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Abstract—We study diffusion and consensus based optimization of a sum of unknown convex objective functions over distributed

networks. The only access to these functions is through stochastic gradient oracles, each of which is only available at a different node;

and a limited number of gradient oracle calls is allowed at each node. In this framework, we introduce a convex optimization algorithm

based on stochastic subgradient descent (SSD) updates. We use a carefully designed time-dependent weighted averaging of the SSD

iterates, which yields a convergence rate of O N
ffiffiffi
N

p
ð1�sÞT
� �

after T gradient updates for each node on a network of N nodes, where

0 � s < 1 denotes the second largest singular value of the communication matrix. This rate of convergence matches the performance

lower bound up to constant terms. Similar to the SSD algorithm, the computational complexity of the proposed algorithm also scales

linearly with the dimensionality of the data. Furthermore, the communication load of the proposed method is the same as the

communication load of the SSD algorithm. Thus, the proposed algorithm is highly efficient in terms of complexity and communication

load. We illustrate the merits of the algorithm with respect to the state-of-art methods over benchmark real life data sets.

Index Terms—Distributed processing, convex optimization, online learning, diffusion strategies, consensus strategies

Ç

1 INTRODUCTION

THE demand for large-scale networks consisting of multi-
ple agents (i.e., nodes) [1] with different objectives is

steadily growing due to their increased efficiency and scal-
ability compared to centralized distributed structures [2],
[3], [4], [5], [6]. A wide range of problems in the context of
distributed and parallel processing can be considered as a
minimization of a sum of objective functions, where each
function (or information on each function) is available only
to a single agent or node [7], [8], [9]. In such practical appli-
cations, it is essential to process the information in a decen-
tralized manner since transferring the objective functions as
well as the entire resources (e.g., data) may not be feasible
or possible [10], [11], [12], [13]. For example, in a distributed
data mining scenario, privacy considerations may prohibit
sharing of the objective functions [7], [8], [9]. Similarly, in a
distributed wireless network, energy considerations may
limit the communication rate between agents [14], [15], [16],
[17]. In such settings, parallel or distributed processing

algorithms, where each node performs its own processing
and shares information subsequently, are preferable over
the centralized methods [18], [19], [20], [21].

Here, we consider minimization of a sum of unknown
convex objective functions, where each agent (or node)
observes only its particular objective function via the sto-
chastic gradient oracles. Particularly, we seek to minimize
this sum of functions with a limited number of gradient ora-
cle calls at each agent. In this framework, we introduce a dis-
tributed online convex optimization algorithm based on
stochastic subgradient descent (SSD) iterates that efficiently
minimizes this cost function. Specifically, each agent uses a
time-dependent weighted combination of the SSD iterates
and achieves the presented performance guarantees, which
matches the lower bounds presented in [22], only with a rela-
tively small excess term caused by the unknown network
model. The proposed method is comprehensive, in that any
communication strategy, such as the diffusion [3] and the
consensus [6] strategies, are incorporated into our algorithm
in a straightforwardmanner as shown in the paper.We com-
pare the performance of our algorithm with respect to the
state-of-the-art methods [6], [11], [23] in the literature and
present substantial performance improvements for various
well-known network topologies and benchmark data sets.

The distributed network framework is successfully used
in wireless sensor networks [24], [25], [26], [27], [28], [29], as
well as for convex optimization via projected subgradient
techniques [6], [7], [8], [9], [10], [11]. In [11], the authors
demonstrate the performance of the least mean squares
(LMS) algorithm over distributed networks using different
diffusion strategies. We emphasize that this problem can
also be cast as a distributed convex optimization problem,
and hence our results here can be applied to these problems
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in a straightforward manner. In [10], the authors consider
the cooperative optimization of the cost function under con-
vex inequality constraints. However, the problem formula-
tion as well as the convergence results in this paper are
substantially different from the ones in [10]. In particular, in
[10], agents seek to minimize an approximation of the origi-
nal optimization problem through penalty functions while
we directly consider the original optimization problem. Fur-
thermore, Reference [10] provides an upper bound on the
mean square error as the number of iterates goes to infinity
for sufficiently small step sizes. Yet that upper bound goes
to zero as the step size goes to zero. On the other hand,
here, we not only show that through the proposed approach
each agent achieves the minimum cost for a certain step
size, but also provide an upper bound on the convergence
rate, while that upper bound matches the lower bound pro-
vided in [22] up to constant terms.

In [2], [6], the authors present a (constrained in [6] and
unconstrained in [2]) deterministic analysis of the SSD iter-
ates and our results build on them by illustrating a stronger
convergence bound in expectation while also providing
MSD analyses of the SSD iterates. Similarly, a regret analysis
is conducted for every possible input stream in an online and
distributed manner in [30] for general convex cost functions;
and in [31] under Lipschitz continuous and strongly convex
cost functions, where the latter achieves a regret diminishing
at a faster rate of Oðlog ðT Þ=T Þ (after T iterates). On the con-
trary, we study the distributed online convex optimization
problem in the expectation sense (with respect to the data
statistics), i.e., not in an individual sequence manner, where
we show that SSD iterates achieve the optimal convergence
rate ofOð1=T Þ. In [7], [8], [9], the authors consider the distrib-
uted convex optimization problem and present probability-1
and mean square convergence results of the SSD iterates. In
this paper, on the other hand, we provide the expected con-
vergence rate of our algorithm and the mean square devia-
tion (MSD) of the SSD iterates at any time instant.

Similar convergence analyses have recently been carried
out in the computational learning theory literature [22],
[23], [32], [33], [34]. In [32], the authors provide determin-
istic bounds on the learning performance (i.e., regret) of the
SSD algorithm. In [33], these analyses are extended and a
regret-optimal learning algorithm is proposed. Along simi-
lar lines, in [23], the authors describe a method to make the
SSD algorithm optimal for strongly convex optimization.
However, these approaches rely on the smoothness of the
optimization problem. In [34], a different method to achieve
the optimal convergence rate is proposed and its perfor-
mance is analyzed. In this paper, however, convex optimi-
zation is performed over a network of localized learners,
unlike in [23], [32], [33], [34]. Our results entail convergence
rates over any unknown communication graph, and in this
sense build upon the analyses of the centralized learners.
Furthermore, unlike [23], [33], our algorithm does not
require the optimization problem to be sufficiently smooth.

Distributed convex optimization appears in a wide range
of practical applications in wireless sensor networks and real-
time control systems [3], [4], [5]. We introduce a comprehen-
sive approach to this setup by proposing an online algorithm,
whose expected performance is asymptotically the same as
the performance of the optimal centralized processor. Our

results are generic for any probability distribution on the
data, not necessarily Gaussian, unlike the conventional works
in the literature [11], [12]. Our experiments over different net-
work topologies, various data sets and cost functions demon-
strate the superiority and robustness of our approach with
respect to the state-of-the-art methods in the literature.

Ourmain contributions can thus be summarized as follows.

1) We introduce a distributed online convex optimiza-
tion algorithm based on SSD iterates, which achieves

an optimal convergence rate of O N
ffiffiffi
N

p
ð1�sÞT
� �

after T gra-

dient updates, for each and every node of the net-
work, where N is the number of nodes. We
emphasize that this convergence rate is optimal since
it achieves the lower bounds presented in [22] up to
constant terms.

2) We show that MSD between the time weighted aver-
age and the optimal solution is also upper bounded

by O N
ffiffiffi
N

p
ð1�sÞT
� �

after T gradient updates while MSD

between the average of the iterates (which can be
attained if the agents continue to exchange informa-
tion without gradient updates) and the optimal solu-

tion is upper bounded by O
ffiffiffi
N

p
ð1�sÞT
� �

.

3) Our analyses can be extended to analyze the perform-
ances of the diffusion and consensus strategies in a
straightforwardmanner as illustrated in the paper.

4) We demonstrate that the algorithm introduced out-
performs the state-of-the-art methods in terms of
normalized accumulated error and MSD from the
optimal solution under various network topologies
and benchmark data sets.

The organization of the paper is as follows. In Section 2,
we introduce the distributed convex optimization frame-
work and provide the notations. We then introduce the
main result of the paper, i.e., an SSD based convex optimiza-
tion algorithm, in Section 3 and analyze the convergence
rate of the algorithm. In Section 4, we demonstrate the per-
formance of our algorithm with respect to the state-of-the-
art methods through simulations and then conclude the
paper with several remarks in Section 5.

2 PROBLEM FORMULATION

2.1 Notation and Preliminaries

Throughout the paper, all vectors are column vectors and
represented by boldface lowercase letters. Matrices are rep-
resented by boldface uppercase letters. For a matrix HH,
HHj jj jF is the Frobenius norm. For a vector xx, xxj jj j ¼

ffiffiffiffiffiffiffiffiffi
xxTxx

p
is

the ‘2-norm. 0 (and 1) denotes a vector with all zero (and
one) elements and the dimensions can be understood from
the context. For a matrix HH, HHij represents its entry at the
ith row and jth column.

For a non-empty, closed and convex set W � Rm, PW
denotes the Euclidean projection ontoW, i.e.,

PWðww0Þ ¼ argmin
ww2W

ww� ww0j jj j: (1)

We say that a convex function (possibly non-smooth)
f : Rm ! R on the convex domain W has the subgradient
set @fð�Þ � Rm at a point ww0 2 W if

SAYIN ET AL.: STOCHASTIC SUBGRADIENT ALGORITHMS FOR STRONGLY CONVEX OPTIMIZATION OVER DISTRIBUTED NETWORKS 249



gg 2 @fðww0Þ , fðwwÞ � fðww0Þ þ ggT ðww� ww0Þ 8ww 2 W:

Furthermore, we say that f is �-strongly convex on W if,
and only if, for all ww;ww0 2 W and gg 2 @fðww0Þ, we have

fðwwÞ � fðww0Þ þ ggT ðww� ww0Þ þ �

2
ww� ww0j jj j2: (2)

2.2 System Overview

Consider a static and connected network of N-agents with
processing and communication capabilities. Over the net-
work, each agent has connections with certain other agents,
i.e., the ones in his/her neighborhood, and can exchange
information with them. We can represent such a network
through an undirected graph, where the vertices and the
edges correspond to the agents and the communication
links between them, respectively, as seen in Fig. 1.

Each agent seeks to minimize F : Rm ! R, which is a sum
of �-strongly convex (possibly non-smooth) local cost func-
tions Fi : R

m ! R, for i ¼ 1; . . . ; N , i.e., each agent aims to

min
ww2W

F ðwwÞ ¼ min
ww2W

XN
i¼1

FiðwwÞ; (3)

whereW � Rm is a non-empty, closed and convex set. How-
ever, the cost function F is unknown to the agents, and each
agent i has only access to F via at most T stochastic subgra-
dient oracles1 of the corresponding local cost function Fi.

Let ðVi;F i;PiÞ, for i ¼ 1; . . . ; N , denote the probability
spaces, describing the uncertainty associated with individ-
ual agents. Here, Vi is the outcome space, F i is a suitable
s-algebra over Vi, and Pi is the probability distribution over
Vi. Furthermore, let ðV;F ;PÞ be the joint probability space
over those spaces. After agent-i’s call at instant t, for any
given point wwi 2 W, the gradient oracle independently draws
a sample vt;i 2 Vi according to the distribution Pi, and pro-
duces a vector ĝ̂gt;iðvt;iÞ such that

EPifĝ̂gt;iðviÞg 2 @FiðwwiÞ;

where @FiðwwiÞ denotes the sub-differential set of Fi at wwi. For
notational simplicity, henceforth, we denote the expectation
taken with respect to the probability distribution Pi by Eif�g
instead of EPif�g. Correspondingly, we use Ef�g instead
of EPf�g.

Although the aim of each agent is to minimize F over W
rather than the local cost Fi, the agents can only call local

subgradient oracles ĝ̂gi;t, for 1 � t � T . In particular, other
local cost functions are totally unknown. Therefore, the
agents exchange information with each other within the
neighborhoods to mitigate the access restriction.

2.3 Special Cases

We note that this problem formulation is general enough,
covering for example the following scenario as a special
case. Consider that the local cost functions are given by
FiðwwiÞ ¼ Eiffiðvi;wwiÞg, where fiðvi;wwiÞ is a certain local
loss function, which is a strongly convex function of wwi for
any fix vi 2 Vi. At each instant t, a new sample vt;i is drawn
from Vi independently according to the distribution Pi,
and agent-i has access to a corresponding subgradient of
fiðvt;i;wwiÞ at wwi ¼ wwt;i, i.e.,

ĝ̂gi;tðvt;iÞ 2 @fiðvt;i;wwt;iÞ:

As an example, the local loss function could be as follows:

fiðvi;wwt;iÞ ¼ ‘ðvi;wwt;iÞ þ �

2
wwt;i

�� ���� ��2; (4)

where ‘ðvi;wwt;iÞ is a Lipschitz-continuous convex loss func-
tion with respect to the second variable wwt;i, which has been
extensively studied in the literature [23], [32], [33], [34] as a
�-strongly convex loss function involving regularity terms.2

Here, the aim of each agent is to minimize the sum of the
expected losses (where the expectations are taken over the
random variables vi’s) over the convex set W. To continue
with our example in (4), each agent seeks to minimize

XN
i¼1

Eiffiðvi;wwt;iÞg ¼
XN
i¼1

Eif‘ðvi;wwt;iÞg þ �

2
wwt;i

�� ���� ��2: (5)

We emphasize that the formulation in (5) covers a wide
range of practical loss functions. As an example, for
di : Vi ! R and uui : Vi ! Rm, when ‘ðvi;wwt;iÞ ¼ ðdiðviÞ�
wwT

t;iuuiðviÞÞ2, we consider the regularized squared error loss;
and when ‘ðvi;wwt;iÞ ¼ maxf0; 1� diðviÞwwT

t;iuuiðviÞg, we con-
sider the hinge loss. Since we make no assumptions on the
loss function fiðvi;wwt;iÞ other than strong convexity, one can
also use different loss functions with their corresponding
subgradients and our results would still hold.

3 MAIN RESULTS

In this section, we present the main results of the paper,
where we introduce an algorithm based on the SSD updates,

which leads to a rate of convergence bounded from above

by O N
ffiffiffi
N

p
ð1�sÞT
� �

after T iterates, where N is the number of

agents (nodes). In particular, the rate of convergence of the
algorithm for agent-i is given by

EfF ð �w�wiÞg � min
ww2W

F ðwwÞ � O
N

ffiffiffiffiffi
N

p

ð1� sÞT

 !
;

where �w�wi is the minimizer produced by agent-i, and the
expectation is taken over the randomness of the subgradient

Fig. 1. The neighborhood of agent-i over the distributed network.

1. The agents have a limited budget to call the gradient oracle.

2. Note that � in the regularization term is the same with � in the
strong convexity definition (2). In particular, the regularization term
ensures that fi is �-strongly convex even when ‘ is not strongly convex.
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oracles, i.e., with respect to the joint distribution P. In order
to achieve this performance, the proposed method uses
time dependent weighted averages of the SSD updates at
each agent together with the adapt-then-combine diffusion
strategy [11]. However, as later explained in this section
(See Remark 1), our algorithm can be extended to cover con-
sensus in a straightforward manner.

At each time instant t, each agent i has a pre-computed
pseudo-solution of problem (3), denoted by wwt;i. With this
pseudo-solution agent-i calls the local subgradient oracle
and receives ĝ̂gt;i. Then, agent-i computes the iterate fftþ1;i by
projecting the SSD update of wwt;i ontoW as follows:

fftþ1;i ¼ PW wwt;i � mt;iĝ̂gt;i
� �

;

where mt;i > 0 is a step size. In order to mitigate the access
restriction to the other oracles, agent-i exchanges fftþ1;i with
his/her neighbors and computes

wwtþ1;i ¼
XN
j¼1

HHjifftþ1;j; (6)

where HH 2 RN	N is the communication matrix of the graph
such that HHji’s are the combination weights in (6), and the
weight HHji for any i; j is nonzero if, and only if, i and j
are neighbors. We assume that HH is an irreducible and a
periodic doubly stochastic matrix, i.e., HHi;j � 0 8i; j and
HH1 ¼ HHT1 ¼ 1. We emphasize that this assumption is not
restrictive, and previous analyses in the literature also make
similar assumptions [6], [7], [8], [9]. Furthermore, the
assumption holds for many communication strategies such
as the Metropolis rule [3]. At each instant, agent-i also com-
putes a time-variant weighted average as follows:

�w�wtþ1;i ¼ t

tþ 2
�w�wt;i þ 2

tþ 2
wwtþ1;i: (7)

After consuming the budget to call subgradient oracles, i.e.,
after T calls, agent-i has �w�wi ¼ �w�wTþ1;i as the minimizer of F .
The complete description of the algorithm can be found in
Algorithm 1.

Algorithm 1. Time Variable Weighting (TVW)

1: Initialize �w�w1;i ¼ ww1;i 2 W, 8i, arbitrarily.
2: for t ¼ 1 to T do
3: for i ¼ 1 toN do
4: Call the subgradient oracle to obtain ĝ̂gt;i for wwt;i.
5: cctþ1;i ¼ wwt;i � mt;iĝ̂gt;i % SSD update
6: fftþ1;i ¼ PWðcctþ1;iÞ % Projection
7: Exchange fftþ1;i with the neighbors.

8: wwtþ1;i ¼
PN

j¼1 HHjifftþ1;j %Diffusion

9: �w�wtþ1;i ¼ t
tþ2 �w�wt;i þ 2

tþ2wwtþ1;i %Weighting

10: if t ¼ T then
11: �w�wi ¼ �w�wtþ1;i % Solution
12: end if
13: end for
14: end for

To achieve the aforementioned result, we first introduce
the following lemma, which provides an upper bound on
the performance of the average parameter vector.

Lemma 1. Assume that for any given ww 2 W, the expected
squared norm of any produced subgradient oracle is bounded by
G2, i.e., Ei ĝ̂gij jj j2� G2 8i and mt;i ¼ mt. Let

wwt :¼ 1

N

XN
i¼1

wwt;i and ww
 :¼ argmin
ww2W

F ðwwÞ: (8)

Then, Algorithm 1 yields3

E wwtþ1 � ww
j jj j2�ð1� �mtÞE wwt � ww
j jj j2

� 2mt

N

�
F ðww
Þ � EfF ðwwtÞg

	þ 4G2m2
t

þ 2mtG

N

XN
i¼1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � wwt;i

�� ���� ��2q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � cctþ1;i

�� ���� ��2q
 �
:

This lemma provides an upper bound on the rate of con-
vergence and the squared deviation of the average parame-
ter vector wwt. It provides an intermediate step to relate the
performance of the parameter vector at each agent to the
best parameter vector. We point out that the assumption in
Lemma 1 is practically a boundedness condition that is
widely used to analyze the performance of SSD based algo-
rithms [33], [34]. We emphasize that our algorithm does not
need to know this upper bound and it is only used in our
theoretical derivations.

Proof. In order to efficiently manage the recursions, we first
consider the projection operation and let

xxt;i :¼ PWðcctþ1;iÞ � cctþ1;i: (9)

Then, we can compactly represent the averaged estima-
tion parameter wwt (defined in (8)) in a recursive manner
as follows [6]

wwtþ1 ¼ 1

N

XN
j¼1

XN
i¼1

HHij wwt;i � mtĝ̂gt;i þ xxt;i

� �" #

¼ wwt þ 1

N

XN
i¼1

xxt;i � mtĝ̂gt;i
� �

;

(10)

where the last line follows since HH is doubly stochastic,
i.e.,HH1 ¼ 1.

Hence, the squared deviation of these average iterates
with respect to any ww
 can be obtained as follows:

wwtþ1 � ww
j jj j2 ¼ wwt � ww
 þ 1

N

XN
i¼1

xxt;i � mtĝ̂gt;i
� ������

�����
�����

�����
2

¼ wwt � ww
j jj j2þ 1

N2

XN
i¼1

ðxxt;i � mtĝ̂gt;iÞ
�����

�����
�����

�����
2

þ 2

N

XN
i¼1

ðxxt;i � mtĝ̂gt;iÞT ðwwt � ww
Þ:

(11)

We first upper bound the second term on the right
hand side (RHS) of (11) through triangle inequality as
follows:

3. Due to SSD update and information exchange, the parameters wwt;i

and cct;i, for t ¼ 1; . . . ; T and i ¼ 1; . . . ; N , are F -measurable. Therefore,
the expectation is taken with respect to the distribution P.
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1

N2

XN
i¼1

ðxxt;i � mtĝ̂gt;iÞ
�����

�����
�����

�����
2

� 1

N2

XN
i¼1

xxt;i

�� ���� ��þ mt ĝ̂gt;i
�� ���� �� !2

:

(12)

We then note that

xxt;i

�� ���� �� ¼ PWðcctþ1;iÞ � cctþ1;i

�� ���� ��
� wwt;i � cctþ1;i

�� ���� ��
¼ mt ĝ̂gt;i

�� ���� ��;
(13)

where the second line follows from the definition of
the projection operator (1). Thus, we can rewrite (12)
as follows:

1

N2

XN
i¼1

ðxxt;i � mtggt;iÞ
�����

�����
�����

�����
2

� 4m2
t

N2

XN
i¼1

ggt;i
�� ���� �� !2

and taking the expectation of both side with respect to P,
we obtain

1

N2
E
XN
i¼1

ðxxt;i � mtggt;iÞ
�����

�����
�����

�����
2

� 4G2m2
t ; (14)

since E ĝ̂gt;i
�� ���� �� ĝ̂gt;j

�� ���� ���  �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E ggt;i
�� ���� ��2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E ggt;j
�� ���� ��2q

� G2 for
any i 6¼ j due to Cauchy-Schwarz inequality and the
boundedness assumption.

We next turn our attention to ½�ĝ̂gTt;iðwwt � ww
Þ� term in
(11) and upper bound this term as follows:

� ĝ̂gTt;iðwwt � ww
Þ ¼ �ĝ̂gTt;iðwwt � wwt;i þ wwt;i � ww
Þ
� �ĝ̂gTt;iðwwt � wwt;iÞ þ Fiðww
Þ � Fiðwwt;iÞ

� �

2
ww
 � wwt;i

�� ���� ��2
(15)

� �ĝ̂gTt;iðwwt � wwt;iÞ þ �g�gTt;iðwwt � wwt;iÞ þ Fiðww
Þ

� FiðwwtÞ � �

2
ww
 � wwt;i

�� ���� ��2��

2
wwt;i � wwt

�� ���� ��2 (16)

� Fiðww
Þ � FiðwwtÞ þ �g�gt;i
�� ���� ��þ ĝ̂gt;i

�� ���� ��� �
wwt � wwt;i

�� ���� ��
� �

2
ww
 � wwt;i

�� ���� ��2��

2
wwt;i � wwt

�� ���� ��2; (17)

where �g�gt;i 2 @fiðwwtÞ, (15) follows from the �-strong con-
vexity of Fi at wwt;i, i.e.,

Fiðww
Þ � Fiðwwt;iÞ þ ĝ̂gTt;iðww
 � wwt;iÞ þ �

2
ww
 � wwt;i

�� ���� ��2;
(16) also follows from the �-strong convexity of Fi at

wwt, i.e.,

Fiðwwt;iÞ � FiðwwtÞ þ �g�gTt;iðwwt;i � wwtÞ þ �

2
wwt;i � wwt

�� ���� ��2;
and (17) follows from the Cauchy-Schwarz inequality.
Summing (17) from i ¼ 1 to N and taking expectation of
both sides, we obtain

� E
XN
i¼1

ggTt;iðwwt � ww
Þ
( )

� 2G
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � wwt;i

�� ���� ��2q
þ F ðww
Þ � EfF ðwwtÞg

� �N

2

XN
i¼1

1

N
E ww
 � wwt;i

�� ���� ��2þ wwt;i � wwt

�� ���� ��2n o

� F ðww
Þ � EfF ðwwtÞg þ 2G
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � wwt;i

�� ���� ��2q

� �N

2
E wwt � ww
j jj j2;

(18)

where the first inequality follows from the Cauchy-
Schwarz inequality and the boundedness assumption,
and the last inequality follows from the Jensen’s inequal-
ity due to the convexity of the norm operator.

We finally turn our attention to the xxT
t;iðwwt � ww
Þ term

in (11) and write it as follows:

xxTt;iðwwt � ww
Þ ¼ xxT
t;iðwwt � cctþ1;iÞ þ xxT

t;iðcctþ1;i � ww
Þ
� xxT

t;iðwwt � cctþ1;iÞ;

since

xxT
t;iðcctþ1;i � ww
Þ � �xxT

t;ixxt;i þ ðcctþ1;i �PWðcctþ1;iÞÞT
	 ðww
 �PWðcctþ1;iÞÞ

� 0;

where ðcctþ1;i �PWðcctþ1;iÞÞT ðww
 �PWðcctþ1;iÞÞ � 0 due to
the Euclidean projection onto the convex set W [35]. Tak-
ing the expectation of both sides, we can upper bound
this term as follows:

E xxTt;iðwwt � ww
Þ � E xxt;i

�� ���� �� wwt � cctþ1;i

�� ���� ��� 	
� Gmt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � cctþ1;i

�� ���� ��2q (19)

by first using the Cauchy-Schwarz inequality, and then

using (13) and the bound E ĝ̂gt;i
�� ���� �� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E ĝ̂gi;t
�� ���� ��2q

� G.

Putting (14), (18), and (19) back in (11), we obtain

E wwtþ1 � ww
j jj j2�ð1� �mtÞE wwt � ww
j jj j2

� 2mt

N

h
F ðww
Þ � EfF ðwwtÞg þG

XN
i¼1

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � wwt;i

�� ���� ��2q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � cctþ1;i

�� ���� ��2q �iþ 4G2m2
t :

(20)

This concludes the proof of Lemma 1. tu
Having obtained an upper bound on the performance of

the average parameter vector, we then consider the mean
square deviation of the parameter vectors at each agent
from the average parameter vector. This lemma will then be
used to relate the performance of each individual agent to
the performance of the fully connected distributed system.

Lemma 2. In addition to the assumptions in Lemma 1, assume
that the initial weights at each agent are identically initialized
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to avoid any bias,4 i.e., ww1;i ¼ ww1;j, 8i; j. Then Algorithm 1
yields ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E wwt � wwt;i

�� ���� ��2q
� 2G

ffiffiffiffiffi
N

p Xt�1

z¼1

mt�zs
z; (21)

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � cctþ1;i

�� ���� ��2q
� Gmt þ 2G

ffiffiffiffiffi
N

p Xt�1

z¼1

mt�zs
z; (22)

where 0 � s < 1 is the second largest singular value of the
matrixHH.

Proof.We first let

WWt :¼ ½wwt;1; . . . ; wwt;N �; GGt :¼ ½ĝ̂gt;1; . . . ; ĝ̂gt;N �; and

XXt :¼ ½xxt;1; . . . ; xxt;N �:
Then, we obtain the recursion onWWt as follows:

WWt ¼ WW 1HH
t�1 þ

Xt�1

z¼1

XXt�z � mt�zGGt�zð ÞHHz: (23)

Letting eei denote the basis function for the ith dimension,
i.e., only the ith entry of eei is 1 whereas the rest are 0, we
have

wwt � wwt;i

�� ���� �� ¼ WWt
1

N
1� eei


 �����
����

����
����

�
Xt�1

z¼1

ðXXt�z � mt�zGGt�zÞ 1

N
1�HHzeei


 �����
����

����
����

þ ww1 � ww1;i

�� ���� ��
¼
Xt�1

z¼1

ðXXt�z � mt�zGGt�zÞ 1

N
1�HHzeei


 �����
����

����
����

(24)

�
Xt�1

z¼1

XXt�z � mt�zGGt�zj jj jF
1

N
1�HHzeei

����
����

����
����;

�
Xt�1

z¼1

ð XXt�zj jj jFþmt�z GGt�zj jj jF Þ
1

N
1�HHzeei

����
����

����
����

� 2
Xt�1

z¼1

mt�z GGt�zj jj jF
1

N
1�HHzeei

����
����

����
����

(25)

where (24) follows due to the unbiased initialization
assumption, i.e.,

ww1 ¼ ww1;i ¼ ww1;j; 8i; j 2 f1; . . . ; Ng
and (25) follows from (13).

We first consider the term 1
N 1�HHzeei
�� ���� �� of (25) and

define the matrix BB :¼ 1
N 11T . Then, we can write

1

N
1�HHzeei

����
����

����
���� ¼ BBeei �HHzeeij jj j

¼ ðBB�HHÞzeeij jj j;
(26)

where the last line follows since BBz ¼ BB, 8z � 1.

Now, let

s1ðAAÞ � s2ðAAÞ � � � � � sNðAAÞ
denote the singular values of a matrix AA. Then, we can
upper bound (26) as follows:

ðBB�HHÞzeeij jj j � s1ðBB�HHÞ ðBB�HHÞz�1eei
�� ���� ��;

8z � 1. Therefore, using the above recursion z times to
(26), we obtain

ðBB�HHÞzeeij jj j � sz
1ðBB�HHÞ eeij jj j

¼ sz
1ðBB�HHÞ: (27)

We note that HH and BB are doubly stochastic matrices;
and BB is a rank-1 matrix. Let �1ðAAÞ � �2ðAAÞ � � � � �
�NðAAÞ denote the eigenvalues of a symmetric matrix AA
and LðAÞ :¼ f�1ðAAÞ; . . . ; �NðAAÞg. Since BB is a rank-1
matrix, we have �1ðBBÞ ¼ 1 and �kðBBÞ ¼ 0 for k > 1
[36]. We want to compute the largest singular value
of BB�HH, yet BB�HH is not a symmetric matrix. There-
fore, we check the eigen-spectrum of ðBB�HHÞT
ðBB�HHÞ ¼ HHTHH �BB, and the matrices HHTHH and BB
are commuting. This yields

LðHHTHH �BBÞ � f�1 � �2 : �1 2 LðHHTHHÞ; �2 2 LðBBÞg:
Furthermore, ðBB�HHÞT ðBB�HHÞ1 ¼ ðHHTHH �BBÞ1 ¼ 0, which
implies that the eigen-spectrum of ðBB�HHÞT ðBB� HHÞ is
equal to the eigen-spectrum of HHTHH, except the largest
eigenvalue of HHTHH, i.e., �1ðHHTHHÞ ¼ 1. Instead of that
eigenvalue, the eigen-spectrum of ðBB�HHÞT ðBB�HHÞ
includes 0. Thus, we have

s1ðBB�HHÞ ¼ s2ðHHÞ; (28)

and combining (26), (27), and (28), we obtain

1

N
1�HHzeei

����
����

����
���� � sz

2ðHHÞ: (29)

From here on, we denote s :¼ s2ðHHÞ for notational sim-
plicity. We also note that 0 � s < 1 sinceHH is an irreduc-
ible and aperiodic doubly stochastic matrix [30], [37].

Using (29) in (25), we obtain

wwt � wwt;i

�� ���� �� � 2
Xt�1

z¼1

mt�zs
z GGt�zj jj jF : (30)

Taking the expectation of both sides and noting that

E GGt�zj jj j2F ¼ E
XN
i¼1

ĝ̂gt�z;i

�� ���� ��2( )

� G2N;

we can rewrite (30) as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � wwt;i

�� ���� ��2q
� 2G

ffiffiffiffiffi
N

p Xt�1

z¼1

mt�zs
z: (31)

An upper bound for the term wwt � cctþ1;i

�� ���� �� can be
obtained as

4. This is basically an unbiasedness condition, which is reasonable
since the objective weight ww
 is completely unknown to us. Even
though the initial weights are not identical, our analyses still hold,
albeit with small additional excess terms.
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wwt � cctþ1;i

�� ���� �� ¼ wwt � wwt;i þ mtĝ̂gt;i
�� ���� ��

� wwt � wwt;i

�� ���� ��þ mt ĝ̂gt;i
�� ���� ��;

where the last line follows from the triangle inequality.
Taking square and then expectation of both sides, we
obtain the following upper bound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � cctþ1;i

�� ���� ��2q
� Gmt þ 2G

ffiffiffiffiffi
N

p Xt�1

z¼1

mt�zs
z: (32)

This concludes the proof of Lemma 2. tu
The results in Lemmas 1 and 2 are combined in the fol-

lowing theorem to obtain a regret bound on the perfor-
mance of the proposed algorithm. This theorem illustrates
the convergence rate of our algorithm (i.e., Algorithm 1)

over distributed networks. The upper bound on the regret

O N
ffiffiffi
N

p
ð1�sÞT
� �

follows since each agent can only have access to

the other subgradient oracles through the exchange of infor-
mation among the agents. Reference [22] provides a lower
bound on the rate of convergence of any algorithm to mini-
mize a Lipschitz and strongly convex function for a single
agent system with T oracle calls as O 1

T

� �
. Over a central-

ized network, the lower bound becomes O 1
NT

� �
since at

each time instant, the centralized processor has access to
N oracles instead of 1. Therefore, the upper bound on

the rate of convergence, i.e., O N
ffiffiffi
N

p
ð1�sÞT
� �

, matches the lower

bounds presented in [22] up to constant terms,5 hence
the shown dependency of the convergence rate of the
algorithm on T is optimal.

The computational complexity of the algorithm intro-
duced is on the order of the computational complexity of
the SSD iterates up to constant terms. Furthermore, the com-
munication load of the proposed method is the same as the
communication load of the SSD algorithm. On the other
hand, by using a time-dependent averaging of the SSD iter-
ates, our algorithm achieves a substantially improved per-
formance as shown in Theorem 1 and illustrated through
our simulations in Section 4.

Theorem 1. Under the assumptions in Lemmas 1 and 2, Algo-
rithm 1 with learning rate mt ¼ 2

�ðtþ1Þ and weighted parameters
�w�wt;i achieves the following guaranteed convergence rate

E F �w�wTþ1;i

� �� � F ðww
Þ � 4NG2

�ðT þ 2Þ 3þ 8s
ffiffiffiffiffi
N

p

1� s

 !
; (33)

for all T � 1, where 0 � s < 1 is the second largest singular
value of the matrixHH.

This theorem says that although the agents use only local
gradient oracle calls to train their parameter vectors, they
asymptotically achieve the performance of the centralized
processor because of the information diffusion over the net-
work. This result shows that each agent acquires the infor-
mation contained in the gradient oracles at every other
agent and suffers no regret asymptotically as the number of
gradient oracle calls at each agent increases.

Proof. According to Lemmas 1 and 2, we have

E F ðwwtÞf g � F ðww
Þ
� N

2mt

E ð1� �mtÞ wwt � ww
j jj j2� wwtþ1 � ww
j jj j2
n o

þ 3NG2mt þ 6N
ffiffiffiffiffi
N

p
G2
Xt�1

z¼1

mt�zs
z:

(34)

From the convexity of the cost functions, we also have

E FiðwwtÞ � Fiðwwt;jÞ
�  � E ĝ̂gTt;i;jðwwt � wwt;jÞ

n o
; (35)

8i; j 2 f1; . . . ; Ng, where

ggt;i;j 2 @Fiðwwt;jÞ:

Here, we can rewrite (35) as follows:

E Fiðwwt;jÞ � FiðwwtÞ
�  � E ĝ̂gTt;i;jðwwt;j � wwtÞ

n o
� E ĝ̂gt;i;j

�� ���� �� wwt;j � wwt

�� ���� ��� 	
� G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt;j � wwt

�� ���� ��2q
;

(36)

where the second line follows from Cauchy Schwarz
inequality and the last line follows from the bounded-
ness assumption. Summing (36) from i ¼ 1 to N , we
obtain

E F ðwwt;jÞ � F ðwwtÞ
�  � NG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt;j � wwt

�� ���� ��2q
: (37)

Using Lemma 2 in (37), we get

E F ðwwt;jÞ � F ðwwtÞ
�  � 2N

ffiffiffiffiffi
N

p
G2
Xt�1

z¼1

mt�zs
z: (38)

We then add (34) and (38) to obtain

E F ðwwt;jÞ
� � F ðww
Þ
� N

2mt

E ð1� �mtÞ wwt � ww
j jj j2� wwtþ1 � ww
j jj j2
n o

þ 3NG2mt þ 8N
ffiffiffiffiffi
N

p
G2
Xt�1

z¼1

mt�zs
z:

(39)

Multiplying both sides of (39) by t and summing from
t ¼ 1 to T yields [34]

XT
t¼1

t E F ðwwt;jÞ
� � F ðww
Þ� 	

� Nð1� �m1Þ
2m1

E ww1 � ww
j jj j2� TN

2mT

E wwTþ1 � ww
j jj j2

þ
XT
t¼2

N

2

tð1� �mtÞ
mt

� t� 1

mt�1


 �
E wwt � ww
j jj j2

þ 3NG2
XT
t¼1

tmt þ 8N
ffiffiffiffiffi
N

p
G2
XT
t¼1

t
Xt�1

z¼1

mt�zs
z:

(40)

5. The number of agents, N , is fixed and independent of the budget
to call the oracles, i.e., T .

254 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2017



Next, we observe that

XT
t¼1

Xt�1

z¼1

tmt�zs
z ¼

XT
t¼1

XT
z¼1

tmt�zs
zIft > zg (41)

¼
XT
z¼1

sz
XT
t¼zþ1

tmt�z

�
XT
z¼1

sz
XT
t¼1

tmt

� s

1þ s

XT
t¼1

tmt;

(42)

where Ift> zg is the indicator function and (42) follows
since 0 � s < 1. Using (42) in (40) and inserting
mt ¼ 2

�ðtþ1Þ, we obtain

XT
t¼1

t EfF ðwwt;jÞg � F ðww
Þ� 	

� ��NT ðT þ 1Þ
4

E wwTþ1 � ww
j jj j2

þ 3NG2 þ 8N
ffiffiffiffiffi
N

p
G2 s

1� s

� �XT
t¼1

2t

�ðtþ 1Þ

� ��NT ðT þ 1Þ
4

E wwTþ1 � ww
j jj j2

þ 2NG2T

�
3þ 8

ffiffiffiffiffi
N

p s

1� s

� �
;

(43)

where the last line follows since t
tþ1 � 1. Dividing both

sides of (43) by
PT

t¼1 t ¼ T ðTþ1Þ
2 , we obtain

E
2

T ðT þ 1Þ
XT
t¼1

t F ðwwt;jÞ � F ðww
Þ� 	( )

� ��N

2
E wwTþ1 � ww
j jj j2

þ 4NG2

�ðT þ 1Þ 3þ 8
ffiffiffiffiffi
N

p s

1� s

� �
:

(44)

Since Fi’s are convex for all i 2 f1; . . . ; Ng, F is also con-
vex. Thus, from Jensen’s inequality, we can write

E F
2

T ðT þ 1Þ
XT
t¼1

t wwt;j

 !( )
� F ðww
Þ

� E
2

T ðT þ 1Þ
XT
t¼1

t F ðwwt;jÞ � F ðww
Þ� �( )
:

(45)

Combining (44) and (45), we obtain

E F
2

T ðT þ 1Þ
XT
t¼1

t wwt;j

 !( )
� F ðww
Þ

� ��N

2
E wwTþ1 � ww
j jj j2

þ 4NG2

�ðT þ 1Þ 3þ 8
ffiffiffiffiffi
N

p s

1� s

� �
:

(46)

Note that the weighting step in Algorithm 1, i.e., (7),
leads to

wwT;j ¼

=T � 1

T þ 1

=T � 2

T

=T � 3=T � 1
� � �

=2 =2þ 2

1 =1þ 2

2 =0þ 2
ww1;j

þ

=T � 1

T þ 1

=T � 2

T

=T � 3=T � 1
� � �

=3 =3þ 2

2 =2þ 2

2 =1þ 2
ww2;j

þ � � � þ 2

T þ 1
wwT;j

¼ 2

T ðT þ 1Þ
XT
t¼1

t wwt;j:

(47)

This concludes the proof of Theorem 1. tu
Hence, using the weighted average �w�wt;i instead of the

original SSD iterates wwt;i, we can achieve a convergence rate

of O N
ffiffiffi
N

p
ð1�sÞT
� �

. The denominator T of this regret bound fol-

lows since we use a time-varian‘t weighting of the SSD iter-
ates. The linear dependency to the network size follows
since we add N different cost functions, i.e., one corre-
sponding to each agent. Finally, the sub-linear dependency
to the network size results from the diffusion of the parame-
ter vector over the distributed network.

We note that the upper bound in (33) includes s, which
can depend on the network sizeN . In particular, for different
communication matrices, the corresponding upper bounds
on the second largest singular value can be included in (33).
As an example, Reference [38] shows that the second largest
singular value of the lazymetropolis matrix, defined by

HHij ¼
1

max ni;njf g ; if j 2 N i n i
0; if j =2 N i
1
2 � 1

2

P
j2N ini HHij; if i ¼ j;

8><
>: (48)

is bounded from above by 1� 1
71N2, which implies s

1�s
<

OðN2Þ.
In the following corollary, we provide an MSD guarantee

on the weighted parameters �w�wt;i.

Corollary 1. Under the assumptions in Lemmas 1 and 2, Algo-
rithm 1 with learning rate mt ¼ 2

�ðtþ1Þ and weighted parameters
�w�wt;i guarantees the following MSD

E �w�wTþ1;i � ww
�� ���� ��2� 8NG2

�2ðT þ 2Þ 3þ 8s
ffiffiffiffiffi
N

p

1� s

 !
;

for all T � 1, where 0 � s < 1 is the second largest singular
value of the matrixHH.

Proof. This follows from Theorem 1 (33) and �-strong con-
vexity (2) of F at ww
 since 0 2 @F ðww
Þ. tu
In the following corollary, we then consider the perfor-

mance of the average SSD iterate instead of the time-variant
weighted iterate in (47). Note that even though the agents
have consumed their budgets to call the subgradient oracle,
they can continue to exchange information, which averages
out the iterates. We show that the average SSD iterate

achieves an MSD of O
ffiffiffi
N

p
ð1�sÞT
� �

. This MSD follows due to the

number of gradient oracle calls and diffusion regret over
the distributed network.
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Corollary 2. Under the assumptions of Lemmas 1 and 2,
Algorithm 1 with learning rate mt ¼ 2

�ðtþ1Þ yields the following
guaranteed MSD

E wwTþ1 � ww
j jj j2� 8G2

�2ðT þ 1Þ 3þ 8s
ffiffiffiffiffi
N

p

1� s

 !
: (49)

for all T � 1, where wwt ¼ 1
N

PN
i¼1 wwt;i and 0 � s < 1 is the

second largest singular value of the matrixHH.

Proof. This follows from (46) and (47) since EfF ð �w�wT;jÞg�
F ðww
Þ � 0. tu

Remark 1. Algorithm 1 can be generalized to apply to con-
sensus in a straightforward manner, while the perfor-
mance guarantee in Theorem 1 still holds up to constant

terms, i.e., we still have a convergence rate of O N
ffiffiffi
N

p
ð1�sÞT
� �

.

For the consensus strategy, the lines 5–8 of Algorithm 1

would be replaced by the following update

wwtþ1;i ¼ PW
XN
j¼1

HHjiwwt;j � mtĝ̂gt;i

 !
: (50)

Hence, we have the following recursion on the parameter

vectors

WWt ¼ WW 1HH
t�1 �

Xt�1

z¼1

XXt�z � mt�zGGt�zð ÞHHz�1;

instead of the one in (23). Under this modification,

Lemma 2 can be updated as follows:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E wwt � wwt;i

�� ���� ��2q
� 2G

ffiffiffiffiffi
N

p Xt�1

z¼1

mt�zs
z�1: (51)

This loosens the upper bounds in (25) and (32) by a factor
of 1=s (note that 0 � s < 1). Therefore, diffusion strate-

gies achieves a better convergence performance com-

pared to the consensus strategy.

We note that the proposed algorithm leads to the theoret-
ical bounds on the convergence rate for a certain step size,
which is mt ¼ 2

�ðtþ1Þ. Otherwise, the algorithm can also be
used with different step sizes yet not necessarily delivering
such theoretical performance guarantees. Furthermore,
even though all the agents use mt ¼ 2

�ðtþ1Þ, the only necessary
information for them to keep how many times they have
called the subgradient oracles and then they can all use the
same step size 2=� and scale it by 1=ðtþ 1Þ. We consider
that the cost function F is �-strongly convex, i.e., the agents
have the knowledge of � even though they do not know
what the function is.

4 SIMULATIONS

In this section, we first examine the performance of the pro-
posed algorithms for various distributed network topolo-
gies, namely the star, the circle, and a random network
topologies (which are shown in Fig. 3). In all cases, we have
a network of N ¼ 20 agents where each agent i at time t,
observes the data dt;i ¼ wwT

0 uut;i þ vt;i, i ¼ 1; . . . ; N , where the
regression vector uut;i and the observation noise vt;i are

generated from i.i.d. zero mean Gaussian processes for all
t � 1. The variance of the observation noise is s2

v;i ¼ 0:1 for all
i ¼ 1; . . . ;N , whereas the auto-covariance matrix of the
regression vector uut;i 2 R5 is randomly chosen for each agent
i ¼ 1; . . . ;N such that the signal-to-noise ratio (SNR) over the
network varies between �15 dB to 10 dB (see Fig. 2). The
parameter of interest, ww0 2 R5, is randomly chosen from a
zero mean Gaussian process and normalized to have a unit
norm, i.e., ww0j jj j ¼ 1. We use the well-knownMetropolis com-
bination rule [3] to set the combinationweights as follows:

HHij ¼
1

max ni;njf g ; if j 2 N i n i
0; if j =2 N i

1�Pj2N ini HHij; if i ¼ j

8><
>: (52)

where ni is the number of neighboring agents for agent i.
For this set of experiments, we consider the squared error

loss, i.e., ‘ðwwt;i;uut;i; dt;iÞ ¼ ðdt;i � wwT
t;iuut;iÞ2 as our loss func-

tion. In the figures, CSS represents the distributed constant
step-size SSD algorithm of [11], VSS represents the distrib-
uted variable step-size SSD algorithm of [6], UW represents
the distributed version of the uniform weighted SSD algo-
rithm of [23], and TVW represents the distributed time vari-
ant weighted SSD algorithm introduced in this paper. The
step-sizes of the CSS-1, CSS-2, and CSS-3 algorithms are set
to 0.05, 0.1, and 0.2, respectively, at each agent and the
learning rates of the VSS and UW algorithms are set to
1=ð�tÞ as noted in [6], [23], whereas the learning rate of the
TVW algorithm is set to 2=ð�ðtþ 1ÞÞ as noted in Theorem 1,
where � ¼ 0:01. These learning rates are chosen specifically
to guarantee a fair performance comparison between these
algorithms according to the corresponding algorithm
descriptions stated in this paper and in [6], [23].

In the left column of Fig. 3, we compare the normalized
time accumulated error performances of these algorithms
under different network topologies in terms of the global
normalized cumulative error (NCE) measure, i.e.,

NCEðtÞ ¼ 1

Nt

XN
i¼1

Xt
t¼1

ðdt;i � wwT
t;iuut;iÞ2:

Fig. 2. SNRs of the agents in the distributed network.
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Fig. 3. NCE (left column) and MSD (right column) performances of the proposed algorithms under the star (first row), the circle (second row), and a
random (third row) network topologies, under the squared error loss function averaged over 200 trials.
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Additionally, in the right column of Fig. 3, we compare the
performances of the algorithms in terms of the global MSD
measure, i.e.,

MSDðtÞ ¼ 1

N

XN
i¼1

ww0 � wwt;i

�� ���� ��2: (53)

In the figures, we have plotted the NCE and MSE perform-
ances of the proposed algorithms over 200 independent tri-
als to avoid any bias.

As can be seen in the Fig. 3, the TVW algorithm substan-
tially outperforms its competitors and achieves a much
smaller error performance. This superior performance of
our algorithm is achieved thanks to the time-dependent
weighting of the regression parameters, used to obtain a
faster convergence rate with respect to the rest of the algo-
rithms. Hence, by using a certain time varying weighting of
the SSD iterates, we obtain a significantly improved conver-
gence performance compared to the state-of-the-art
approaches in the literature. Furthermore, the performance
of our algorithm is robust against the network topology,
whereas the competitor algorithms may not provide satis-
factory performances under different network topologies.

We next consider the classification tasks over the bench-
mark data sets: Covertype6 and quantum.7 For this set of
experiments, we consider the hinge loss, i.e., ‘ðwwt;i;
uut;i; dt;iÞ ¼ maxf0; 1� dt;iww

T
t;iuut;ig2 as our loss function. The

regularization constant is set to � ¼ 1=T , where the step
sizes of the TVW, UW, and VSS algorithms are set as in the
previous experiment. The step sizes of the CSS-1, CSS-2,
and CSS-3 algorithms are set to 0.02, 0.05, and 0.1 for the
covertype data set, whereas the step sizes of the CSS-1,
CSS-2, and CSS-3 algorithms are set to 0.01, 0.02, and 0.05
for the quantum data set. These learning rates are chosen to
illustrate the tradeoff between the convergence speed and
the steady state performance of the constant step size SSD

methods. The network sizes are set to N ¼ 20 and N ¼ 50
for the covertype and quantum data sets, respectively.

In Figs. 4 and 5, we illustrate the performances of the six
algorithms for various training data lengths. In particular,
we train the parameter vectors at each agent using a certain
length of training data and test the performance of the final
parameter vector over the entire data set. We provide aver-
aged results over 250 and 100 independent trials for covert-
ype and quantum data sets, respectively, and present the
mean and variance of the normalized accumulated hinge
errors. These figures illustrate that the proposed TVW algo-
rithm significantly outperforms its competitors. Although
the performances of the UW and VSS algorithms are compa-
rably robust over different iterations, the TVW algorithm
provides a smaller accumulated loss. On the other hand,
the variances of the constant step size methods highly
deteriorate as the step size increases. Although decreasing
the step size yields more robust performance for these
constant step size algorithms, the TVW algorithm

Fig. 4. Normalized accumulated errors of the six algorithms versus train-
ing data length for cover type data averaged over 250 trials for a network
of size 20.

Fig. 5. Normalized accumulated errors of the six algorithms versus train-
ing data length for quantum data averaged over 100 trials for a network
of size 50.

Fig. 6. Global MSD over the star networks with different sizes:
50, 100, 200, and 500.

6. https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/
7. http://osmot.cs.cornell.edu/kddcup/
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provides a significantly smaller steady-state cumulative
error with respect to these methods.

Finally, we note that the upper bounds in Theorem 1 and
Corollary 1 directly depend on the number of agents in addi-
tion to the second largest singular value of the combination
matrix, s. In the following numerical examples, we examine
how the MSD of the algorithm scales with the network size.
To this end, we consider the setup for Fig. 3b with different
network sizes: 50,100,200, and 500. Fig. 6 shows how the time
evolution of the global MSD scales with increasing network
sizes from 50 to 500. Furthermore, Fig. 7 shows how s scales
with the network size and correspondingly we observe
that 1=ð1� sÞ scales with N . We also note that the global
MSD measure (53) is averaged across the network. There-
fore, the corresponding upper bound on the global MSD
(See Corollary 1) scales with

ffiffiffiffiffi
N

p
=ð1� sÞ. However, in Fig. 6,

we observe that when the network size scales by 10, e.g.,
from 50 to 500, the global MSD scales by 10 dB rather than
15dB. This raises the possibility that the dependency of the
upper bound on the network size might be tightened further
and formulating the upper bound, which is also optimal in
terms of network size complexity, can be an interesting
future research direction.

5 CONCLUSION

We have studied distributed strongly convex optimization
over distributed networks, where the aim is to minimize a
sum of unknown convex objective functions. We have intro-
duced an algorithm that uses a limited number of gradient
oracle calls to these objective functions and achieves an opti-

mal convergence rate of O N
ffiffiffi
N

p
ð1�sÞT
� �

after T gradient updates

at each agent. This level of performance is achieved by
using a certain time-dependent weighting of the SSD iter-
ates at each agent. Additionally, the weighted parameters

achieve a guaranteed mean square deviation (MSD) of

O N
ffiffiffi
N

p
ð1�sÞT
� �

after T gradient updates. The computational com-

plexity and the communication load of the proposed
approach is the same as with the state-of-the-art methods in
the literature up to constant terms. We have also proved
that the average SSD iterate, which can be attained if the
agents continue to exchange information without gradient

updates, achieves a guaranteed MSD of O
ffiffiffi
N

p
ð1�sÞT
� �

after T

gradient oracle calls. We have illustrated the superior con-
vergence rate of our algorithm with respect to the state-of-

the-art methods in the literature. Some future directions of
research on this topic include the computation of conver-
gence rate bounds for the heterogeneous case, where agents
can have different step sizes and/or learning rates, and
asynchronous distributed computation as in [39].
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