
Nonlinear Regression via Incremental Decision Trees

N. Denizcan Vanlia, Muhammed O. Sayinb, Mohammadreza Mohaghegh N.c,∗,
Huseyin Ozkand, Suleyman S. Kozatc

aLaboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA

bCoordinated Science Laboratory, University of Illinois at Urbana-Champaign (UIUC),
Urbana, IL 61801, USA

cDepartment of Electrical and Electronics Engineering, Bilkent University, Ankara 06800,
Turkey

dFaculty of Engineering and Natural Sciences, Sabancı University, Istanbul 34956, Turkey

Abstract

We study sequential nonlinear regression and introduce an online algorithm that

elegantly mitigates, via an adaptively incremental hierarchical structure, con-

vergence and undertraining issues of conventional nonlinear regression methods.

Particularly, we present a piecewise linear (or nonlinear) regression algorithm

that partitions the regressor space and learns a linear model at each region to

combine. Unlike the conventional approaches, our algorithm effectively learns

the optimal regressor space partition with the desired complexity in a com-

pletely sequential and data driven manner. Our algorithm sequentially and

asymptotically achieves the performance of the optimal twice differentiable re-

gression function for any data sequence without any statistical assumptions.

The introduced algorithm can be efficiently implemented with a computational

complexity that is only logarithmic in the length of data. In our experiments,

we demonstrate significant gains for the well-known benchmark real data sets

when compared to the state-of-the-art techniques.

Keywords: Online regression, Sequential learning, Nonlinear models,

Incremental decision trees

∗Corresponding author
Email addresses: denizcan@mit.edu (N. Denizcan Vanli), sayin2@illinois.edu

(Muhammed O. Sayin), mohammadreza@ee.bilkent.edu.tr (Mohammadreza Mohaghegh N.),
hozkan@sabanciuniv.edu (Huseyin Ozkan), kozat@ee.bilkent.edu.tr (Suleyman S. Kozat)

Preprint submitted to Pattern Recognition July 7, 2018

1. Introduction

Nonlinear regression has been extensively studied in machine learning and

signal processing literature due to its applicability in an extremely wide range of

real life scenarios ranging from prediction in time series [1, 2] to face recognition

[3, 4] and object tracking [5]. Numerous methods have been proposed based5

on various approaches such as neural networks [6, 7, 8], Volterra filters [9],

and B-splines [10]. However, we observe that existing methods suffer from

convergence and scalability issues in addition to their limited generalization

across applications and data domains [11, 12, 13, 14]. To address these issues,

we study online nonlinear regression based on a sequence of multi-dimensional10

regressors and a corresponding sequence of desired outputs. At each time in our

framework, after we produce our estimate, the desired output is revealed and

then we aim to improve our model based on the induced error. Our goal is to

sequentially learn the nonlinear and possibly time varying model that minimizes

the accumulated square error across the observations in the target class of all15

twice differentiable regression functions.

We consider hierarchical models of gradually increasing complexity to de-

velop a novel regression model that infers the required complexity of any re-

gression problem regardless of the data and its domain. Our approach is to

recursively partition the regressor space into subsequent regions and fit a linear20

model in each partition region. Then, we obtain a piecewise-linear (thus, nonlin-

ear) regression model by combining such local linear models of finite complexity.

During partitioning, we specifically avoid creating undertrained regions until a

sufficient amount of data is observed. In this sense, the nonlinear modeling

power is incrementally increased to the required degree by sequentially inferring25

the right (in terms of the granularity and shape) partitioning structure directly

from the data. As a result, we avoid any unnecessary complexity or nonlinearity

(while staying capable of achieving arbitrarily high modeling power if required)

to mitigate overfitting issues by operating at the true complexity.

We prove that our hierarchical piecewise linear regression algorithm asymp-30

totically achieves the performance of the optimal twice differentiable regression

2

function. We obtain this strong performance guarantee in a truly sequential

manner without any statistical assumptions and parameter tuning. Hence, our

algorithm is universally well-behaved in terms of its convergence and consistency.

Since most of the existing nonlinear regression algorithms such as neural net-35

works and Volterra filters can be accurately represented by twice differentiable

functions [15, 16], our algorithm readily -and at least- performs asymptotically

as well as those. Additionally, the computational complexity of our technique

is only logarithmic in the length of data under mild regularity conditions.

The overfitting handling capability and thus the generalization of piecewise-40

linear models can be illustrated in the case of classification. Linear classifiers

are desirable due to their good generalization since they have finite d + 1 (d is

the data dimension) VC dimension [17], but they might not necessarily address

the true complexity of the problem in hand which might be severely non-linear.

Kernelization through radial basis function -as an example- achieves great non-45

linear modeling power, but it has infinite VC dimension leaving it susceptible to

overfitting. On the other hand, the VC dimension of piecewise linear classifiers

(with r regions) is still finite, bounded by 2 (r−1)2+2
2 log(e (r−1)2+2

2)(d+ 1) <∞

[18], which provides a decent model to fight against overfitting at the desired

(possibly arbitrarily large) complexity. In accordance, our idea is to use a com-50

bination of finite complexity linear regression models to solve more complex

regression problems. By gradually increasing the number of combined models,

one can match the true complexity of the problem with a decent piecewise linear

approximation. Consequently, our technique directly addresses and mitigates

overfitting at the right operating point in the trade-off between the generaliza-55

tion and modeling power. Additionally, we learn the optimal partitioning in a

completely data driven manner while specifically avoiding undertrained regions

in the phase of region splitting for enhanced generalization. We also exploit a

carefully designed weighting to favor simpler models initially, and then to dy-

namically and gradually switch to more complex models as the data overwhelm.60

This not only addresses the cold-start problem as an additional merit, but also

manages the piecewise linear models with special regards to overfitting. Thus,

our hierarchical class of hypotheses is grown in a completely data driven manner

3

until the desired level of complexity, and then we provide the optimal regression

model from that class with strong mathematical performance guarantees.65

For reducing the sensitivity of our approach to noise, we use regularized

least squares as the linear model that our combination is based on. One can

use any linear model that might be less sensitive to noise and outliers for this

purpose. Our emphasis in this paper is on the combination, rather than the

individual linear models. Secondly, one should not create new regions based70

on noise; and in our method, a new region is never created until a sufficiently

number of instances is observed in its parent region. This level of sufficiency can

be studied more deeply to reduce the effect of noise. In this paper, we opt to

provide it as a framework and continue with an appropriate setting that leads

to an impressive performance in our experiments.75

2. Related Work

Piecewise linear regression using tree structures has been studied in the com-

putational learning [19, 20, 21, 14] and signal processing [13, 22] literature due to

its attractive convergence and consistency features. Remarkably, the tree based

partitioning methods in [22, 14, 16] consider a large class of hierarchical models80

and achieve the performance of the optimal one defined by the best pruning of

the tree. However, these methods only yield a satisfactory performance when

the right partitioning of the regressor space is already known initially before-

hand, which cannot be satisfied in practice. In another example, [11] proposes

an algorithm that achieves the performance of the optimal combination of such85

piecewise models, rather than the optimal single one. However, it considers a

partitioning tree with a pre-fixed depth and its computational complexity is

exponentially greater compared to the ones in [22, 14, 16]. All these algorithms

can only provide a limited modeling power since their tree structure is fixed.

Furthermore, they can only learn the locally optimal region boundaries due to90

their highly nonconvex optimization. Unlike these methods, our technique in-

crementally increases its nonlinear modeling power according to the observed

data and directly achieves the performance of the best twice differentiable re-

4

gression function that globally minimizes the accumulated regression error. In

contrast to the relevant studies of the literature in which the undertrained (i.e.,95

unnecessary) partitions are kept in the overall structure, our method eliminates

the unnecessarily finer partitions without any loss in asymptotical performance.

The Classification and Regression Trees (CART) [23] recursively partitions

the observation space based on the data attributes using a certain splitting cri-

terion at each node, such as the squared error for regression or Gini index for100

classification, and runs a predictor at leaf nodes. Pruning can also be incor-

porated once the tree is learned [24]. Utgoff’s perceptron tree [25] is a deci-

sion tree of a hybrid representation consisting of decision nodes with attribute

tests and leaf nodes with perceptrons. Splitting is information theoretical and

continues until linear separability. Extensions largely investigate various uni-105

variate/multivariate splitting criteria, stopping criteria and pruning methods

[24]. Model trees combine a conventional decision tree with linear regression

functions at the leaves [26]. M5 (and M5’) of [26] is a model tree in which

a splitting criterion is used to minimize the intra-subset variation down each

branch. Cubist [27] is a rule-based model that is an extension of Quinlan’s M5110

model tree. Online regression trees are discussed in [27]. Especially, a recent

model tree called Fast Incremental Model Tree (FIMT) is studied and com-

pared to the previous incremental trees. The FIMT, FIRT-DD and FIMT-DD

algorithms by [28], [29, 30] are representatives of Hoeffding-based learning al-

gorithms in the domain of regression analysis. The FIMT-DD algorithm uses115

a probabilistic sampling strategy for learning in non-stationary environments

[27]. FIMT is an online algorithm to learn linear model trees from stationary

streams. The FIRT-DD is an extended version of FIMT equipped with change

detection abilities to learn from time-varying data streams. FIRT-DD does not

use linear models in leaves but FIMT-DD has both linear models in leaves and120

change detection. In these tree based algorithms, the major effort to optimize

the model is given to the optimization of the splitting criterion at each node

[24]. On the contrary, we opt to mainly consider the model optimization directly

in the class of twice differentiable regression functions while using a straight-

forward splitting criterion at each node. We emphasize that our approach of125

5

this direct optimization covers the solutions or their approximations resulting

from splitting criteria optimization. Moreover, any splitting criterion can also

be straightforwardly incorporated into our framework.

In nonlinear techniques such as B-splines and Volterra series [9, 10], the

nonlinearity is introduced by the basis functions to create polynomial estimators.130

The performance of this approach is satisfactory when the data generation is in

accordance with the employed basis function. However, the underlying model

that generates the data is usually unknown in the real life applications. On

the other hand, our algorithm achieves the performance of any such regressor

provided that its basis functions are twice differentiable. In this sense, unlike135

the conventional methods whose performances are highly dependent on the basis

functions, our method can well approximate these basis functions via piecewise

models and therefore effectively addresses the well-known basis/kernel selection

problem. Namely, the difference between the performance of our algorithm and

the best such regressor vanishes asymptotically in a strong individual sequence140

manner without any statistical assumptions.

We first provide the problem description in Section 3 and then introduce our

incremental decision tree in Section 4. We present our performance guarantees

in Section 5 which are explained in detail in Section 6. Section 7 presents the

experimental results and then we conclude in Section 8.145

3. Problem Description

We study sequential nonlinear regression to estimate an unknown desired

sequence {d[t]}t≥1 by using a sequence of regressor vectors {x[t]}t≥1, where

the desired sequence and the regressor vectors are real valued and bounded,

i.e., d[t] ∈ R, x[t] , [x1[t], . . . , xp[t]]
T ∈ Rp for an arbitrary integer p and150

|d[t]| ≤ A <∞, |xi[t]| ≤ A <∞ for all t and i = 1, . . . , p.

We point out that in this work, the regressors and the responses are both

assumed to be coming from a compact space of known bounds in its dimensions,

i.e., |xi[t]| ≤ A, |d[t]| ≤ A and A is known. We consider that this does not hinder

online/sequential processing as it can be readily known (as in the case of images155

6

or digitized/quantized signals) or conservatively and accurately estimated (by

observing a small portion at the beginning of the data stream) in most of the

practical cases. We call the regressors “sequential” if they only use the past

information d[1], . . . , d[t − 1] and the observed regressor vectors1 x[1], . . . ,x[t]

in order to estimate the desired data at time t, i.e., d[t].160

In this framework, a piecewise linear model is constructed by dividing the

regressor space into disjoint regions with a linear model in each region. As

an example, suppose that the regressor space is parsed into K disjoint regions

R1, . . . ,RK such that
⋃K
k=1Rk = [−A,A]p. Given such a model, at each time t,

the sequential linear2 regressor predicts d[t] as d̂[t] = vTk [t]x[t] when x[t] ∈ Rk,165

where vk[t] ∈ Rp for all k = 1, . . . ,K. These linear models assigned to each

region can be trained independently using different adaptive methods such as

the gradient descent or the recursive least squares (RLS) algorithms.

However, by directly partitioning the regressor space in advance before the

processing starts and optimizing only the internal parameters of the piecewise170

linear model, i.e., vk[t], one significantly limits the performance of the overall

regressor since we do not have any prior knowledge on the underlying desired

signal. Therefore, instead of committing to a single piecewise linear model with

a fixed and given partition, one can use a decision tree to partition the regressor

space and aim to achieve the performance of the best partition over the whole175

doubly exponential number of different models represented by this tree [31].

As an example, we partition the one dimensional regressor space [−A,A]

using a depth-2 tree in Fig. 1a, where the regions R1, . . . ,R4 correspond to

disjoint intervals on the real line and the internal nodes are constructed using

union of these regions. In the generic case of a depth-d full decision tree, there180

exist 2d leaf nodes and 2d − 1 internal nodes. Each node of the tree represents

a portion of the regressor space such that the union of the regions represented

1All vectors are column vectors and denoted by boldface lower case letters. Matrices are
denoted by boldface upper case letters. For a vector x, xT is the ordinary transpose. We
denote dba , {d[t]}bt=a. Also, the p× p identity matrix is shown as Ip.

2Note that affine models can also be represented as linear models by appending a 1 to x[t],
where the dimension of the regressor space increases by one.

7

(a) The partitioning of a one dimen-
sional regressor space, i.e., [−A,A], us-
ing a depth-2 full decision tree, where
each node represents a portion of the
regressor space.

(b) All piecewise linear models that
can be obtained using a depth-2 deci-
sion tree with one dimensional regres-
sor space. These models are based on
the partitioning shown in Fig. 1a.

Figure 1: The partitioning of the regressor space by using a decision tree.

by the leaf nodes is equal to the entire regressor space [−A,A]p. Moreover, the

region corresponding to each internal node is constructed by the union of the

regions of its children. In this way, we obtain 2d+1 − 1 different nodes (regions)185

on the depth-d decision tree (on the regressor space) and approximately 1.52d

different piecewise models that can be represented by certain collections of the

regions at the nodes of the decision tree [31]. For example, there are 7 different

nodes on the depth-2 tree in Fig. 1a; and as shown in Fig. 1b, a depth-2 tree

defines 5 different piecewise partitions or models, where each of these models is190

constructed using certain unions of the nodes of the full depth decision tree.

We emphasize that given a decision tree of depth-d, the nonlinear modeling

power of this tree is fixed and finite since there are only 2d+1 − 1 different

regions (one for each node) and approximately 1.52d different piecewise models

(i.e. partitions) defined on this tree. To avoid such a limitation, we recursively195

increment the depth of the decision tree as the length of data increases. We call

such a tree the “incremental decision tree” since the depth of the decision tree

is incremented (and potentially goes to infinity) as the data length n increases.

Hence, we can achieve the modeling power of an infinite depth tree.

Using this incremental structure, we construct our sequential regression al-

gorithm whose estimate at time t is d̂s[t]. When applied to any sequence of data

8

and regressor vectors, our algorithm yields the regret performance

n∑
t=1

(
d[t]− d̂s[t]

)2

− inf
f∈F

n∑
t=1

(
d[t]− d̂f [t]

)2

≤ o(n) (1)

over any n without the knowledge of n, where F represents the class of all twice200

differentiable functions whose parameters are set in hindsight, i.e., after observ-

ing the entire data before processing starts, and d̂f [t] represents the estimate

of the twice differentiable function f ∈ F at time t. The relative accumulated

error in (1) represents the performance difference of the introduced algorithm

and the optimal batch twice differentiable regressor. Hence, an upper bound205

of o(n) in (1) implies that the algorithm d̂s[t] sequentially and asymptotically

converges to the performance of the regressor d̂f [t] for any f ∈ F .

4. Nonlinear Regression via Incremental Decision Trees

In this section, we present our incremental decision tree structure and use it

for piecewise linear regression. For clarity, we first introduce the notation to ef-210

fectively describe our incremental decision tree structure. We next introduce an

iterative regressor space partitioning rule and construct an incremental decision

tree using the resulting partitions. We then assign separate linear regressors

to each node on this incremental decision tree and then introduce a sequential

algorithm that achieves the performance of the best piecewise model on this215

incremental decision tree in Section 6.

4.1. Notation

We introduce a labeling for the nodes of the tree as in [32]. The root node is

labeled with an empty binary string λ; and assuming that a node has a label κ,

where κ = ν1 . . . νl is a binary string of length l formed from letters ν1, . . . , νl,220

we label its upper and lower children as κ1 and κ0, respectively. Here, we

emphasize that a string can only take its letters from the binary alphabet, i.e.,

ν ∈ {0, 1}, where 0 refers to the lower child, and 1 refers to the upper child

of a node. According to this notation, we say that a string κ′ = ν′1 . . . ν
′
l′ is a

9

prefix to string κ = ν1 . . . νl if l′ ≤ l and ν′i = νi for all i = 1, . . . , l′, where225

the empty string λ is a prefix to all strings. We let l(κ) represent the length

of the string κ and J (κ) represent the set of all prefixes to the string κ, i.e.,

J (κ) , {κ0, . . . , κl}, where l(κ) = l is the length of the string κ, κi is the string

with length l(κi) = i, and κ0 = λ is the empty string such that the first i letters

of the string κ forms the string κi for all i = 0, . . . , l.230

We let Lt and Nt represent the set of all leaf nodes and the set of all nodes

on the incremental decision tree at time t, respectively. For each leaf node on

the incremental decision tree at each time t, i.e., ∀κ ∈ Lt, we assign a specific

index ακ ∈ {0, . . . ,M − 1} representing the number of regressor vectors that

has fallen into Rκ. The parameter M controls the rate of the growth regarding235

our tree as well as the set Mn of all hierarchical prediction models defined on

our incremental decision tree at time n. The depth of the tree increases as

M decreases, in which case each node of the tree is trained -but- using less

instances. Hence, decreasing M increases the variance of the piecewise models

but also increases the modeling power of our method. However, the resulting240

rate of tree growth due to M = 2 along with the weighting over the set Mn

elegantly achieves the quickest possible rate of inclusion of new powerful models

intoMn and this is in line with the learning rate from data becoming available

(cf. our regret analysis). We use M = 2 throughout the paper.

4.2. Incremental Decision Trees245

Before the processing starts, i.e., at time t = 0, we begin with a single node,

i.e., the root node λ, having index αλ = 0. Then, we recursively construct the

decision tree according to the following principle. For every time instant t > 0,

we find the leaf node of the tree κ ∈ Lt such that x[t] ∈ Rκ. For this node, if

we have ακ = 0, we do not modify the tree but only increment this index by 1.250

On the other hand, if ακ = 1, then we generate two children nodes κ0, κ1 for

this node by dividing the region Rκ into two disjoint regions Rκ0,Rκ1, using

the plane xi = c, where i − 1 ≡ l(κ) (mod p) and c is the midpoint of the

region Rκ along the ith dimension. For node κν with x[t] ∈ Rκν (i.e., the child

node containing the current regressor vector), we set ακν = 1 and the index255

10

(a) A sample evolution of the incre-
mental decision tree with 1-D regressor
space. The “×” indicates the regres-
sor at that specific time. Light (dark)
nodes are of index of 1 (0).

1
0x ³

1
0x <

2
0x ³

2
0x <

2
0x ³

2
0x <

1
/ 2x A³

1
0 / 2x A£ <

1
/ 2x A³

1
0 / 2x A£ <

1
0 / 2x A> ³ -

1
/ 2x A< -

1
/ 2x A< -

1
0 / 2x A> ³ -

(b) The depth-3 tree constructed for
partitioning two dimensional regres-
sors (p = 2).

Figure 2: Two partitioning examples in 1-D and 2-D scenarios.

of the other child is set to 0. We emphasize that this simple splitting criterion

yields our desired performance, as shown in the proof of Theorem 2. Using this

splitting, each dimension of the regions corresponding to the nodes with the

same depth on the tree has the same radius, which can be calculated and used

to prove the desired performance bounds. The accumulated regressor vectors260

T (κ) for region of node κ (i.e. T (κ) = {ti : x[ti] ∈ R(κ)}) and the data in node

κ are transferred to its children to train a linear regressor in these child nodes.

As an example, we consider one dimensional regressor space [−A,A] and

present a sample evolution of the tree in Fig. 2a. At time t = 2, we have a

depth-1 tree of two nodes 0 and 1 with corresponding regions R0 = [−A, 0],265

R1 = [0, A], and α0 = 1, α1 = 0. At time t = 3, we observe a regressor vector

x[3] ∈ R0 and divide this region into two disjoint regions using x1 = −A/2 line.

We then find that x[3] ∈ R01 and set α01 = 1, whereas α00 = 0.

As another example, we depict a tree of depth 3 for 2-dimensional regressor

vectors over [−A,A]2 in Fig. 2b. In order to split the root node in this exam-270

ple, we use x1 = 0 as the separating hyperplane, since the length of the code

11

describing the root node (i.e., the depth of the node in the tree) equals 0 that

yields i = 1 as the index of the splitting dimension. Similarly, we use x2 = 0

as the separating hyperplane for the nodes with depth 1, since we obtain i = 2

for these nodes and x2 ∈ [−A,A] for both of these nodes, i.e., c = 0 is the275

midpoint along the second dimension in both of these nodes. For the depth 3

nodes, we obtain i = [2 mod 2] + 1 = 1, therefore, we do the splitting along

x1. For example, in Fig. 2b, for the highest node with depth 2, i.e., κ = 11

(with the coding scheme stated in the paper), we have x1 ∈ [0, A] and c = A/2

is the midpoint along x1. Thus, we use x1 = A/2 as the separating hyperplane280

to generate the nodes with codes 111 and 110 from the node 11.

We assign an independent linear regressor to each node on the incremen-

tal decision tree. Each linear regressor is trained using only the information

contained in its corresponding node. Hence, we can obtain different piecewise

models by using a certain collection of this node regressors according to the

hierarchical structure. Using this incremental hierarchical structure with linear

regressors at each region, the incremental decision tree can represent up to 1.5n

different piecewise linear models after observing a data of length n. For exam-

ple, at time t = 6 in Fig. 2a, we have 5 different piecewise linear models (see

Fig. 1b), whereas at time t = 4, we have 3 different piecewise linear models.

Each of these piecewise linear models can be used to perform the estimation

task. We introduce the following universal piecewise linear regressor for the

piecewise model m. Assuming that x[t] ∈ Rκ, we let

d̂(m)[t] = vTκ [t]x[t], (2)

where vκ[t] = (Rκ[t] + δI)
−1

pκ[t] with I representing the appropriate sized

identity matrix, Rκ[t] ,
∑
t′≤t :x[t′]∈Rκ x[t′]xT [t′], and pκ[t] ,

∑
t′<t :x[t′]∈Rκ d[t′]x[t′].

In addition, δ is a regularization parameter used to avoid taking inverse of a

singular matrix, hence it is usually set to be very small. Therefore, we initial-285

ize the matrix Rκ for every node (as soon as a node is added to the tree) by

Rκ[0] = δI, update it by Rκ[t] = Rκ[t − 1] + x[t]xT [t], and reformulate vκ[t]

as vκ[t] = R−1
κ [t]pκ[t]. For instance, one can set δ = 0.01 in practice.

12

However, we use a mixture of experts approach to combine the outputs of all

piecewise linear models instead of relying on a single one. To this end, one can290

assign a performance dependent weight to each piecewise linear model defined

on the incremental decision tree and combine their weighted outputs to obtain

the final estimate [33]. In a conventional setting, such a mixture of expert

approach is guaranteed to asymptotically achieve the performance of the best

piecewise linear model defined on the tree [34]. However, in our incremental295

decision tree framework, as t increases (i.e., as we observe new data), the total

number of different piecewise linear models can increase exponentially with t.

Thus, we have a highly dynamic optimization framework. For example, at time

t = 4 in Fig. 2a, we have 3 different piecewise linear models, hence calculate

the final output of our algorithm as d̂[t] = w1[t]d̂(1)[t]+w2[t]d̂(2)[t]+w3[t]d̂(3)[t],300

where d̂(i)[t] represents the output of the ith piecewise linear model and wi[t]

represents its weight. However, at time t = 6, we have 5 different piecewise

linear models, i.e., d̂[t] =
∑5
i=1 wi[t]d̂

(i)[t], therefore the number of experts

increases. Hence, not only such a combination approach requires the processing

of the entire observed data at each time t (i.e., it results in a brute-force batch-305

to-online conversion), but also it cannot be practically implemented even for a

considerably short data sequences such as n = 100.

To elegantly solve this problem, we assign a weight to each node on the

incremental decision tree instead of using a conventional mixture of experts

approach. In this way, we illustrate a method to calculate the original highly310

dynamic combination weights in an efficient manner without requiring the pro-

cessing of the entire data for each new sample and with a significantly reduced

computational complexity. The main structure of the proposed algorithm is

provided in Algorithm 1. In this algorithm, when a regressor vector x[t] is re-

ceived at time t, we find the leaf node κ containing this sample. Clearly, due315

to the structure of the tree, all the ancestors of the κ also contain this sample.

Hence, in line 8 of the Algorithm 1, we use the estimations of all nodes in J (κ)

to produce the final output d̂[t] (as will be discussed in Section 6 and Algo-

rithm 2). Furthermore, using the function “incrementTree(κ)” (which will be

explained later in Algorithm 3), we pass the accumulated information (e.g., the320

13

linear estimator) in the node κ to its children, when this node receives enough

amount of data to be split. Note that T (κi) indicates the set of all time indexes

ti such that x[ti] ∈ R(κi). In addition, we also update the linear regressors of all

nodes containing x[t] (i.e., all nodes in J (κ)) using the Algorithm 4, which will

be discussed later. Before describing our algorithm in detail, we first provide325

the theoretical guarantees of our algorithm in the following section.

1: Find the leaf node containing x[t], denote it
by κ.

2: if ακ = 1 then
3: incrementTree(κ) using the Algorithm 3
4: Find the new leaf node containing x[t] on

the incremented tree, denote it by κ.
5: end if
6: ακ = 1.
7: Tκi = Tκi ∪ {t}, ∀κi ∈ J (κ).
8: predict(x[t],J (κ)) using the Algorithm 2
9: update(d[t],x[t],J (κ)) using the Algorithm 4

Algorithm 1: Incremental Deci-
sion Tree (IDT)

1: for all κi ∈ J (κ) do
2: Use (16) to find πκi .
3: µκi = πκiEκi/Pλ

4: d̂κi = wT
κi

x[t]

5: end for
6: d̂ =

∑
κi∈J (κ) µκi d̂κi

Algorithm 2: predict(x[t],J (κ))

5. Main Results

We introduce the main results in this section. Particularly, we first show330

that the introduced sequential piecewise linear regression algorithm asymptoti-

cally achieves the performance of the best piecewise linear model defined on the

incremental decision tree (with possibly infinite depth) with the optimal regres-

sion parameters at each region that minimizes the accumulated loss. We then

use this result to prove that the introduced algorithm asymptotically achieves335

the performance of any twice differentiable regression function. We provide the

algorithmic details and the construction of the algorithm in Section 6.

Theorem 1. Let {d[t]}t≥1 and {x[t]}t≥1 be arbitrary, bounded, and real-valued

sequences of data and regressor vectors, respectively, i.e., x[t] ∈ [−A,A]p,∀t.
Then, Algorithm 1, whose prediction at time t is d̂[t], yields

n∑
t=1

(
d[t]− d̂[t]

)2
− inf
m∈Mn

[
inf

v(m)∈RpKm

{
n∑
t=1

(
d[t]− d̂(m)

batch[t]
)2

+ δ
∣∣∣∣∣∣v(m)

∣∣∣∣∣∣2}] ≤ O (p log2(n)
)
,

for any n with computational complexity upper bounded by O(t) at each time

instance t, where Mn represents the set of all hierarchical models with at most

14

O(log(n)) leaves on the incremental decision tree at time n, d̂
(m)
batch[t] is the pre-340

diction of the mth model in the set Mn whose parameter vectors at each node

are chosen non-causally (which needs the knowledge of the final decision tree in

advance of the processing), Km is the number of partitions in the mth model,

i.e., Km ≤ O(log(n)), ∀m ∈ Mn, and v(m) is the vector constructed by con-

catenating the parameter vectors at each node on the mth model.345

This theorem indicates that the introduced algorithm can asymptotically

and sequentially achieve the performance of any piecewise model in the set

Mn, i.e., the piecewise models having at most O(log(n)) leaves defined on the

tree. In particular, over any unknown length of data n, the performance of

the piecewise models with O(log(n)) leaves can be sequentially achieved by the350

introduced algorithm with a regret upper bounded by O
(
p log2(n)

)
. In this

sense, we do not compare the performance of the introduced algorithm with a

class of regressors that is fixed over any length of data n. Instead, the regret

of the introduced algorithm is defined with respect to a set of piecewise linear

regressors whose number of partitions are upper bounded by O(log(n)), i.e.,355

the competition class grows as n increases. In the conventional tree based

regression methods, the depth of the tree is set before processing starts and

the performance of the regressor is highly sensitive with respect to the unknown

length of data. For example, if the depth of the tree is large whereas there are not

enough data samples, then the piecewise model will be undertrained and yield an360

unsatisfactory performance. Similarly, if the depth of the tree is small whereas

huge number of data samples are available, then trees (and regressors) with

higher depths (and finer regions) can be better trained. As shown in Theorem

1, the introduced algorithm elegantly and intrinsically makes such decisions and

performs asymptotically as well as any piecewise regressor in the competition365

class that grows exponentially in n. Such a significant performance is achieved

with computational complexity upper bounded by O(n), i.e., only linear in the

length of data, whereas the number of different piecewise models defined on

the incremental decision tree can be in the order of 1.5n [31]. Moreover, under

certain regularity conditions, the computational complexity of the algorithm is370

15

O(log(n)) as will be discussed in Remark 1. This theorem is an intermediate step

to show that the introduced algorithm yields the desired performance guarantee

in (1), and will be used to prove the next theorem.

Using Theorem 1, we introduce another theorem presenting the main result

of the paper, where we define the performance of the introduced algorithm with375

respect to the class of twice differentiable functions as in (1).

Theorem 2. Let {d[t]}t≥1 and {x[t]}t≥1 be arbitrary, bounded, and real-valued

sequences of data and regressor vectors, respectively. Let F be the class of all

twice differentiable functions such that ∀f ∈ F , ∂2f(x)
∂xi∂xj

≤ D <∞, i, j = 1, . . . , p

and d̂f [t] = f(x[t]). Then, Algorithm 1, whose prediction at time t is d̂[t], yields

n∑
t=1

(
d[t]− d̂[t]

)2

− inf
f∈F

n∑
t=1

(
d[t]− d̂f [t]

)2

≤ o(p2n),

for any n with computational complexity upper bounded by O(t) at each time t.

This theorem presents the nonlinear modeling power of the introduced algo-

rithm. Specifically, it states that the introduced algorithm can asymptotically

achieve the performance of the optimal twice differentiable function that is se-380

lected after observing the entire data in hindsight.

6. Construction of the Algorithm

In this section, we first introduce several lemmas before proving the theo-

rems. In particular, we first introduce a weighting procedure over the incre-

mental decision tree at time n (i.e., the final decision tree) and construct a385

regressor using this weighting. The resulting regressor is non-causal since the

final decision tree needs to be known in advance of the processing. We then

derive a regret upper bound on the performance of this non-causal regression

algorithm. We next introduce a weighting procedure, whose values at time t

are calculated using the incremental decision tree at time t. Using this new390

weights, we introduce a causal regression algorithm and show that it achieves

the same performance as the aforementioned non-causal regressor. Following

this procedure, we construct our algorithm and prove our results.

16

Let d̂κ[t] denote the prediction of node κ at time t, where this predictor

can be chosen arbitrarily. According to these prediction values, we assign a

performance dependent weight to each node on the incremental decision tree at

time n as follows

Pκ(n) ,

exp

{
− 1

2a

∑
t≤n

x[t]∈Rκ
(d[t]− δκ[t])

2

}
, if κ ∈ Ln

1
2Pκ0(n)Pκ1(n) + 1

2 exp

{
− 1

2a

∑
t≤n

x[t]∈Rκ
(d[t]− δκ[t])

2

}
, otherwise,

(3)

where we set

δκ[t] ,

d̂κt [t] , if κ /∈ Nt,

d̂κ[t] , otherwise,
(4)

with κt ∈ Lt∩J (κ) representing the closest ancestor of κ that is available on the

incremental tree at time t. Also, a is a positive constant related to the learning395

rate of the algorithm and we set it to a ≥ 4A2 as explained in Lemma 4. In our

algorithm, 1/a can be considered as the step size, hence, a smaller value for a

results in a faster algorithm. However, as pointed out in Lemma 4, there is a

minimum value for a to guarantee the convergence of the algorithm. In (4), for

any node that is on the final decision tree but not on the incremental decision400

tree at time t, we set its prediction to be equal to the prediction of its closest

prefix that is on the incremental decision tree at time t. In this sense, δκ[t] can

be considered as a pseudo-predictor of the original predictor d̂κ[t].

We use the weights in (3) to obtain performance guarantees for the models

defined on the incremental decision tree. To this end, we introduce the following405

lemmas. All of the proofs are provided in the supplementary material.

Lemma 1. The weight of the root node λ (according to (3)) can be obtained as

Pλ(n) =
∑

m∈Mn

2−Bm exp

{
− 1

2a

n∑
t=1

(
d[t]− δ(m)[t]

)2
}
, (5)

where δ(m)[t] = δκ[t] for κ ∈ L(m) such that x[t] ∈ Rκ, Bm represents the

number of bits required to represent the model m on the binary tree using a

17

universal code (e.g., [35]), L(m) represents the set of all disjoint regions (i.e.,

nodes) in the mth model, and Mn represents the set of all hierarchical models410

defined on the incremental decision tree at time n.

We next introduce the following lemma, by which we relate the performance

of the original regressors to the weighting function in (3).

Lemma 2. According to the definitions in (3) and (4), we have

−2a ln (Pλ(n)) ≤ min
m∈Mn

{
n∑
t=1

(
d[t] − d̂(m)[t]

)2}
+ (2a ln(2) + 4A2)O(log(n)). (6)

Hence, we obtain a weighting assignment achieving the performance of the

optimal piecewise linear model. We present the following lemma to introduce a415

low complexity sequential algorithm.

Lemma 3. Assume that x[t] ∈ Rκ for some κ ∈ Ln. Then, we can write

Pλ(t− 1) =
∑

κi∈J (κ)

πκi [t− 1] exp

{
− 1

2a

∑
t′<t

x[t′]∈Rκi

(d[t′]− δκi [t′])
2

}
, (7)

where κi ∈ J (κ) is the string formed from the first i letters of κ = ν1 . . . νl and

πκi [t] ,

1
2 , if i = 0

1
2Pκi−1νci

(t− 1)πκi−1
[t] , if 1 ≤ i ≤ l − 1

Pκi−1νci
(t− 1)πκi−1

[t] , if i = l

. (8)

We use this lemma to construct a sequential algorithm achieving the regret

bound in Lemma 2. To this end, we define the following predictor

d̂[t] ,
∑

κi∈J (κ)

µκi [t− 1] δκi [t], where (9)

µκi [t− 1] ,

πκi [t− 1] exp

{
− 1

2a

∑
t′<t

x[t′]∈Rκi

(d[t′]− δκi [t′])
2

}
Pλ(t− 1)

. (10)

The exponentially lifted losses exp{− 1
2a

∑
t′<tx[t′]:∈Rκi

(d[t′]− δκi [t′])2} in node

18

κi accumulated until time t−1 in (10) is being referred to as Eκi in Algorithm 2,

where the time index is dropped for simplicity. Note that the sum of Eκi ’s after

weighting with πκi ’s over nodes from κ to λ yields Pλ, the total weighted perfor-420

mance of all hierarchical models in Mn (cf. Lemma 1). Therefore, normaliza-

tion of Eκi (that is weighted by πκi) by Pλ gives the node weight µκi , which we

exploit in constructing our algorithm. Also, the calculation of Eκi accepts recur-

sive updates, i.e., update with x[t′] ∈ Rκi : Eκi = Eκi exp(−(d[t′]− d̂κi)2/(2a)),

where Eκi = 1 is set initially (Algorithm 3 and Algorithm 4). In the next425

lemma, we relate the performance of this predictor in (9) to the weight of the

root node. In this way, we relate the performance of the sequential predictor in

(9) to the performance of the best piecewise model defined on the incremental

decision tree using Lemma 2.

Lemma 4. For any a ≥ 4A2, the sequential predictor in (9) achieves

n∑
t=1

(
d[t]− d̂[t]

)2

≤ −2a ln(Pλ(n)). (11)

Although in Lemma 4 we presented a performance guarantee to the sequen-

tial predictor in (9), this predictor still needs to know the final decision tree

in advance since we assumed κ ∈ Ln. In particular, the summation in (9) is

over the final decision tree at time n, whereas we only have access to the nodes

on the incremental decision tree at time t. To remove this assumption, we use

the definition of the predictors δκi [t] given in (4) and introduce the following

weighting

P̃κ(t) ,

exp

{
− 1

2a

∑
t′≤t

x[t′]∈Rκ
(d[t′]− δκ[t′])

2

}
, if κ ∈ Lt

1
2 P̃κ0(t)P̃κ1(t) + 1

2 exp

{
− 1

2a

∑
t′≤t

x[t′]∈Rκ
(d[t′]− δκ[t′])

2

}
, otherwise

,

(12)

∀κ ∈ Nt. Note that this weighting is over the incremental decision tree that is430

available at time t. Using this new weighting over the incremental decision tree,

our aim is to design a sequential algorithm that achieves the performance of the

19

predictor in (9) without the knowledge of the final incremental decision tree at

time n. To this end, we first introduce the following lemma.

Lemma 5. For all nodes on the final incremental decision tree at time n (but

not at an intermediate time t), i.e., ∀κ ∈ Lt ∪ (Nn −Nt), we have

Pκ(t) = exp

{
− 1

2a

∑
t′≤t

x[t′]∈Rκ

(d[t′]− δκ[t′])
2

}
. (13)

We next introduce the following corollary illustrating that the weights P̃κ(t)435

are the same as the weights Pκ(t) over the incremental decision tree at time t.

Corollary 1. The weights in (3) and (12) satisfy Pκ(t) = P̃κ(t), ∀κ ∈ Nt.

This corollary directly follows from the definitions in (3) and (12) as well as

Lemma 5, hence its proof is omitted.

Using this new weighting over the incremental decision tree at time t, our

aim is to introduce a sequential algorithm over this incremental decision tree at

time t. To this end, (9) can be written as

d̂[t] =
∑

κi∈J (κr)

µ̃κi [t− 1] d̂κi [t], (14)

where κr ∈ J (κ)∩Lt is the leaf node (with depth r) on the incremental decision

tree at time t containing the current regressor vector, i.e., x[t] ∈ Rκr , and

µ̃κi [t] ,

µκi [t] , if i < r∑l
j=r µκj [t] , if i = r

. (15)

Here, we emphasize that the summation in (14) is over the incremental decision440

tree at time t, whereas µ̃κi ’s are still defined using the parameters over the incre-

mental decision tree at time n. In order to construct µ̃κi ’s with the parameters

over the incremental decision tree at time t, we introduce the following lemma.

20

Lemma 6. Letting

π̃κi [t] ,

1
2 , if i = 0

1
2 P̃κi−1νci

(t− 1) π̃κi−1
[t] , if 1 ≤ i ≤ r − 1

P̃κi−1νci
(t− 1) π̃κi−1

[t] , if i = r

, (16)

∀i ≤ r, we obtain: µ̃κi [t] =

π̃κi [t− 1] exp(− 1
2a

∑
t′<t

x[t′]∈Rκi

(d[t′]− δκi [t′])
2
)

P̃λ(t− 1)
. (17)

This lemma illustrates that we can obtain both µ̃κi [t− 1] and d̂κi [t], ∀i ≤ r

using the incremental decision tree at time t to construct the predictor in (14).445

Thus, our algorithm does not require any knowledge on the final incremental

decision tree at time n and a description of this prediction is provided in Algo-

rithm 2, where wκi denotes the linear regressor at the node κi. Observe that in

line 6 of Algorithm 2, the final output d̂ is computed by a linear combination of

the node estimates of all nodes in J (κ). A regret bound on the performance of450

the universal piecewise linear regressor in (2) is given in the following lemma.

Lemma 7. For any m ∈ Mn having Km = |L(m)| disjoint regions, the piece-

wise linear regressor in (2) achieves the following performance guarantee

n∑
t=1

(
d[t]− d̂(m)[t]

)2

− min
v(m)∈RpKm

{ n∑
t=1

(
d[t]− d̂(m)

batch[t]
)2

+ δ
∣∣∣∣∣∣v(m)

∣∣∣∣∣∣2}
≤ A2Kmp ln (n/Km) +O(1), (18)

where d̂
(m)
batch[t] = vTκ x[t] such that κ ∈ L(m) with x[t] ∈ Rκ, and v(m) is the

vector of concatenating the parameter vectors at each node on the mth model

(i.e., letting L(m) = {κ(1), . . . , κ(Km)}, we have v(m) = [vT
κ(1) , . . . ,v

T
κ(Km)]

T).

21

1: Fix the regularization parameter δ at a very
small positive constant

2: Initialize Rκ0 = δIp, Rκ1 = δIp and
Eκν = 1.

3: for all z ∈ Tκ do
4: if x[z] ∈ Rκ0 then
5: ν = 0
6: else
7: ν = 1
8: end if
9: Tκν = Tκν ∪ {z}

10: Eκν = Eκν exp(−(d[z]−wT
κνx[z])2/2a)

11: Pκν = Eκν
12: Rκν = Rκν + x[z]xT [z]

13: wκν = wκν + R−1
κν (x[z](d[z]−wT

κνx[z]))
14: end for
15: for all κi ∈ J (κ) do
16: Pκi = (Pκi0Pκi1 + Eκi)/2
17: end for

Algorithm 3: incrementTree(κ)

1: for all κi ∈ J (κ) do

2: Eκi = Eκi exp(−(d[t]− d̂κi)
2/(2a))

3: Pκi =

{
Eκi , if κi = κ

(Pκi0Pκi1 + Eκi)/2 , o.w.

4: Rκi
= Rκi

+ x[t]xT [t]

5: wκi
= wκi

+ R−1
κi

(x[t](d[t]− d̂κi))
6: end for

Algorithm 4: update(d[t],x[t],J (κ))

455

We emphasize that in each region of a piecewise model, different learning

algorithms (not necessarily the above universal piecewise linear regressor), e.g.,

different linear regressors or nonlinear ones, from the broad literature can be

used. Although the main contribution of this paper is the hierarchical organi-460

zation and efficient management of these piecewise models, we also discuss the

implementation of the universal piecewise linear model of [36] into our frame-

work for completeness in Algorithms 3 and 4. When a new sample falls into the

region Rκ, where κ is a leaf node and ακ = 1, we split the node using the Algo-

rithm 3, which distributes the set of accumulated regressor vectors Tκ among its465

children and trains a different linear regressor in each of these children nodes.

However, we do not update Tκ in Algorithm 3, instead, we update it in line 7 of

Algorithm 1. Moreover, Algorithm 4 updates the linear regression parameters

of all nodes in J (κ), i.e., all nodes containing the current sample that contribute

to the current estimation.470

We use the discussed lemmas to prove Theorem 1. Then, we prove Theo-

rem 2 using Theorem 1. Proofs of theorems and lemmas are provided in the

supplementary material.

Remark 1. Algorithm 1 achieves the performance of the best piecewise linear

model having O(log(n)) partitions with a regret of O(p log2(n)). In the most475

generic case of an arbitrary piecewise model m having O(Km) partitions, the

22

introduced algorithm still achieves a regret of O(pKm log(n/Km)). This indi-

cates that for models having O(n) partitions, the introduced algorithm achieves a

regret of O(pn), hence, the performance of the piecewise model cannot be asymp-

totically achieved. However, we emphasize that no other algorithm can achieve480

a smaller regret than O(pn) as shown by [22], i.e., the introduced algorithm is

optimal in a strong minimax sense. Intuitively, this lower bound can be justified

by considering the case in which the regressor vector at time t falls into the tth

region of the piecewise model.

Remark 2. Consider that the regressor vectors are i.i.d. with a continuous485

pdf f over [−A,A]p. If supx∈[−A,A]p f(x)/ infx∈[−A,A]p f(x) = O(1), then the

average computational complexity of the algorithm is O(log n). To justify this

statement, we can quantize the given pdf f over intervals of length ε, where

ε > 0 is arbitrary. Since the data is uniformly distributed in every ε interval

with respect to this quantized pdf, then given that n1 data points have fallen into490

the first ε interval, our algorithm will create a depth-log(n1) complete subtree as

n1 →∞ over this ε interval. Therefore, the running time of the algorithm will

be log(n1) in average over this interval. To generalize this behavior, let fi be the

value of the quantized pdf for the ith ε interval. Then, we have
∑2A/ε
i=1 fi = 1/ε

since the area under the pdf curve should be 1. Therefore, given that we observe495

n data points in total, each subtree growing in these ε intervals will contain

O(n/ε) data points since fi/fj = O(1) for any pair of i and j according to

our assumption. Therefore, each of these subtrees will grow in the order of

O(log(n)/ε), which will result in a computational complexity of O(log(n)) in

average. Since the quantized pdf can arbitrarily approximate the original pdf for500

any continuous distribution, the statement follows.

Remark 3. As mentioned in Remark 1, no algorithm can converge to the per-

formance of the piecewise linear models having O(n) disjoint regions. There-

fore, we can limit the maximum depth of the tree by O(log(t)) at each time t to

achieve a low complexity implementation. With this limitation and according to505

the update rule of the tree, we can observe that while dividing a region into two

disjoint regions, we may be forced to perform O(t) computations due to the ac-

23

cumulated regressor vectors (since their number can be as large as t). However,

since a regressor vector is processed by at most O(log(t)) nodes for any t, the

average computational complexity of the update rule of the tree remains to be510

upper bounded by O(log(n)). Furthermore, the performance of this low complex-

ity implementation will be asymptotically the same as the exact implementation

provided that the regressor vectors are evenly distributed in the regressor space,

i.e., they are not gathered around a considerably small neighborhood.

Corollary 2. Let {d[t]}t≥1 and {x[t]}t≥1 be arbitrary, bounded, and real-valued

sequences of data and regressor vectors, respectively. Let F be the class of all

twice differentiable functions such that ∀f ∈ F , ∂2f(x)
∂xi∂xj

≤ D <∞, i, j = 1, . . . , p

and d̂f [t] = f(x[t]). Consider an arbitrary partitioning rule satisfying |xi−yi| ≤
2A
r(d) , ∀i ∈ {1, . . . , p} and ∀x,y ∈ Rκ, where κ is any depth-d node on the

incremental decision tree and r(d) is an appropriate deterministic real-valued

function with domain of integers. Then, Algorithm 1 with this partitioning rule,

whose prediction at time t is d̂[t], yields

n∑
t=1

(
d[t]− d̂[t]

)2

− inf
f∈F

n∑
t=1

(
d[t]− d̂f [t]

)2

≤ O
(

p2n

r2(log(n))

)
,

for any n with computational complexity upper bounded by O(t) at each time t.515

The proof of Corollary 2 is provided in the supplementary material.

The inequality |xi− yi| ≤ 2A
r(d) in Corollary 2 illustrates that the diameter of

the regions of the nodes with depth-d is upper bounded by 2A
r(d) . Such a function

r(d) always exists for any partitioning since we can always pick r(d) = 1, ∀d.

Remark 4. Ideally, relatively simpler models in Mn should get larger weights520

initially; and the weights of the relatively more complex models should gradually

increase as more data become available. This ideal adaptive weighting over the

introduced dynamically growing regression tree models in Mn can be achieved

by ensuring the two diminishing rates of the following regrets to be similar:

(1) regret between the overall technique and the best sequential model predictors525

(Lemma 2) and (2) regret between the best sequential predictor and the cor-

responding batch predictor (Lemma 7). We emphasize that these two desirable

24

properties are elegantly achieved by our weighting as the upper bounds in Lemma

2 and Lemma 7 are asymptotically similar, i.e., 1
n (O(log(n) − p log2(n))) → 0

(cf. the proof of Theorem 1). In comparison, other schemes such as the uniform530

weighting failing to achieve this would not be suitable.

7. Experiments

In this section, we investigate the performance of the introduced algorithm

in comparison to various methods including “ M5’ ” and “CUBIST” [26, 27]

under several benchmark scenarios. Throughout the experiments, we denote535

the introduced incremental decision tree technique in Algorithm 1 by “IDT”,

the context tree weighting algorithm of [22] by “CTW”, the linear regressor by

“LR”, the Volterra series regressor by “VSR” [9], the sliding window multivariate

adaptive regression splines of [37, 38] by “MARS”, and the Fourier nonlinear

regressor of [39] by “FNR”. The combination weights of the LR, VSR, and540

FNR are updated using the recursive least squares (RLS) algorithm [33]. Unless

otherwise stated, the CTW algorithm has depth 2, the VSR, FNR, and MARS

algorithms are second order, and the MARS algorithm uses 21 knots with a

window length of 500 that shifts in every 200 samples. Also, we use δ = 0.1

as the regularization parameter in our algorithm. When we have access to545

unlabeled data instances, we set a = 4A2 with A being an upper bound on the

feature vector attributes. For data generated by random models with infinite

support, we set a = 4A2, where A = 4δ is an upper bound on the features

with high probability, e.g., more than 99% when each feature is generated by

N(0, δ2). When we do not have access to feature vectors, a can be set robustly550

to guarantee that
√
a/4 is an upper bound for features.

In Table 1, we provide the computational and space complexity of the pro-

posed algorithms. We emphasize that although the computational complexity

to create and run the incremental decision tree is O(log(n)), the overall compu-

tational complexity of the algorithm is O(p2 log(n)) due to the universal linear555

regressors at each region. Particularly, since the universal linear regressor at

each region has a computational complexity of O(p2), the overall computational

25

Algorithm Computational Complexity Space Complexity

IDT O
(
p2 log(n)

)
O
(
p2n

)
CTW O

(
p2d

)
O
(
p22d

)
LR O

(
p2
)

O
(
p2
)

VSR O
(
p2r

)
O
(
p2r

)
MARS O

(
rbw3

)
O (rbw)

FNR O
(
(pr)2r

)
O
(
(pr)2r

)

Table 1: Comparison of complexities of the proposed algorithms with the corresponding up-
date rules. In the table, p represents the dimensionality of the regressor space, d represents the
depth of the trees in the respective algorithms, and r represents the order of the corresponding
filters and algorithms. For the MARS algorithm (particularly, the fast MARS algorithm, cf.
[38]), b represents the number of basis functions and w represents the window length.

complexity of O(p2 log(n)) follows. However, this universal linear regressor can

be straightforwardly replaced with any linear (or nonlinear) regressor in the

literature. For example, if we use the LMS algorithm to update the parame-560

ters of the linear regressor instead of using the universal algorithm for this up-

date, the computational complexity of the overall structure becomesO(p log(n)).

Hence, although the computational complexity of the original IDT algorithm is

O(log(n)), this computational complexity may increase according to the com-

putational complexity of the node regressors.565

In this section, we first illustrate the performances of the proposed algorithms

for a synthetic piecewise linear model that do not match the modeling structure

of any of the above algorithms. We then consider the prediction of well-known

data sequences such as Mackey-Glass sequence and Chua’s circuit [13]. Finally,

we consider the prediction of real life examples that can be found in various570

benchmark data set repositories (e.g., [40, 41]).

Synthetic Data: In this part, we consider the scenario where the desired data

is generated by the following piecewise linear model

d[t] =

x1[t] + x2[t] + n[t] , if ||x[t]||2 ∈ [0, 0.1] ∪ [0.5, 1]

−x1[t]− x2[t] + n[t] , otherwise
, (19)

and x[t] = [x1[t], x2[t]]T are sample functions of a jointly Gaussian process of

mean [0, 0]T and covariance matrix I, and n[t] is a sample function from a zero

mean white Gaussian process with variance 0.1. Note that the piecewise model

in (19) has circular regions, which cannot be represented by hyperplanes or575

26

Data Length (n)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
um

ul
at

iv
e

D
et

er
m

in
is

tic
 E

rr
or

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Normalized Accumulated Squared Error Performance of the Proposed Algorithms

MARS

VSR

IDT

CUBIST

CTW-6

CTW-2
M5'

(a) Normalized accumulated squared
errors for the piecewise linear model in
(19) averaged over 10 trials.

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Length (n)

C
um

ul
at

iv
e

N
od

e
W

ei
gh

ts

Evolution of the Cumulative Node Weights

Depth−0
Depth−1
Depth−2
Depth−3
Depth−4
Depth−5

(b) Normalized cumulative node
weights for the piecewise linear model
(19) averaged over 10 trials.

Figure 3: Synthetic Data simulation results

twice differentiable functions. Hence, the underlying relationship between the

desired data and the regressor vectors cannot be exactly modeled using any of

the proposed algorithms.

In Fig. 3a, we present the normalized accumulated squared errors of the

proposed algorithms averaged over 10 trials. For each of these trials, a differ-580

ent sample function is realized from the defined joint Gaussian process for the

regressors x[t] and another sample function is realized from the defined noise

process n[t]. This yields a set of 10 data sequences of length 104, the normalized

accumulated squared error performance is obtained for each sequence and then

we report the average performance over the generated 10 data sequences. For585

this experiment, “CTW-2” and “CTW-6” show the performances of the CTW

algorithm with depths 2 and 6, respectively. Since the performances of the LR

and FNR algorithms are incomparable with the rest of the algorithms, they are

not included in the figure for this experiment. Fig. 3a illustrates that even for a

highly nonlinear system (19), our algorithm significantly outperforms the other590

algorithms. The normalized accumulated error of the introduced algorithm ap-

proaches to the variance of the noise signal as n increases, unlike the rest of the

algorithms, whose performances converge to the performance of their optimal

batch variants as n increases. This observation can be seen in Fig. 3a, where

the normalized cumulative error of the IDT algorithm steadily decreases since595

27

the IDT algorithm creates finer regions as the observed length of data increases.

Hence, even for a highly nonlinear model such as the circular piecewise linear

model in (19), which cannot be represented via hyperplanes, the IDT algorithm

can well approximate this highly nonlinear relationship by incrementally intro-

ducing finer partitions as the observed length of data increases.600

Furthermore, even though the depth of the introduced algorithm is compa-

rable with the CTW-6 algorithm over short data sequences, the performance

of our algorithm is superior to the CTW-6 algorithm. This result follows since

the IDT algorithm intrinsically eliminates the extremely finer models at the

early processing stages and introduces them when they are needed, unlike the605

CTW-6 algorithm. This procedure can be observed in Fig. 3b, where the IDT

algorithm introduces finer regions (i.e., nodes with higher depths) to the hierar-

chical model as the coarser regions becomes unsatisfactory. Since the universal

algorithms such as CTW distribute a “budget” into numerous experts, as the

number of experts increases, the performance of such algorithms deteriorate.610

On the other hand, the introduced algorithm intrinsically limits the number of

experts according to the unknown length of data at each iteration, hence we

avoid such possible performance degradations as observed in Fig. 3b.

Benchmark Sequences: In this part, we consider the prediction of the Mackey-

Glass and Chua’s circuit sequences. The Mackey-Glass sequence is defined by615

the differential equation dx[t]
dt = βx[t−τ]

1+(x[t−τ])n − γx[t], where we set β = 2, γ = 1,

τ = 2, and n = 10 with the initial condition x[t] = 0.5 for t < 0. We gener-

ate the time series using the fourth order Runge-Kutta method. The Chua’s

circuit is generated according to the differential equations dx
dt = α(y − x −

f(x)), dy
dt = x− y + z, dz

dt = −βy, where we drop the time index for simplicity,620

and f(x) = m1x+0.5(m0−m1)(|x+1|−|x−1|), α = 15.6, β = 28, m0 = −1.143,

m1 = −0.714 initially with [x, y, z] = [0.7, 0, 0] for t < 0.

Fig. 4 shows the normalized accumulated squared error performances of the

proposed algorithms for the Mackey-Glass and Chua’s circuit sequences. Due to

the chaotic nature of the signals, we observe non-uniform curves in Fig. 4a and625

Fig. 4b. In the figures, the algorithms with incomparable (i.e., unsatisfactory)

performance are omitted. Fig. 4 presents that the IDT algorithm achieves

28

Data Length (n)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
or

m
al

iz
ed

 A
cc

um
ul

at
ed

 S
qu

ar
ed

 E
rr

or

0.02

0.025

0.03

0.035

0.04

0.045

0.05
Normalized Accumulated Squared Error Performance of the Proposed Algorithms

MARS

VSRFNR

CUBIST

IDT

CTW

M5'

(a) Normalized accumulated squared
error performances for the Mackey-
Glass sequence.

500 1000 1500 2000

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

Data Length (n)

N
or

m
al

iz
ed

 A
cc

um
ul

at
ed

 S
qu

ar
ed

 E
rr

or

Normalized Accumulated Squared Error Performance of the Proposed Algorithms

IDT

CTW

LR

VSR

(b) Normalized accumulated squared er-
ror performances for the Chua’s circuit
sequence.

Figure 4: Results for benchmark sequences.

an average of 20% relative gain in the performance with respect to the other

algorithm and can accurately predict these well-known data sequences.

Real Data: In this part, we evaluate the performance of the proposed algo-630

rithms for several well-known real data sets in machine learning literature.

We first compare the the proposed algorithms using “kinematics” and “puma-

dyn” data sets that are taken from [41]. The kinematics data set involves a

realistic simulation of the forward dynamics of an 8 link all-revolute robot arm

and the task is to predict the distance of the end-effector from a target. Among635

its variants, we used the one having 9 attributes and being nonlinear as well

as medium noisy. The pumadyn data set involves a realistic simulation of the

dynamics of a Puma 560 robot arm. The task in these datasets is to predict

the angular acceleration of one of the robot arm’s links. Among its variants, we

used the one having 9 attributes and being nonlinear as well as medium noisy.640

Fig. 5 shows the normalized accumulated squared error performances of the

proposed algorithms for the kinematics and pumadyn data sets. In the exper-

iments, all dimensions of the regressor vector and desired data are normalized

between [−1, 1]. Although the VSR algorithm provides the best performance in

Fig. 5a and the MARS algorithm achieves the minimum accumulated error in645

Fig. 5b, the performances of these algorithms in the reciprocal experiments are

highly unsatisfactory. This result implies that the data in the first experiment

29

Data Length (n)
0 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 A
cc

um
ul

at
ed

 S
qu

ar
ed

 E
rr

or

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14
Normalized Accumulated Squared Error Performance of the Proposed Algorithms

CUBISTVSR

FNR

MARS

LR

IDT
CTW

(a) Normalized accumulated squared er-
rors for the “kinematics” data set.

Data Length (n)
0 1000 2000 3000 4000 5000 6000 7000 8000

N
or

m
al

iz
ed

 A
cc

um
ul

at
ed

 S
qu

ar
ed

 E
rr

or

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Normalized Accumulated Squared Error Performance of the Proposed Algorithms

VSR

LR

CTW

CUBISTFNR

IDT

MARS

M5'

(b) Normalized accumulated squared
errors for the “pumadyn” data set.

Figure 5: Real Data simulation results

IDT FNR MARS CTW LR VSR M5’ Cubist

Dolphin [42] 0.0221 0.0290 0.0293 0.0235 0.0253 0.0223 0.0004 0.0008

LMPAVW [43] 0.0314 0.0984 0.0934 0.1115 0.1153 0.1122 0.052 0.0309

CCPP [40] 0.0129 0.0138 0.0178 0.0131 0.0147 0.0129 0.0004 0.0001

Protein Tertiary [40] 0.2195 0.2224 0.2468 0.2379 0.2458 0.2257 0.1524 0.1153

Lorenz Attractor [44] 0.0336 0.0389 0.0396 0.0346 0.0404 0.0354 0.0756 0.0401

Hwang-SIF [41] 0.0190 0.0952 0.0530 0.0919 0.3036 0.1617 0.1313 0.1195

Hwang-HF [41] 0.1331 0.1991 0.1867 0.2388 0.3225 0.3243 0.0727 0.0661

Hwang-AF [41] 0.1705 0.2578 0.2412 0.2688 0.3340 0.3007 0.2251 0.1822

Hwang-CIF [41] 0.1699 0.2464 0.2325 0.2512 0.3334 0.2800 0.1306 0.1220

Table 2: Squared errors of the proposed algorithms for various benchmark data sets, where
each dimension of the data sets are scaled between [−1, 1].

can be well approximated by Volterra series, whereas the model that gener-

ates the data in the second experiment is more in line with B-splines. Hence,

the performances of these algorithms are extremely sensitive to the underlying650

structure that generates the data. On the other hand, the IDT algorithm nearly

achieves the performance of the best algorithm in both experiments and presents

a desirable performance under different scenarios. This result implies that the

introduced algorithm can be used in various frameworks without any significant

performance degradations owing to its guaranteed performance upper bounds655

without any statistical or structural assumptions.

In Table 2, we present the performance of the proposed algorithms for various

benchmark data sets that are widely used in machine learning literature.

The proposed IDT algorithm significantly outperforms the competitor algo-

rithms (cf. Table 2). In the first four rows of the table, the squared errors of660

the proposed algorithms can be found for the corresponding data sets that are

30

collected from real life applications. In the “Dolphin”, “CCPP”, and “Protein

Tertiary” data sets, the linear regressor can achieve a comparable performance

with respect to the competitor nonlinear learning algorithms. This indicates

that the underlying data sequences are highly noisy so that we cannot suffi-665

ciently train nonlinear models. On the other hand, for the “LMPAVW” data

set, the performance of the linear regressor is significantly outperformed by the

nonlinear regressors (e.g., the “FNR” and “MARS” algorithms). Thus, this data

may be accurately modeled by some nonlinear function. As a consequence, the

proposed IDT algorithm efficiently approximates this nonlinear function and670

presents a performance gain around 300− 400% with respect to the competitor

algorithms. These results indicate that the proposed IDT algorithm can be used

in real life applications, especially in ones that include high levels of nonlinear-

ity. This conclusion can also be observed from the results of our experiments

with the “Lorenz Attractor”, which is used to model atmospheric convection.675

Cubist builds on M5 by smoothing the prediction of the leaves with its pre-

decessors. Since this smoothing does not significantly improve the performance

for our synthetic data, Cubist does not yield a remarkable performance im-

provement in that case. On the other hand, real-world data usually come from

a sample distribution and usually the target predictor is smooth. That is the680

reason why modeling power of both of our tree-based regressor and the suitable

smoothing operator yield a decent performance in real data.

In the last four rows of Table 2, we present the performance of the algorithms

for benchmark data sets that are synthetically generated using various test func-

tions. We note that the competitor algorithms assume fixed basis functions and685

perform regression over the space spanned by these functions. Consequently, the

performances of the competitor algorithms are highly dependent on the portion

of the data energy that lies in this space. On the other hand, the proposed IDT

algorithm can well approximate these unknown test functions using piecewise

models, and hence achieves a significantly better squared error performance690

than the competitor algorithms.

31

8. Concluding Remarks

We proposed an incremental decision tree method to solve online nonlinear

regression problems with bounded but otherwise arbitrary feature vectors. The

incremental decision tree is used to partition the feature vector space, where695

each partition is represented by a leaf node of the tree. The number of nodes

in the tree is incremented as our model observes new data samples and these

increments are made using a universal rule. In particular, the structure of the

partitioning of the feature space, i.e., the splitting rule at the tree nodes, is

fixed a priori of the data processing, but a new partition from our partitioning700

rule is introduced into the model only when it contains at least one feature

vector. Hence, our model can be viewed as an infinite dimensional decision tree

that is pruned according to the data. We assigned an independent regressor to

each node of the tree and combined their outputs using the exponential weights

algorithm. We proved that the proposed method asymptotically achieves the705

performance of the best pruning of O(log(n))-depth defined on the tree and the

performance of the optimal twice differentiable regressor with bounded second

derivative. This performance is achieved with only computational complexity

that is logarithmic in the data length n, i.e., O(log(n)) (under regularity condi-

tions). We demonstrated the superior performance of the introduced algorithm710

over a series of benchmark applications in the regression literature.

An interesting problem which is left open is to understand the convergence

properties of the algorithm with data-driven partitioning rules. It is numeri-

cally observed in [11] that data-driven space partitioning methods usually out-

perform universal partitioning rules. However, implementation of such methods715

into incremental decision trees seems to be challenging, since the number of data

instances that has fallen into each partition changes as the partitioning of the

space varies. Hence, the theoretical tractability of such a method is extremely

challenging and remains an open problem that provides a future research direc-

tion. A limitation of the proposed method is that its computational complexity720

grows with n. Ideally, one would want to use an infinite depth decision tree with

constant number of floating point operations. This paper introduces an efficient

32

method for “backward pruning, i.e., an efficient pruning of the leaf nodes of the

infinite depth decision tree into a finite depth tree. On the other hand, one can

forward prune the root node by deleting it and passing the data it has to its725

children, whereby defining independent decision trees with distinct roots. Note

that similar ideas have been exploited in [27]. This approach would decrease

the computational complexity of the algorithm and potentially provides a more

efficient method. Yet, the theoretical analysis of this method seems nontrivial

even with the tools introduced in this paper. We consider this as future work.730

Numerical results suggest that the proposed method works particularly well

when the ratio between number of data points and the dimension of the feature

space is large, whereas its performance degrades as this ratio gets smaller, which

is consistent with the theoretical findings.

References735

[1] K. Lau, Q. Wu, Local prediction of non-linear time series using support
vector regression, Pattern Recognition 41 (2008) 1539 – 1547.

[2] J. Read, L. Martino, J. Hollmn, Multi-label methods for prediction with
sequential data, Pattern Recognition 63 (2017) 45 – 55.

[3] I. Naseem, R. Togneri, M. Bennamoun, Robust regression for face recogni-740

tion, Pattern Recognition 45 (2012) 104 – 118.

[4] Q. Liu, J. Yang, J. Deng, K. Zhang, Robust facial landmark tracking via
cascade regression, Pattern Recognition 66 (2017) 53 – 62.

[5] S.-I. Jang, K. Choi, K.-A. Toh, A. B. J. Teoh, J. Kim, Object tracking
based on an online learning network with total error rate minimization,745

Pattern Recognition 48 (2015) 126 – 139.

[6] J. Du, Y. Xu, Hierarchical deep neural network for multivariate regression,
Pattern Recognition 63 (2017) 149 – 157.

[7] A. Krzyzak, T. Linder, C. Lugosi, Nonparametric estimation and classi-
fication using radial basis function nets and empirical risk minimization,750

IEEE Transactions on Neural Networks 7 (1996) 475–487.

[8] A. Krzyzak, T. Linder, Radial basis function networks and complexity reg-
ularization in function learning, IEEE Transactions on Neural Networks 9
(1998) 247–256.

[9] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems,755

Krieger Publishing Co., Inc., Melbourne, FL, USA, 2006.

33

[10] M. Scarpiniti, D. Comminiello, R. Parisi, A. Uncini, Nonlinear spline adap-
tive filtering, Signal Processing 93 (2013) 772 – 783.

[11] N. D. Vanli, S. S. Kozat, A comprehensive approach to universal piecewise
nonlinear regression based on trees, IEEE Transactions on Signal Process-760

ing 62 (2014) 5471–5486.

[12] N. D. Vanli, S. S. Kozat, A unified approach to universal prediction: Gen-
eralized upper and lower bounds, IEEE Transactions on Neural Networks
and Learning Systems 26 (2015) 646–651.

[13] O. J. J. Michel, A. O. Hero, A. E. Badel, Tree-structured nonlinear signal765

modeling and prediction, IEEE Transactions on Signal Processing 47 (1999)
3027–3041.

[14] D. P. Helmbold, R. E. Schapire, Predicting nearly as well as the best prun-
ing of a decision tree, Machine Learning 27 (1997) 51–68.

[15] E. Takimoto, A. Maruoka, V. Vovk, Predicting nearly as well as the best770

pruning of a decision tree through dynamic programming scheme, Theoret-
ical Computer Science 261 (2001) 179 – 209, eighth International Workshop
on Algorithmic Learning Theory.

[16] E. Takimoto, M. K. Warmuth, Predicting nearly as well as the best pruning
of a planar decision graph, Theoretical Computer Science 288 (2002) 217 –775

235, algorithmic Learning Theory.

[17] O. Bousquet, S. Boucheron, G. Lugosi, Introduction to statistical learning
theory, Advanced lectures on machine learning, Springer (2004) 169–207.

[18] J. Wang, V. Saligrama, Locally-linear learning machines (l3m), in: Asian
Conference on Machine Learning, 2013, pp. 451–466.780

[19] A. B. Lee, B. Nadler, L. Wasserman, Treeletsan adaptive multi-scale basis
for sparse unordered data, Ann. Appl. Stat. 2 (2008) 435–471.

[20] J. Gama, Functional trees, Machine Learning 55 (2004) 219–250.

[21] J. a. Gama, R. Rocha, P. Medas, Accurate decision trees for mining high-
speed data streams, in: Proceedings of the Ninth ACM SIGKDD Inter-785

national Conference on Knowledge Discovery and Data Mining, KDD ’03,
ACM, New York, NY, USA, 2003, pp. 523–528.

[22] S. S. Kozat, A. C. Singer, G. C. Zeitler, Universal piecewise linear prediction
via context trees, IEEE Transactions on Signal Processing 55 (2007) 3730–
3745.790

[23] L. Breiman, J. Friedman, C. J. Stone, R. A. Olshen, Classification and
regression trees, Routledge, 2017.

34

[24] L. Rokach, O. Maimon, Top-down induction of decision trees classifiers-
a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 35 (4) (2005) 476–487.795

[25] P. E. Utgoff, Perceptron trees: A case study in hybrid concept representa-
tions, Connection Science 1 (4) (1989) 377–391.

[26] R. Quinlan, Learning with continuous classes, Proceedings of the 5th Aus-
tralian joint conference on artificial intelligence (1992) 343–348.

[27] E. Ikonomovska, Algorithms for learning regression trees and ensembles on800

evolving data streams, Doctoral Dissertation, Jozef Stefan International
Postgraduate School, Ljubljana, Slovenia.
URL http://kt.ijs.si/elena_ikonomovska

[28] E. Ikonomovska, J. Gama, S. Džeroski, Learning model trees from evolving
data streams, Data Mining and Knowledge Discovery 23 (2011) 128–168.805

[29] E. Ikonomovska, J. Gama, R. Sebastião, D. Gjorgjevik, Regression Trees
from Data Streams with Drift Detection, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009, pp. 121–135.

[30] E. Ikonomovska, J. Gama, S. Džeroski, Learning model trees from evolving
data streams, Data Mining and Knowledge Discovery 23 (2011) 128–168.810

[31] A. V. Aho, N. J. Sloane, Some doubly exponential sequences, Fibonacci
Quart 11 (1973) 429–437.

[32] F. M. J. Willems, Y. M. Shtarkov, T. J. Tjalkens, The context-tree weight-
ing method: basic properties, IEEE Transactions on Information Theory
41 (1995) 653–664.815

[33] A. Sayed, Fundamentals of Adaptive Filtering, Wiley - IEEE, Wiley, 2003.

[34] S. S. Kozat, A. T. Erdogan, A. C. Singer, A. H. Sayed, Steady-state mse
performance analysis of mixture approaches to adaptive filtering, IEEE
Transactions on Signal Processing 58 (2010) 4050–4063.

[35] F. M. J. Willems, Coding for a binary independent piecewise-identically-820

distributed source, IEEE Transactions on Information Theory 42 (1996)
2210–2217.

[36] A. C. Singer, S. S. Kozat, M. Feder, Universal linear least squares predic-
tion: upper and lower bounds, IEEE Transactions on Information Theory
48 (2002) 2354–2362.825

[37] J. H. Friedman, Multivariate adaptive regression splines, Ann. Statist. 19
(1991) 1–67.

[38] J. H. Friedman, Fast mars, Stanford University Technical Report.
URL http://www.milbo.users.sonic.net/earth/Friedman-FastMars.

pdf830

35

http://kt.ijs.si/elena_ikonomovska
http://kt.ijs.si/elena_ikonomovska
http://kt.ijs.si/elena_ikonomovska
http://kt.ijs.si/elena_ikonomovska
http://www.milbo.users.sonic.net/earth/Friedman-FastMars.pdf
http://www.milbo.users.sonic.net/earth/Friedman-FastMars.pdf
http://www.milbo.users.sonic.net/earth/Friedman-FastMars.pdf
http://www.milbo.users.sonic.net/earth/Friedman-FastMars.pdf

[39] A. Carini, G. L. Sicuranza, Fourier nonlinear filters, Signal Processing 94
(2014) 183 – 194.

[40] C. Blake, C. Merz, Uci repository of machine learning databases, informa-
tion and computer science, university of california, irvine, ca, 1998.
URL http://www.archive.ics.uci.edu/ml835

[41] C. E. Rasmussen, R. M. Neal, G. Hinton, D. Camp, M. Revow, Z. Ghahra-
mani, R. Kustra, R. Tibshirani, Delve data sets.
URL http://www.cs.toronto.edu/~delve/data/datasets.html

[42] G. K. Smyth, Australasian data and story library (ozdasl).
URL http://www.statsci.org/data840

[43] P. Vlachos, Statlib.
URL http://lib.stat.cmu.edu/datasets

[44] E. N. Lorenz, Deterministic nonperiodic flow, Journal of the atmospheric
sciences 20 (1963) 130–141.

36

http://www. archive. ics. uci. edu/ml
http://www. archive. ics. uci. edu/ml
http://www. archive. ics. uci. edu/ml
http://www. archive. ics. uci. edu/ml
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html
http://www.statsci.org/data
http://www.statsci.org/data
http://lib.stat.cmu.edu/datasets
http://lib.stat.cmu.edu/datasets

	Introduction
	Related Work
	Problem Description
	Nonlinear Regression via Incremental Decision Trees
	Notation
	Incremental Decision Trees

	Main Results
	Construction of the Algorithm
	Experiments
	Concluding Remarks

