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Sequential Nonlinear Learning for Distributed
Multiagent Systems via Extreme
Learning Machines
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Abstract— We study online nonlinear learning over distributed
multiagent systems, where each agent employs a single hidden
layer feedforward neural network (SLFN) structure to sequen-
tially minimize arbitrary loss functions. In particular, each agent
trains its own SLFN using only the data that is revealed to itself.
On the other hand, the aim of the multiagent system is to train
the SLFN at each agent as well as the optimal centralized batch
SLFN that has access to all the data, by exchanging information
between neighboring agents. We address this problem by intro-
ducing a distributed subgradient-based extreme learning machine
algorithm. The proposed algorithm provides guaranteed upper
bounds on the performance of the SLFN at each agent and shows
that each of these individual SLFNs asymptotically achieves the
performance of the optimal centralized batch SLFN. Our perfor-
mance guarantees explicitly distinguish the effects of data- and
network-dependent parameters on the convergence rate of the
proposed algorithm. The experimental results illustrate that the
proposed algorithm achieves the oracle performance significantly
faster than the state-of-the-art methods in the machine learning
and signal processing literature. Hence, the proposed method is
highly appealing for the applications involving big data.

Index Terms—Distributed systems, extreme learning
machine (ELM), multiagent optimization, sequential learning,
single hidden layer feedforward neural networks (SLFNs).

I. INTRODUCTION
A. Preliminaries

HE demand for neural network inspired learning

structures is steadily growing owing to their superior non-
linear modeling power and low complexity [1]-[3]. Although
several neural-adaptive learning methods [1]-[5] are used for
processing data in a centralized manner, the steadily increasing
growth of the data sizes (in terms of both dimensionality
and length) prohibits centralized processing due to computa-
tional complexity, storage, and communication issues [6], [7].
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To address this problem, several distributed learning algo-
rithms are proposed in the machine learning and signal
processing literature [8]-[13]. Although these algorithms are
shown to achieve certain statistical and deterministic con-
vergence rates, they are usually based on linear models,
which significantly limit their performance in real-life
applications [14].

In this paper, we resolve these issues by introducing
a sequential nonlinear kernel-adaptive learning algorithm
with guaranteed convergence bounds without any statistical
assumptions. In particular, we propose a distributed single hid-
den layer feedforward neural network (SLFN) structure with
strong theoretical convergence guarantees in a deterministic
sense, i.e., without any statistical assumptions on the data.
Our algorithm builds upon the existing centralized extreme
learning machine (ELM)-based methods in a novel manner
by: 1) providing a rigorous distributed formulation of the
neural network-based optimization problem and 2) introducing
a low-complexity algorithm to achieve the performance of the
optimal centralized ELM-based method. Through extensive set
of simulations and real-life experiments, we demonstrate sig-
nificant performance gains achieved by the proposed algorithm
with respect to the conventional distributed learning algorithms
in the signal processing and machine learning literature.

B. Prior Art and Comparison

For applications involving high levels of complexity and
nonlinearity, several SLFN-based algorithms are introduced
for accurate nonlinear modeling [1], [15]-[18]. In order
to train SLFNs, a popular method is to wuse the
ELM algorithm [1]. In particular, Huang et al. [1] illustrate
the sufficient initialization conditions to train the SLFNs,
which significantly improve the convergence speed of the
SLFN-based algorithms. Liang et al. [2] have extended these
ideas to sequential learning problems. Recently, several vari-
ants of the ELM method are proposed for various learning
tasks and cost functions. Specifically, Balasundaram et al. [5]
considered the one-norm minimization and introduced a
method to generalize the ELM algorithm for this cost mea-
sure. In [19], the ELM algorithm is used for ranking problems,
and in [20], hierarchical structures are incorporated into the
ELM framework to process high-dimensional data. Our work
builds upon these existing works in the literature by providing
a scalable distributed method, over which any such ELM-based
algorithm can be applied. Furthermore, the computational
complexity of the proposed algorithm is linear in the number
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of hidden nodes for each agent, whereas it is quadratic for the
original ELM method [2]. Therefore, the proposed algorithm
is highly appealing for applications involving big data, since
the introduced algorithm directly decreases: 1) the amount of
data to be processed at each agent and 2) the computational
complexity of the processing algorithms at each agent.

Distributed learning and optimization problems are exten-
sively studied in the context of signal processing [8]-[10] and
optimization [11]-[13], [21], [22] due to their natural modeling
abilities of underlying phenomenon. In the distributed setting,
the authors use linear models to capture the relationship
between the input and output data [8]-[10]. However, the
convergence results in these papers are only valid under certain
statistical assumptions on the data, which do not usually hold
in real-life applications. In this paper, we do not commit to
linear models, but instead use an SLFN-based structure, which
has shown to elegantly model the complex nonlinear rela-
tionships [1]. Furthermore, our analyses hold in an individual
sequence manner without any statistical assumptions on the
data, unlike [8]-[10].

We emphasize that the conventional distributed multia-
gent optimization algorithms [11]-[13], [21], [22] usually
have linear structures in general, similar to [8]-[10]. On the
other hand, these methods are mainly based on subgradient
methods, and the theoretical analyses are carried out from
a deterministic perspective. Yet, these subgradient methods
may not provide satisfactory performance if the cost function
is nondifferentiable at certain points. This holds, since these
nondifferentiable points are usually the desired solutions
of the optimization problems (e.g., consider the regularized
one-norm loss). Therefore, in this paper, we do not directly
use a subgradient-based approach, but instead use a split-
ting method [23]-[25] to ensure that our algorithm attains
such nondifferentiable values. In this manner, our algorithm
achieves a considerably smaller accumulated error and illus-
trates a better convergence performance as shown in our
experiments.

C. Contributions

Our main contributions are as follows.

1) We introduce a sequential nonlinear optimization
algorithm over distributed multiagent learning systems.
Here, the multiagent structure optimizes the SFLNs for
both additive and radial basis function kernels in a
fully distributed manner. The proposed algorithm is truly
sequential, such that it processes each new data pair and
update the SLFN model without the knowledge of the
time horizon.

2) We show that by our diffusion scheme, each agent
can successfully and uniformly optimize the SFLN
weights to minimize the overall network cost (over
the entire data) with observing only a portion of the
data. We demonstrate this result in a deterministic sense
without any statistical assumptions on the data, such that
our results are guaranteed to hold uniformly for all input
and output sequences.

3) We achieve this performance with a computational
complexity only linear in the data length. Thus, our

algorithm can be efficiently used in applications
involving big data.

4) We demonstrate the significant performance gains
achieved by our algorithm over numerical examples and
benchmark real data sets.

D. Organization of This Paper

The organization of this paper is as follows. In Section II,
we introduce the multiagent learning problem and use the
SLFNs as well as the forward-backward splitting method
to derive a sequential distributed optimization algorithm.
We then analyze the convergence performance of the intro-
duced algorithm and provide guaranteed regret bounds in
Sections IIT and I'V. In Section V, we compare the performance
of our algorithm with respect to the state-of-the-art algorithms
over benchmark data sets. This paper concludes with several
remarks in Section VI.

II. PROBLEM DESCRIPTION
A. Notation

Throughout this paper, all vectors are column vectors and
represented by boldface lowercase letters. Matrices are repre-
sented by boldface uppercase letters. For a matrix H, ||H||f
is the Frobenius norm. For a vector x (and matrix H), ||x||
(and ||H||) is the ¢*-norm. For two vectors x,y € R™,
(x,y) = xTy is the inner product. Here, 0 (and 1) denotes the
vector with all zeros (and ones), and the dimensions can be
understood from the context. For a matrix H, H j; represents
its entry at the jth row and the kth column.

B. System Overview

We study the distributed sequential training of SLFN struc-
tures, which can be used in various applications, including
nonlinear optimization, regression, and classification. As an
example, in wireless sensor networks, a number of agents
observe different data sequences related to (or generated by)
a phenomenon of interest. In a centralized approach to this
problem (see [2] and references therein), the entire data
sequences are required to be processed by a single centralized
agent. To this end, each agent transmits its observations into
a centralized processor, where a sequential algorithm, e.g.,
online ELM [2] is applied. However, this centralized structure
cannot process the data in a truly sequential manner, since the
data are delayed due to transmission and then processed in
chunks at the centralized processor. Furthermore, each agent
may have the capability of generating huge volumes of data
due to the recent developments in hardware technologies [8].
Therefore, centralized processing of such huge amounts of data
may not be feasible or even possible due to the transmission,
computational complexity, and storage issues [10].

To resolve these problems, we introduce a distributed frame-
work, where each agent sequentially processes its own data
and shares the extracted information with its neighbors, as
shown in Fig. 1. Thus, the data are processed in a truly
sequential and completely decentralized manner. Nevertheless,
as rigorously shown in Section IV, the proposed distributed
sequential method achieves asymptotically the same perfor-
mance with its optimal centralized batch variant.
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Fig. 1.  Example multiagent network. Each agent is connected to and
communicates with a set of other agents, which form its neighborhood. The
network is irreducible and aperiodic, such that each node is achievable from
any other node at irregular times.

More formally, each agent k € {1,..., K} observes a pair
of input vector and target data synchronously at each time z,
ie., (x;k, v k), where x;x € R™ and y;x € R. In real-life
applications, the network may be subject to several sources
of uncertainties, such as asynchronous data arrivals, topology
changes, and link or node failures. For the brevity of this paper,
we do not incorporate such uncertainties into our framework
and refer to the relevant papers in the literature [26]-[31],
where the effects of such uncertainties to the performance
of the first-order methods are thoroughly analyzed. In this
framework, the aim of each agent is to learn the relationship
between these input vector and target data sequences. This
learning process is performed in a sequential manner, such
that after y; x is predicted and its true value is revealed, each
agent updates its prediction model in order to more accurately
predict the next sample y;41 . In many real-life applications,
this relationship between the input vectors and the target data
is highly nonlinear [14]. Hence, in order to effectively capture
such nonlinear relationships, at each agent k, we use an SLFN
with N hidden nodes and estimate the target data at each agent
ke{l,...,K} as

N
k=D Wink2(@n s buk X0k)

n=1

(1

where for the kth agent, w; ,  is the weight connecting the
nth hidden node to the output node, z(a, k, bn.k; X k) is the
output of the nth hidden node for the input x; &, a,x € R™ is
the weight vector connecting the input layer to the nth hidden
node, and b,y € R is the bias parameter of the nth hidden
node. As shown in [2], if the number of hidden nodes is
sufficiently large, we can randomly pick the weight vector a, k
and the bias parameter b, ; without any performance degrada-
tion for infinitely differentiable activation functions z(-, -; -).
Thus, we randomly generate a weight vector @, and a bias
parameter b,, then use these parameters at each agent, i.e.,
we set a,  =a, and b,y = b,, Vk € {1, ..., K}.1 Then, we

IThis procedure can be performed before the processing starts by exchang-
ing either the corresponding parameters or the seed of the random number
generator.

can rewrite (1) in the vector form as
2)

,z(an k. by i x:x)]7 and

Vi = Wk, Zr k)

where z; ¢ = [z(a1k, b1 g X1 k), - - -
Wik = (w1 ks oo N k]

In the distributed setting, the aim of each agent is to
minimize a cost function f; () + rx(-) at time ¢ over a
convex set VW, where f; x(-) and rr(-) are the generic convex
functions. Here, for the kth agent, the function f; () is an
empirical loss, and the function r¢(-) is a regularization term.
As an example, by setting f; x(w) = (v, — (w, z,4))* and
ri(w) = Zl|lw||,, we obtain the regularized least squares
cost function. We emphasize that we consider this
generic cost function, since we can train the ELMs using
different cost functions instead of the squared error loss
depending on the application. Our approach covers these
different cases and models a broad range of practical cost
functions that are widely used in optimization [32], machine
learning [33], and signal processing literature [34]. In a more
formal manner, the aim of each agent is to sequentially solve
the following optimization problem:

T
min Z[fz,k(wz,k) + re(wy )]

=1
s.t.wyp €W

3)

“)

for any T, where T is the length of the data, which is arbitrary
and unknown, i.e., the agents perform optimization in a truly
sequential manner without the knowledge of the time horizon.

Although the objective of each agent is to minimize the
cost function in (3), the aim in the distributed framework is
to propose an algorithm that achieves asymptotically the same
performance as the optimal batch centralized processor. To this
end, we define the following global loss functions:

K

frwe) 27 fij(wip) )
=1
jK

rweg) £ ri(wi) (6)

j=l1

which represent the loss of the SLFN weight vector of the
kth agent on the data observed by all agents on the distributed
network at time ¢. In this way, we aim to construct a distributed
learning algorithm that is consistent among all the agents,
i.e., each agent should be able to acquire the information
from every input and output data pairs observed by every
other agent. In particular, our aim is to solve the following
optimization problem:

T
min w; ) +r(w 7
w,,keWE[ft( 0ic) +r(we )] @)
over all k € {1,..., K}. Here, we emphasize that we avoid

any statistical assumptions on the input vector and the target
data. Instead, our aim is to introduce a sequential algorithm
that provides guaranteed performance in a strong deterministic
sense. To this end, we next introduce an algorithm, which
is used by each agent to minimize the cost function of that
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agent (5), (6). Then, SLFN weight vectors trained by this
algorithm are diffused among the agents to solve the global
SLFN-based optimization problem in (7).

C. Forward-Backward Splitting Method

For the applications involving big data and/or requiring
sequential processing, the dimensionality of the input data can
be relatively large [14]. Hence, we aim to design highly effi-
cient algorithms with low complexity to solve the optimization
problem in (7). To this end, we use subgradient methods [11]
due to their computational efficiency and generalization capa-
bilities [12]. The set of subgradients of a function i at w is
defined as follows:

oi(w)={geR":i(v) >i(w)+{(g,v—w) VveR"}
(3

By using the subgradient method to minimize (5) at each
individual node k, we obtain iterates of the form w;1jx =
Wrk — M8 g — teh i, where p, is the learning rate of the
subgradient method, g, ; € 0f;x(w;), and h;; € Org(w;).
However, if the cost functions f; x(-) or r¢(-) are nondifferen-
tiable at certain points, then the iterates w;; cannot usually
attain these values [32], which are usually the desired minima
of the cost functions. As an example, for ri(w) = 4 [|w]|;,
the desired minima is rarely achievable by the aforementioned
update rule. We emphasize that such nondifferentiable cost
functions are usually studied in the context of optimization
and learning theory via the SLFNs and ELM methods [2].

To address this problem, we use the forward—backward
splitting method [25]. In particular, without the loss of gener-
ality, we assume that the cost function f; x(-) is differentiable,
and our aim is to ensure that the iterates w;, attain the
nondifferentiable points of the function ri(-) (note that if
fi.k() is nondifferentiable at some points, whereas ri(-) is
differentiable, one can easily switch the labels of the cost
functions and apply the below procedure). To solve the opti-
mization problem in (5), we perform the following updates:

/
Wy g = Wk — M8k )

. 1
Witk argmln[§||w—w;+1,k||2+ﬂtrk(w)] (10)
w

where (9) updates the parameter vector using a subgradient of
the first function f; x(-). Then, in (10), we seek to minimize
the regularization cost r¢(-) while not getting too far from the
intermediate parameter vector calculated in (9). Note that by
using the updates in (9) and (10), we make sure that the iterates
attain the aforementioned nondifferentiable points due to the
following observation. The zero vector should be an element
of the set of subgradients of (10). Therefore, 0 € w; 1 —
w;+1,k + p;0rg(w;41,). This indicates that there always exists
a subgradient vector k41 € Org(w;+1,), such that

(1)

Witk = Wik — L&k — Hihrsi ke

That is, we can reach any nondifferentiable points.

In the following, we introduce a distributed algorithm that
uses the subgradient method described in this section to train
the SFLN models in a truly sequential manner over distributed

Algorithm 1 Distributed Sequential Splitting ELM
I:fort=1to T do
2. fork=1to K do

3 Yk = Wik, Zrk)

4 i1k = 25'{:1 Cjrw,;

5: w;+1,k = ¢t+1,k — Mt8k )

6: Wik = arg miny, % Hw — w;+1,kH + peri(w)
7:  end for

8: end for

architectures and derive the corresponding guaranteed perfor-
mance bounds.

III. DISTRIBUTED SEQUENTIAL SPLITTING
EXTREME LEARNING MACHINE

In this section, we introduce a sequential distributed
SLFN-based algorithm, which uses the forward-backward
splitting method for optimization (the complete description
of the algorithm is given in Algorithm 1). At each time ¢,
each agent k calculates its estimate of the target data as in (2)
and then diffuses the weights of the SFLN, i.e., w;, to its
neighbors, as shown in Fig. 1. Each agent k, after receiving
the weight vectors from the neighboring nodes, performs a
weighted averaging

K
ik =2, Ciiwy (12)
j=1
to construct an intermediate weight vector, where C is the
communication matrix of the graph, such that Cj;s are
the combination weights. After diffusion of the weights of
the SLFN, each agent then performs its update using the
forward-backward splitting method based on the combined
weight vector, as described in Section II-C.

We analyze the performance of this sequential distrib-
uted kernel-adaptive learning algorithm using the following
standard assumptions.

1) The convex set W has a diameter of D,

[lw —v|| < D, Vw,v € W.

2) The norms of the subgradients are bounded by A,
ic. gl Ihekll < A, ¥g,, € ofix(wr i) and
Vh; i € Org(wy k).

3) The communication graph C forms a doubly stochastic
matrix, such that C is irreducible and aperiodic, i.e.,
C1=C"1=1

4) Initial weights are equal at each node, i.e., wy x = wy_j,
Vk,je{l,...,K}.

Here, the first assumption enforces a bounded parameter
vector, which is clearly realistic, since our cost function has
regularization penalties; thus, any parameter vector of interest
should be bounded. Similar diameter boundedness assump-
tions are also used in a number of different papers in the
literature [22], [35]. The second assumption holds for a variety
of loss functions, since our optimization space is bounded,
and consequently, the outputs of the hidden nodes are also
bounded. As an example, any cost function whose gradient is

ie.,
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Lipschitz (e.g., squared error loss, logistic loss, and hinge loss)
satisfies the second assumption. For a more detailed discussion
of this assumption, we refer to [25], [33], [35], and [36].
The third assumption enforces that the contributions of each
agent to the overall multiagent framework are equal. This
assumption is widely used to analyze the mixing properties
of Markov chains [37]. Using similar arguments, the rate of
the information diffusion in distributed networks is analyzed
under the same assumption in [11]-[13] and [21]. The last
assumption is an unbiasedness condition (that also appear in
numerous works in the literature [11]-[13], [21]), which is
used only for presentation purposes, and our bounds hold
[with O(1) excess factors] even when this assumption is not
satisfied.

For Algorithm 1, we have Theorem 1, which states that the
introduced algorithm minimizes a sum of convex objective
functions with a regret of O(K'2°y/T), uniformly at each
agent. We note that the convergence result in Theorem 1 uni-
formly holds for all agents, without any statistical assumptions
on the data and without any knowledge of the time horizon,
i.e., our algorithm does not need T in hindsight. Hence, the
proposed algorithm is truly sequential and consequently highly
suitable for applications involving high-dimensional data.

Theorem 1: Under Assumptions 1-4, Algorithm 1, when
applied to any input and output data sequences, achieves the
following convergence guarantee:

T T
D Lfiwip) +r(wee)] = min 3L f;(w) +r(w)]
t=1

t=1
AD
O(=—=k"'">JT
= (ﬁ )

for all T and Vk € {1, ..., K}, with a suitable learning rate.
Here, o is the spectral gap of the communication matrix C, D
is the diameter of the convex set of the optimization problem,
and A is an upper bound on the norms of the subgradients.
This theorem states that the weights of the SLFNs at
every agent uniformly yield the same asymptotical normalized
accumulated error as the optimal weights that can be chosen
only in hindsight, i.e., after observing all the data in a batch
mode and centralized manner. Here, we define the normalized
accumulated error of the proposed algorithm as follows:

1 T
= 2 i) + 7w )]
t=1

and the normalized accumulated error of the competitor
algorithm can be defined by replacing w, x with w. Therefore,
as T — oo, the error per instance of our algorithm converges
to the error per instance of the optimal batch variant. Thus,
although each agent observes a data of length T, all agents
can still achieve the normalized performance of the centralized
batch algorithm (which processes the entire data of length K T')
through the communication between agents for any given net-
work (with a finite size). Furthermore, if the cost function f;(-)
is F-strongly convex and r(-) is R-strongly convex, where
S £ F 4+ R > 0, then Algorithm 1 achieves a convergence
guarantee of O(K ! log T), as presented in Corollary 1.

Corollary 1: Under Assumptions 1-4 and when the sum of
the cost functions are S-strongly convex for some S > O,
Algorithm 1, when applied to any input and output data
sequences, achieves the following convergence guarantee:

T T
D Lfiwe) + i) = min 3L f(w) + r(w)]
=1

=1
AZ
<0 (—Kl'5 log T)
a

for all T and Vk € {l,...,K}, with a suitable learning
rate. Here, o is the spectral gap of the communication
matrix C and A is an upper bound on the norms of the
subgradients.

IV. PROOFS
A. Proof of Theorem 1

In order to relate the performance of the weights of an
individual agent to the optimal weights, we define an average
weight vector. We first compare the performance of this weight
vector with respect to the optimal weights and then relate this
average weight to the weights at each agent. To this end, let

1 K
W, = — Wy k
KkZl ,

denote the average weight vector. According to this average
weight, we also define the following subgradients:

13)

(14)
5)

&1k € Ofrk(W;)
h[,k € 8rk(i);)

We then consider the average estimation parameter w;
in (13) and obtain the following recursion:

1 K
Wiy = ? zwtﬂ,k
k=1

| KX
=% z Cikwsj — wigx — Hihiyik
k=1 | j=1
u K
_ '
=W - ;(gz,k +hit1k) (16)
where the last line follows from Assumption 3, i.e.,
Zle C;r = 1. By subtracting an arbitrary w € W from
both sides of (16) and taking the squared norm of both sides,

we obtain

2
2 K
. . M
101 = wlP = 118, = wl+ 45 |3 g, + hrvre
k=1
2u K
- k;<g,,k R B —w). (17)
The second term of (17) can be bounded as follows:
K 2 K 2
D g thok|| < (Z g i+ ||ht+1,k||)
k=1 k=1
< 4A%K2 (18)
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We then consider the third term of (17) and write the first
inner product —(g, ;, w; — w) as follows:

—(g,,k, w; —w) = —(gz,k, W; — Wy k) — (gz,k, Wk — W).
(19)
The last term in (19) can be upper bounded using the convexity

of f;x(-) as follows:
F
(gra0 0 = wik) = fok(w) = fra(wip) = S llw —wiil®
< frk) — fix(Wr) + (g 1 W — Wr k)
F -
= Ulw —wi kP + llw i — %),

(20)

Putting (20) back in (19) and noting that the norm of the
gradients is upper bounded by A, we obtain

— (&1 Wr — W) < fra(w) — frx(wy) +2A[wr — wy il
F _
-5 (w - we kI + llwe ke — o )12).
1)

We next consider the second inner product in the third term
of (17) and denote it as follows:

K
—(hr 1,8, W — W) = — <hz+1,k, chkwt,j - wt+1,k>
j=1
K
- <ht+1,k, w; — chkwt,j>
Jj=1
— Rk, Wik — W), (22)

Here, we observe that the first term of (22) can be upper
bounded as

K
<hz+1,k, Witk — Z Cjkwt,j>

j=1
= (Rt — 118 p — Hihisr k) <2470, (23)

where the second line follows from our update rule. We then
consider the second term of (22) and upper bound it as

K
— <h,+1,k, w; — chkwt’j>

j=1

K
= — <hz+1,k, z Cix(w, — wt,j)>

j=1

K
> CiAliv, —w, |
j=1

IA

(24)

where the second line follows due to Assumption 3, since
z;(:l Cjx = 1. Finally, we consider the third term of (22)
and upper bound it using the convexity of r¢(-) [by using a
similar trick that we have done in (20)] and obtain
(Rit1 ks W — Wit k)
< ric(w) = ric(Wrp1) + (Begpi e, Wept — Wi 1 k)

R _
-5 (lw- Wtk + lweprk — W ?). (25)

Putting (23)—(25) back in (22), we obtain

—(hy g1k W, — w)
< re(w) — re (W) + 247
K
+ Al — wepr ikl + D CiAllv — wy |
j=1
R 2 -0
Sl = wep el + ek — B ). (26)

Adding (21) and (26), and summing from k£ = 1 to K, we
obtain the third term of (17) as follows:

K
= gk + hisrk W — w)
k=1

< z frx(w) — frx(wy)

k=1

K
+ (W) = (@i 1) + D Cjx Al — wy |
j=l1
+ 24118, — w ikl + Al — w1kl

F _
+ 2A%, — = (lhw - w 1lI? + 1w g — o)1%)

R
2 -0
- E(Ilw — w1 kT F Wik — W l7)

27)

From the definition of the subgradient, we have f; x(w;) >
Jek(wer) + (&> Wek — W) and rg(Weg1) > re(wes1 k) +
(B4, Wi,k — Wet1). Using these inequalities, we can
write (27) as follows:

K
> gk + hisik w0 — w)
k=1
K
< > fra(w) = frr(weg)
k=1
K
+ re(w) — re(wig10) + O CiAllb, — w
j=1

+ 3A\lw; — w k|| + 2Al Wi — Wipr il

F _
+ 2A%, — = (lhw - w k% + 1w g — o]1%)

R
2 -0
- E(IIW =W k" lwegr e — Wt I7)

(28)

To simplify (28), we present Lemma 1, whose proof is given
in Section I'V-C.

Lemma 1: Under Assumptions 2—-4, the deviation of the
parameter vector of each agent from the average parameter
vector is upper bounded as follows:

t—1
1B, — w il < 2AVK D" 0! (29)
s=1
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where o is the second largest singular value of the communi-
cation matrix C.
Considering the definitions of the cost functions, noting that

K
1 _ -
= 2w —wi kP + g — @) < lw — @] (30)
k=1
from Jensen’s inequality, and using Lemma 1, we can
rewrite (28) as follows:
K

= gk + hisrk W — w)
k=1

< fi(w) — fi(w; k)

-1
+r(w) —r(wi1x) + SAsz/EZ wi—so’ !

s=1
t
+2A7K u; + 4A’KVEK D 10”7
s=1
KF _ KR _
- (lw - w1 — - (llw - weilll?). 3D

In order to obtain the desired upper bound, we put
(18) and (31) back in (17) and summing from t = 1 to T,
we obtain

T
D filweg) = fiw) +r(wiyrx) — r(w)

t=1
T
< —|\——F)llw—w
;{2 (ﬂt

K (1 - 2
— 5| = T R)llw—w
2\

-1
+ SAQKJ?ZM,SUS*]

s=1

t
+4AK i +4A°KVEK D i g10*”

s=1

1}. (32)

Here, we make the following observation:

T
z Ht—s

t=s+1

| T
= 1_02/11

t=1

T t—1

T
ZZ#I_SGS—l — Zo_s—l
s=1

t=1 s=1

(33)

which yields [by adding r(w;) to the both sides of the
inequality] the following regret bound:

T
> fiwer) = fiw) +r(wi i) —r(w)

t=1
K 1 1
552(—‘

Mt Hi—1

- F— R) lw — w,[*

K 1 - 2
+AD+ — | — —F ) |lw—wq]
2\

(34)

If we have F = R =0, i.e., if neither of the cost functions
are strongly convex, we obtain the following upper bound:

T
> fiwer) = fiw) +r(wi i) —r(w)

t=1

plk[1 G/t 1
N AN
3VK \ <
Zﬂt

+AD+4A2K(1 +7
t=1

— 0

D2K 3VK \ <
< AD+ HAAK (1T =— D . (39)
ZuT l1—0o =1

Defining the function #(K, o) £ 14+(3+K /1 — o) and letting
u: = (D/AA(B(K, 0)1))/2, we can rewrite the upper bound
in (35) as follows:

T
> frlweg) = fi(w) +r(w i) —r(w)

t=1

< AD(1+4K/B(K,0)) (36)
since
i D < DVT . (37)
Z AP ) 2AJF(K )
This concludes the proof of Theorem 1. d

B. Proof of Corollary 1

Here, we consider the case S = F + R > 0, where we do
not require both F' and R to be strictly positive, instead either
F > 0 or R > 0 is sufficient. Then, (34) yields the following
upper bound:

T
> filwer) = fiw) +r(wi i) —r(w)

t=1

Dk[1 (1 1
< —+Z(—— —s)
2 | S\
T
VK
+AD +4A%K 1+£ > . (38)
1—0 p—

Picking u; = (1/8t), we obtain (1/u;) — (1/ui—1) — S =0,
which yields

T
D fiwir) = fi(w) +r(wp) —r(w)

t=1

SD*K 3K \1+1logT
< AD + van2k 1+ Toel (39
2 1—0 S
since
1 14logT
P L (40)
St S

t=1

This concludes the proof of Corollary 1. O



VANLI et al.: SEQUENTIAL NONLINEAR LEARNING FOR DISTRIBUTED MULTIAGENT SYSTEMS VIA ELMs 553

C. Proof of Lemma 1

Let Wf é [wl‘,l, e wt,K]» Gl‘ é [gt,l’ ey gl‘,KL and
H, 2 [A:1, ..., h: k] Then, by letting 1; denotes the vector
of all zeros but only a single one at its kth entry, we can write

the desired norm as
1
W; ?1 — 1 )l

According to our update rule, we have the following recursion:

lw, — weill = 41)

-1
W, = ‘)VlCF1 - z,ut—s(Gt—s + Ht—s+1)CS71-
s=1
Putting (42) back in (41) and noting that C1 = 1 due to
Assumption 3 and w; = wik, Yk € {l,..., K} due to
Assumption 4, we obtain

(42)

lw, — wy ||
t—1
S
s=1
t—1
=< Zﬂtfs”ths +H; i1l

s=1

1
(Gi—s+ H;_s11) (?1 - Cs_llk) H

i1 - (43)
e )

Here, the first term of (43) can be upper bounded as follows:

1Gi—s + Hi—s1llp < 2AVK (44)

since the norms of the subgradients are upper bounded by A
due to Assumption 2.

We then consider the second term of (43). In order to derive
an upper bound, we first let o1(A) > 02(A) > .-+ > gg(A)
denote the singular values of a matrix A and 1;(A) >
A2(A) = --- > 1k (A) denote the eigenvalues of a symmetric
matrix A. Since the communication graph C is a doubly
stochastic matrix (by Assumption 3), we have ¢1(C) = 1 and
21(CTC) = 1. Then, we let B £ (1/K)117 and consider the
following norm:

Loyl = Bl — C*~ 1
K
= (B —C)"1i] (45)
where
I(B—C)1kll <o1(B-C)[(B-C)'1t|  (46)

Vt > 1. Thus, applying (46) s — 1 times to (45), we obtain

1
—1-C"'1;

I
Here, we observe that C is a doubly stochastic matrix by
Assumption 3, hence, A;(C) = 1. Therefore, the eigenspec-
trums of B — C and (B — C)T (B — C) are equal to the
eigenspectrums of C and C” C, respectively, except the largest
eigenvalues, i.e., 11(C) = /ll(CTC) = 1, are removed. Thus,
from (47), we obtain

<ol N(B - O (47)

1 _
Hfl—CHlk <a 10). (48)

Time evolution of the total loss for I1 regularization
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Fig. 2. Comparison of the algorithms for the linear regression model in (50)
with mean square error loss and £1 norm regularization.

Putting (44) and (48) back in (43), we obtain

t—1
1B, — wi il < 2AVK D" 503~ (C)

s=1

(49)

which is the desired result. This concludes the proof
of Lemma 1. 0

V. SIMULATIONS

In this section, we evaluate the performance of distributed
sequential splitting ELM (DSS-ELM) algorithm (presented
in Algorithm 1) for various multiagent networks with different
regularization factors. We illustrate the superior performance
of our algorithm for different regression applications involving
both real and synthetic data.

A. Stationary Scenario

In this section, we consider a multiagent network of size
K = 10, where each agent observes a desired signal through
a linear model. In particular, the kth agent observes

Vek =0 Xk 4 e (50)

where v € R! is chosen from a normal distribution,
while 50% of the entries are randomly set to zero, x; x € R0
is a realization of a spatially and temporally indepen-
dent normal random vector process, and n;; € R is a
zero-mean white Gaussian noise with variance anzk = 1073
We normalize the input and output attributes to the
interval [0, 1] as recommended in [2].

The empirical loss function is chosen as the square error
loss, ie., frx = (yr,k — )A),,k)z, whereas the regularization loss
function is chosen as {j-norm regularization in Fig. 2 and
€%-n0rm regularization in Fig. 2, where we set A = 1074,
We point out that for these regularization factors, the update
rule (i.e., the sixth line in Algorithm 1) is given by

sign(wy | ;) O [|w) 4| — wed],, for &1
Wi,k =
t+ mw;+l’k’ for f%.

61V
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Time evolution of the total loss for Iz regularization
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Fig. 3. Comparison of the algorithms for the linear regression model in (50)
with mean square error loss and £% norm regularization.

In Figs. 2 and 3, we compare the performance of the
DSS-ELM  algorithm with the distributed stochastic
gradient (D-SG) algorithm [8], and their centralized variants,
i.e., the centralized stochastic gradient (C-SG) and the
centralized sequential splitting ELM (CSS-ELM) algorithms.
In the distributed multiagent framework, each agent exchanges
information with its neighboring agents over a communication
network. We have generated this network randomly. Agents
employ the uniform combination rule [38], where C; x = 1/my
with 7 representing the number of neighboring agents of the
kth agent. In the centralized framework, all the data observed
by every agent are collected at a central processing unit and
processed through the conventional processing techniques.
In the experiments, the step sizes of the D-SG and C-SG
algorithms are set to 0.05, whereas it is 0.1 for the DSS-ELM
and CSS-ELM algorithms (these learning rates are chosen for
a fair performance comparison, since the number of hidden
nodes is approximately twice of the length of the linear
parameter vector). We set the number of hidden neurons
to 24 in order to achieve a reasonable steady-state loss
and use a sigmoidal additive activation function. We have
performed 250 independent trials (with random hidden
neuron initializations) and presented the averaged results
in Figs. 2 and 3. The offset and bias parameters of the hidden
neurons are chosen from a uniform distribution U[—1, 1].

In Figs. 2 and 3, we observe that the distributed process-
ing algorithms achieve a comparable performance with
their corresponding centralized versions. We also point out
that the DSS-ELM algorithm significantly outperforms the
D-SG algorithm for both £; and {’% regularization costs.
For the ¢1-regularization case, the performance of the D-SG
significantly deteriorates with respect to the f%—regularization
case. On the other hand, the performance of the proposed
DSS-ELM algorithm is not significantly affected from these
regularization factors, since we use the forward-backward
splitting method. Furthermore, since the underlying parameter
vector v is sparse, the linear models fail to achieve low error
rates, whereas the proposed SLFN-based algorithm yields a
considerably smaller error.

Time evolution of the total loss for a nonlinear regresion model
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-251 0
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Fig. 4. Comparison of the algorithms for the nonlinear regression model

in (52) with mean square error loss and [’% norm regularization.

We next consider the following nonlinear regression model:

ik = sign(v” x; 1) (52)

where v and x;  are chosen as in the previous setup, and the
labels of 10% of the desired signals, i.e., y;’s, are flipped
in order to introduce label noise to the model. In Fig. 4, we
present the performances of the DSS-ELM, CSS-ELM, D-SG,
and C-SG algorithms for the f%—regularization loss.
We observe that the proposed DSS-ELM algorithm
significantly outperforms the linear gradient descent-based
algorithms. This follows, since the SLFN-based structures
can elegantly capture the nonlinear relationships between the
desired data and the regressor vectors, whereas linear models
cannot learn these relationships satisfactorily. Furthermore,
the proposed DSS-ELM algorithm achieves the performance
of the centralized CSS-ELM algorithm, which verifies the
asymptotical convergence results presented in Theorem 1
and Corollary 1.

B. Nonstationary Scenario

In this example, we evaluate the performance of the
DSS-ELM, CSS-ELM, D-SG, and C-SG algorithms in non-
stationary environments. We consider the regression setup
in (50), where the unknown parameter vector v evolves in
time through a random walk model (we emphasize that this
setup is extensively used in the machine learning and signal
processing literature [39]) as follows:

Vil =V g, (53)

where ¢, € R!0 is a realization of independent identically
distributed zero-mean Gaussian random vector process with
autocovariance matrix 10761 .

In Fig. 5, we present the time evolution of the {’%—regularized
square error loss function of the proposed algorithms. Com-
paring Fig. 5 with the stationary setup in Fig. 3, we observe
that our algorithm suffers approximately 10-dB performance
loss, whereas the linear learning models suffer approximately
20-dB performance loss. Therefore, the proposed DSS-ELM
algorithm is considerably more robust against the nonstationar-
ity compared with the linear learning algorithms. This follows
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Time evolution of the total loss for a dynamic linear model
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Fig. 5. Comparison of the algorithms for the dynamic linear regression model
in (50) and (53) with mean square error loss and [’% norm regularization.

from the efficient SLFN-based nonlinear formulation of our
regression model.

In Figs. 2-5, we also provide the sample standard deviations
of the algorithms with the corresponding error bars. For
presentation purposes, we used different scales for the variance
bars and the mean error curves. The values of the mean
errors can be read using the scale on the left, whereas the
values of the variance bars can be read using the scale on
the right. As can be observed from Figs. 2-5, the D-SG and
C-SG algorithms have higher variances compared with the
DSS-ELM and CSS-ELM algorithms. This is natural, since
the mean errors of the D-SG and C-SG algorithms are also
higher. As these algorithms cannot attain low mean error rates,
consequently, they cannot attain low variance values either.
On the other hand, the DSS-ELM and CSS-ELM algorithms
achieve a significantly lower variance values. Furthermore, the
difference in the variances of the centralized and distributed
variants of the algorithms is not significantly different from
one another. Specifically, the variances in the steady state are
almost identical for centralized and distributed variants of the
algorithms. On the other hand, the distributed algorithms yield
a higher variance in the early iterations, since the diffusion of
the information among agents requires a certain amount of
time, which is governed by the size and the structure of the
network, as shown in Theorem 1 and Corollary 1.

C. Real Data Sets

In this section, we illustrate the performance of our algo-
rithm for the benchmark data sets, i.e., California housing,
protein tertiary structure, and household electrical power con-
sumption [40], [41]. In these data sets, we compare the pro-
posed DSS-ELM algorithm with the Online Sequential (OS)-
ELM algorithm of [2]. Throughout this section, we use the
sigmoidal additive activation function to generate SLFNs, and
we use squared error loss function (with different regulariza-
tion terms for the DSS-ELM algorithm). We normalize the
input and output attributes of the data set to the interval [0, 1]
as recommended in [2]. We use 100 data samples (which is
more than the recommended value in [2]) at the initialization

phase of the OS-ELM algorithm. For the DSS-ELM algorithm,
we randomly generate a distributed multiagent network with
the specified size, and we set the step size u; = 1072 and the
regularization constant A = 1074,

1) California Housing data set involves the prediction of
the median housing value based on the information
collected on several parameters through all the block
groups in California from the 1990 census. The number
of hidden nodes is set to 90 for the DSS-ELM algo-
rithm and 50 for the OS-ELM algorithm. For the
DSS-ELM algorithm, the number of agents is set to four
for this experiment.

2) Protein Tertiary Structure data set considers the learning
the size of the residue based on several other parameters,
e.g., the molecular mass weighted exposed area. The
number of hidden nodes is set to 50 for the DSS-ELM
algorithm and 70 for the OS-ELM algorithm. For the
DSS-ELM algorithm, the number of agents is set to 8 for
this experiment.

3) Household Electrical Power Consumption data set con-
tains 2075259 measurements of individual households
gathered between December 2006 and November 2010,
where the aim is to predict the global active power.
In our experiments, we used the initial ~25% of the
data corresponding to the data between December 2006
and November 2007. The number of hidden nodes is
set to 70 for the DSS-ELM algorithm and 50 for the
OS-ELM algorithm. For the DSS-ELM algorithm, the
number of agents is set to ten for this experiment.

We emphasize that the number of hidden nodes for the
DSS-ELM and OS-ELM algorithms is carefully chosen to
minimize the performance of the corresponding algorithms
for a fair comparison between these methods. The number
of agents is chosen according to the data length to prevent
undertraining issues. As an example, for short data sequences,
it may not be possible to train the SLFNs for huge number
of agents, since each agent observes only a portion of the
underlying data.

For each data set, the number of attributes as well as the
length of the data that is used for training and testing can
be found in Table I. We randomly choose the training and
testing data for each trial and evaluate the average performance
of the proposed algorithms over 50 independent trials (with
random hidden neuron initializations). Note that the OS-ELM
algorithm operates on a single centralized agent, whereas the
DSS-ELM algorithm works for multiagent systems. Therefore,
for the OS-ELM algorithm, the centralized agent is trained
using all the training data, whereas for the DSS-ELM algo-
rithm, each agent is trained using only a randomly chosen
portion of the training data. As an example, for California
housing data set, we have K = 4 agents and a training data
of length 12000. In this scenario, the OS-ELM algorithm
is trained using the entire training data, whereas for the
DSS-ELM algorithm, this entire training data are randomly
separated into four different training data of length 3000 and
assigned to different agents.

Table II shows the training times and the Root Mean
Square Error (RMSE) performances for training as well as



556

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 3, MARCH 2017

TABLE I
SPECIFICATIONS OF BENCHMARK DATA SETS

Data Set 7 attributes | # training data | # test data
California Housing 8 12000 8620
Protein Tertiary 9 36000 9730
Household Power Consumption 7 450000 46067

TABLE I

COMPARISON OF THE RMSE PERFORMANCE OF THE ALGORITHMS

. . RMSE (training) RMSE (testing)
Data Set Algorithms Time (s)
Mean SD Mean SD
DSS-ELM (¢1) 0.0749 0.1776 | 0.0011 | 0.1779 | 0.0011
California Housing DSS-ELM (¢ %) 0.0705 0.1745 | 0.0008 | 0.1746 | 0.0007
OS-ELM 1.3219 0.1304 | 0.0014 | 0.1312 | 0.0021
DSS-ELM (¢1) 0.0995 0.0635 | 0.0005 | 0.0638 | 0.0005
Protein Tertiary DSS-ELM (ZS) 0.1204 0.0633 | 0.0005 | 0.0638 | 0.0005
OS-ELM 5.1350 0.2308 | 0.0012 | 0.2314 | 0.0016
DSS-ELM (¢1) 1.3709 0.0164 | 0.0011 | 0.0165 | 0.0010
Household Power Consumption | DSS-ELM (¢2) 1.3127 0.0105 | 0.0009 | 0.0106 | 0.0009
OS-ELM 123.5087 | 0.0176 | 0.0323 | 0.0177 | 0.0318
TABLE III

RMSE PERFORMANCE OF THE DSS-ELM ALGORITHM FOR DIFFERENT NETWORK SI1ZES
FOR THE PROTEIN TERTIARY DATA WITH f%-REGULARIZATION

7+ agents | # samples per agent | Time (s) RMSE (training) RMSE (testing)
Mean SD Mean SD
4 9000 0.2619 0.0627 | 4.5e-4 | 0.0628 | 4.4e-4
5 7200 0.1959 0.0621 | 2.7e-4 | 0.0622 | 2.4e-4
6 6000 0.1634 0.0633 | 5.9e-4 | 0.0634 | 5.8e-4
8 4500 0.1211 0.0626 | 4.6e-4 | 0.0627 | 3.9e-4
9 4000 0.1072 0.0640 | 7.0e-4 | 0.0642 | 6.7e-4
10 3600 0.0977 0.0647 | 8.0e-4 | 0.0648 | 7.le-4
12 3000 0.0827 0.0657 | 8.9e-4 | 0.0658 | 7.le-4

testing for the DSS-ELM and OS-ELM algorithms. Table
IT shows that the DSS-ELM algorithm can train the SLFNs
at each agent significantly faster than the OS-ELM algo-
rithm. As an example, the training time for the DSS-ELM
algorithm (that employs {’%—regularization) is ~1.33 s at
each agent, where we have ten agents in the distributed
multiagent network. On the other hand, for the OS-ELM
algorithm, the training time is ~124.80 s. Therefore, our
algorithm presents an order of magnitude improvement in
terms of the training time. Furthermore, even though the
computational complexity of the proposed DSS-ELM algo-
rithm is much lower than the OS-ELM algorithm, it yields a
significantly better RMSE performance than the OS-ELM
algorithm for protein tertiary and household power consump-
tion data sets. This follows, since the DSS-ELM algorithm
can adapt nonstationary environments in a faster manner
compared with the OS-ELM algorithm. The proposed

DSS-ELM algorithm uses a gradient descent-based learning
algorithm that can effectively track nonstationarity (as also
shown in Section V-B), whereas the OS-ELM algorithm uses
a recursive least squares-based approach, which is less resilient
to nonstationarity.

In Table II, we also observe that the variance of the
DSS-ELM algorithm is usually smaller than the OS-ELM
algorithm. The main reason behind this difference in the vari-
ances is due to the regularization constraints in the formulation
of the DSS-ELM algorithm. The DSS-ELM algorithm presents
a more robust performance compared with the OS-ELM algo-
rithm due to the regularization constraints. Furthermore, the
€%-regularization variant of the DSS-ELM has a marginally
smaller variance compared with the £1-regularization variant.
That is because, the gradient of the £1-norm is bigger than the
gradient of the {’%—norm when the parameter vector is close to
its optimal value.
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Finally, in Table III, we analyze the effects of the network
size (i.e., the number of agents) to the performance of the
overall system. As can be seen from Table III, as the number
of agent increases, the training time of the SLFNs at each agent
decreases (as the number of training data per agent decreases).
On the other hand, the RMSE and the error variance at each
agent increase as the number of agents increases, which is
expected from the convergence upper bounds presented in
Theorem 1 and Corollary 1.

VI. CONCLUSION

We study the sequential training of SLFNs over distrib-
uted multiagent networks. The aim of each agent is to
minimize arbitrary cost functions by training an individual
SLFN-based regressor (or classifier) using the data that is
revealed only to this particular agent. On the other hand, the
goal of the multiagent network is to train these individual
SLFNs at each agent as well as the optimal centralized batch
SLEN that has access to all the data revealed to all agents.
We solve this problem by introducing a distributed sequential
ELM-based algorithm. In particular, we show that our algo-
rithm guarantees that the normalized accumulated error of
these individual SLFNs at each agent is asymptotically the
same as the normalized accumulated error of the optimal
centralized batch SLFN that is trained by an ELM-based
method. The proposed algorithm works in a truly sequential
manner, such that it can be used without any training or
initialization phase. Furthermore, the computational complex-
ity of the algorithm is only linear in the number of hidden
nodes; hence, it is highly appealing for applications involving
big data.
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