trees for a new dataset with dimensionality D ¼ 200
and intrinsic dimension dintrinsic ¼ 3 [37], [38]. Let the two-
dimensional parameters ½fo;f� be uniformly and randomly
generated with frequency fo � U½1; 100� and phase f � U
½0; 1�. We define v½n� 2 IRD, with its pth element

vp½n� ¼ sin 2pðfo~zp þ ~k½n�2
2

~z2p þ fÞ
" #

; (27)

where ~zp ¼ 10�4p for p ¼ 1; 2; . . . ; 100; corresponds to regu-
larly spaced points between 0 and 0:01. The parameter ~k½n�
for n 2 f1; . . . ; Ng; N ¼ length of the data; controls the

variations in the submanifold and is set according to the fol-
lowing equation

~k½n� ¼ 100j cos ðu½n�Þj; for n ¼ 1; 2; . . . ; (28)

where u½n� 2 ½0; 3p�. Then, v½n� ¼ ½v1½n�; v2½n�; . . . ; vD½n��T .
The observedD�dimensional data x½n� is given by

x½n� ¼ v½n� þ rr½n�;
where rr½n� 2 IRD is a white Gaussian noise with autocovar-

iance SSrr ¼ 4� 10�4ID. The desired data is generated by
(26), with four piecewise linear regions.

In Fig. 9, we plot the normalized MSE for the adaptive
hierarchical tree algorithm using trees of various depths
K 2 f4; 6; 8g and different values of the dimensionality,
d 2 f1; 2; 3g. The results here show that a value of d ¼ 3 is
optimal in this example. It is interesting to note that our algo-
rithm not only attains the minimum error rate faster but also
keeps it stable when the data length increases. Since, our
algorithm “always” dynamically updates and combines the
weights of the partitions, it is capable of catching up with the
sudden changes in the model. This makes the algorithm
effective for applications with dynamic environment.

The choice of d affects the performance of the algorithm
that can be seen in Fig. 9b, where d > 1 shows great improve-
ment on the performance. In addition, in order to see the effect
of the tree depth K on the performance, we have performed
the simulations for K 2 f4; 6; 8g, and for d 2 f2; 3g. The
results show thatwe can improve the performance by increas-
ing the depth of the tree for both d ¼ 2 and d ¼ 3. However,
since the depthK directly affects the computational complex-
ity, it should be determined based on the complexity consid-
erations. Moreover, as we observe from the simulations,
when we choose d ¼ 3, the algorithm can effectively match
the underlying data model and reach a significantly low Nor-
malized Accumulated MSE. Hence, if the intrinsic dimension
of the submanifold is known, it gives a good initial guess to
use for the value of d for d should be at least equal to the intrin-
sic dimension. It is interesting to note that for an optimal
choice of K, a d < dintrinsic may even be sufficient for the

Fig. 8. Piecewise linear regression on 100� dimensional time varying
submanifold with intrinsic dimension dintrinsic ¼ 1 using adaptive Hierar-
chical trees. Normalized MSE are plotted for 3; 000 samples of online
data usingK ¼ 4 and d ¼ 1; :::; 4.

Fig. 9. Normalized MSE based performance analysis using AHT with
K 2 f4; 6; 8g and d ¼ f1; 2; 3g, to see the effect of these parameters on
the time-varying submanifold tracking performance.
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algorithm to track and predict the desired data sequence from
the high dimensional time varying submanifold. An optimal
K not only determines the modeling strength with respect to
the nonlinearity of the model but also the approximation to
the true manifold. This is specifically helpful for the real data
where the intrinsic dimensionality may be unknown and
even varying, then choosingK optimally and adaptively can
be used to track the subspace for a short training data. In such
case, the best practice would be to start from a simpler model,
with small d andK, and adjust these parameters till a certain
minimumerror rate is achieved or the saturation point occurs.
However, this is only required at the training stage. Further-
more, if real online data yet has more fluctuations than ini-
tially guessed, there is no need to change K since the
weighting coefficientsmk on each level of the tree already take
care of the time varying curvature. For instance, if the curva-
ture of the manifold increases, the algorithm increases the
weights of finer nodes. This is in contrast to [37], [38] where
the manifold is tracked on a single level at a certain time and
if the curvature changes, the tree has to grow or prune. We
show by examples that in most real world scenarios, simpler
models in terms of d andK works well enough to achieve bet-
ter results than previous state of the art techniques.

We next illustrate the performance of our algorithm on a
number of real world data sets. The public data sets are
obtained by measurements on specific parameters related to
the underlying system. Then, these measurements are col-
lected into vectors to be used as the regressor vectors in the
regression task. However, these measurements are not nec-
essarily independent of each other and there are correla-
tions between the measurements of different parameters.
Therefore, it is safe to assume that the observed data lies on
a time varying submanifold of lower intrinsic dimension.
The following simulations demonstrate the superior perfor-
mance of our algorithm on such data sets, which is consis-
tent with our assumptions.

In the following experiments, we use 90 percent of the data
for training and the remaining 10 percent data for testing. In

the first example, we use the computer activity dataset [46],
where we predict the portion of time the CPU runs in user
mode from the observed 21 attributes. The results are given in
Fig. 10. Here we achieve a significantly small MSE and faster
convergence as compared to context tree weighting [27] and
online Least Mean Square [4] by using d ¼ 5 whereas the
actual dimension isD ¼ 21. The results demonstrate the supe-
rior performance of our algorithm not only in the training
phase, but also the in test phase.

In the next example, we evaluate the performance of our
algorithm on the real world dataset KDD-CUP99 [47]. The
task is to design a software to detect network intrusions in
order to protect a computer network from unauthorized
users, including (perhaps) the insiders.We build a predictive
model (i.e., a classifier) capable of distinguishing between
“bad” connections, called intrusions or attacks, and “good”
connections. A connection is a sequence of TCP packets start-
ing and ending at some well defined times, between which
data flows to and from a source IP address to a target IP
address under some well defined protocol. The objective is
to classify the connections as “normal” or an “attack”, based
on the corresponding features of that connection. We use the
corrected dataset of KDD-CUP99 [47], which consists of 42
features, a mix of categorical and numeric features. We con-
vert the categorical features to numeric by introducing
dummy variables and the final dataset has D ¼ 114 dimen-
sional data points (feature vectors).

We compare the performance of our algorithm with that
of the conventional context tree weighting method. For the
CTW method, we use a tree with depth K ¼ 3, whereas we
have done the experiment with K ¼ 2 and K ¼ 3, and
d ¼ 20 for our algorithm. As depicted in Fig. 11, our algo-
rithm significantly outperforms the CTW method as our
algorithm achieves a lower Normalized Accumulated MSE
during the training phase. The results also reveal the supe-
rior performance of our algorithm during the test phase (see
the table included in the Fig. 11). This is because our algo-
rithm, unlike the CTW, continues to adapt itself to the struc-
ture of the data in the test phase. In addition, the results

Fig. 11. Performance Analysis of AHT on real data (KDD CUP99 Data-
base) with d ¼ 20; D ¼ 114 and K 2 f2; 3g. 90 percent of the data is
used for training and the remaining data is used for the test.

Fig. 10. Performance Analysis of AHT on real data (Computer Activity)
with d ¼ 5; D ¼ 21 and K ¼ 3. 90% of the data is used for training and
the remaining data is used as the test data.
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show that when we use K ¼ 3, our algorithm can perform
slightly better than when we use K ¼ 2. Furthermore,
Fig. 12 shows that our algorithm is remarkably faster than
the CTWmethod.

Finally, we summarize the performance of AHT on other
widely used real world datasets and compare with the pre-
vious state of the art algorithms in terms of MSE and
computational complexity [28]. The results are shown in
Table 1. We compare the performance and complexity of
our algorithm with Decision Adaptive Trees (DAT) [28] and
context tree weighting [27]. The Kinematics data (D ¼ 8)
[46] is the simulation of the dynamics of an 8� link all-
revolute robotic arm where we predict the distance of the
end-effector from the target. In the Elevators dataset with
D ¼ 18 [48], [49], the desired task is to take action on the ele-
vators of an F16 aircraft. The Bank dataset (D ¼ 32) [49] is a
realistic simulation of the queues in a series of banks and
the task is to predict the portion of customers who would
leave the bank because of full queues. The Pumadyn dataset
(D ¼ 32) [48] is a realistic simulation of the dynamics of
Unimation Puma 560 robot arm where the target task is to
predict the angular acceleration of the robot arm’s links.
Here we use K ¼ 2 and d ¼ 1 in all the examples and
achieve significantly good performance with relatively

reduced complexity, i.e., OðKdÞ as compared to Oð4KDÞ in
case of DAT and OðKDÞ in case of CTW, where d � D.

5 CONCLUSION

We consider the problem of piecewise linear regression on
high dimensional data from a competitive algorithm per-
spective. The data is lying on a time varying submanifold
andwe use a hierarchical tree structure to track the submani-
fold and escape the curse of dimensionality. Using the adap-
tive hierarchical tree structure together with the subspace
tracking algorithms based on sequential performance mea-
sure, we introduce a regression algorithm whose total
squared prediction error is within OðdJ lnðn=JÞÞ þOðCðPiÞÞ
of that of the best batch piecewisemodel,where J is the num-
ber of regions in the best piecewise model. We introduce a
method using the context tree notion for the piecewise
modeling that competes well against a doubly exponential
class of possible partitioning of the regressor space. The algo-
rithm is shown to instantly adapt to the variations in the data
and hence, is effective for high dimensional data with short
data lengths in an online setting. The resulting algorithms
are suitable for rather complex datasets since they have time

complexity only linear in the depth of the tree and perform
well for a variety of real and synthetic data. Our algorithm
can be efficiently used in high performance computing due
to the low computational complexity and faster learning.
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