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Switching Strategies for Sequential Decision
Problems With Multiplicative Loss

With Application to Portfolios
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Abstract—A wide variety of problems in signal processing can
be formulated such that decisions are made by sequentially taking
convex combinations of vector-valued observations and these
convex combinations are then multiplicatively compounded over
time. A “universal” approach to such problems might attempt to
sequentially achieve the performance of the best fixed convex com-
bination, as might be achievable noncausally, by observing all of
the outcomes in advance. By permitting different piecewise-fixed
strategies within contiguous regions of time, the best algorithm in
this broader class would be able to switch between different fixed
strategies to optimize performance to the changing behavior of
each individual sequence of outcomes. Without knowledge of the
data length or the number of switches necessary, the algorithms
developed in this paper can achieve the performance of the best
piecewise-fixed strategy that can choose both the partitioning of
the sequence of outcomes in time as well as the best strategy within
each time segment. We compete with an exponential number of
such partitions, using only complexity linear in the data length and
demonstrate that the regret with respect to the best such algorithm
is at most ���� �� in the exponent, where is the data length.
Finally, we extend these results to include finite collections of can-
didate algorithms, rather than convex combinations and further
investigate the use of an arbitrary side-information sequence.

Index Terms—Convex combinations, portfolio, sequential deci-
sions, side information, switching, universal.

I. INTRODUCTION

I N this paper, we consider sequential decision problems
when the metric of performance arises from a convex com-

bination of observations and is multiplicatively compounded
from decision to decision, such as in gambling, investing
or probabilistic model fitting. We pay specific attention to
problems in which the decisions made at each time amount
to picking a strategy that defines a convex combination of the
next set of vector-valued outcomes. Once these outcomes are
observed, the gains associated with all past decisions are then
multiplied by the gain achieved by the most recent convex com-
bination of outcomes to construct the accumulated gains over
the data sequence observed so far. For the case of sequential
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investing, we consider a market with a finite number, say ,
of stocks to trade. The same framework applies to sequential
gambling problems, in which there are a finite number of
outcomes on which to place bets. Similarly, for probabilistic
model fitting, when the models are constrained to take convex
combinations of a fixed set of given models and the resulting
model likelihood conditioned on the past is taken as this convex
combination.

Statistical language models (SLMs) are widely used in a
variety of signal processing applications including automatic
speech recognition (ASR), speech-to-speech translation, and
natural language processing (NLP) [1]. In its most basic form,
a statistical language model assigns conditional probabilities
to successive words in a sequence of words
based on the time history of the sequence. For a given statistical
model, the conditional probability of a word is represented
by , where may represent the context, or the history,
of the word in . The performance of a par-
ticular SLM on a sequence of words is given by ,

where the square root of is defined
as the perplexity (or the average word branching factor) of the
language model [1]. In most ASR or NLP applications, multiple
statistical language models are combined to construct a new
statistical model in order to exceed the performance of each
of the constituent language models [1], [2]. As an example,
if the domain of an application is not known, then instead of
extensively training a new SLM for this new domain, several
existing SLMs (trained on other domains, for example) can
be combined using a fairly small amount of training data (or
held-out data) by tailoring the combination to this new domain
[3]. The combined language model is usually constructed as a
weighted mixture, or convex combination, of the constituent
language models. Given different SLMs, each assigning
conditional probabilities , the probability assigned to
each successive word by the weighted combination is given
by . These weights ’s are
usually optimized using a held-out set and chosen to maximize

. However, when
the held-out set is not present or the underlying statistics are
changing, then the weights might be optimized online and
adjusted accordingly to follow the statistical changes over
time [4], [2].

Gaussian mixture models (GMMs) have been used exten-
sively in the signal processing and pattern recognition to model
or approximate a wide variety of density functions as weighted
sums of Gaussian distributions [1]. Given a feature vector , a
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GMM with such Gaussian distributions in its mixture, assigns
the probability

where and are
the mean vector and the covariance matrix, respectively, for
the th Gaussian distribution in the mixture. The probability
assigned to a sequence of vectors is then given
as . Such GMMs are used in most speaker
recognition applications to model state occupation probabili-
ties [1], in speaker recognition applications to represent prob-
abilistic models of individual speakers [5] and in classifier de-
sign to represent class probability distributions [6]. In most of
these applications, the weights of a mixture are optimized using
a maximum likelihood criterion on an offline set of training data
to maximize , where are the
corresponding training data. However, to follow the variations
or changes in the application statistics, it is often desirable to use
online algorithms to adjust such weights or sequentially update
them.

Similar weighted mixtures are used to combine probabilities
arising from different modalities or attributes in multimedia
signal processing applications. In audio–visual applications,
probabilities derived from different modalities, each having its
own probabilistic model, are combined as a weighted mixture
to yield the final probability assigned to a given audio–visual
observation [7]. In other speech applications, probabilities
derived from models trained on cepstrum coefficients and LPC
coefficients (or from different streams, or trained with different
sets of speakers) are combined through a weighted mixture
of probabilities to yield a final assigned probability for each
feature vector [8]. In all these applications, the weights for the
combination could be trained online or optimized adaptively to
further improve sequential performance.

II. PORTFOLIOS AS WEIGHTED COMBINATIONS

In this paper, we look at weighted combinations of not only
such model-based probabilities, but also general vectors with
only the constraint that they are nonnegative, i.e., each element
of is greater than or equal to zero. For simplicity of exposi-
tion, and by analogy to the sequential investing scenario, with
such arbitrary , we refer to such weighted combinations as
“portfolios,” noting that the methods developed can be applied
to any problem with convex decisions and a multiplicative per-
formance metric.

By their nature, time series taken from prices of financial
instruments, such as stock in publicly traded companies, are
often both difficult to predict and exhibit nonstationary be-
havior. Within the signal processing community, a number of
signal prediction, modeling and smoothing algorithms have
been applied to such financial data, as many methods used for
prediction and handling nonstationarity behavior arise naturally
in other applications of interest to the community. Examples
abound, but a brief listing of such general methods applied to
financial data include correlative learning applied for prediction
of option prices [9], nonlinear signal modeling [10], methods
based on support vector machines [11] and particle filtering
methods for smoothing stock price data [12].

Portfolio selection in particular is examined in [13] using
meta-controlled Boltzmann machines and in [14] using ideas
from universal lossless source coding. Portfolio modeling is
investigated in [15] using nonlinear vector multiresolution
methods and in [16] by perceptual indexing.

The behavior of a market with stocks is governed
by the sequence of prices of each stock over time, i.e.,

. Since the gain or loss in an
investment position held in any stock is a function of the relative
change, rather than absolute price, in that stock, we are more
interested in the sequence of price relatives, or gains, in
each stock. These gain vectors may either denote daily changes
in the stock price, i.e., , or ratios of
closing-to-opening prices in the stock, i.e., .
As such, the market is modeled by a sequence of vectors

, where the th entry, , of this vector
represents the gain achieved from the th stock on the th

trading day. Decisions made at day then amount to investment
decisions, or a “portfolio assignment,” represented by the vector

in the positive orthant, i.e., and
for all . Each entry corresponds to the portion of the
wealth invested in the stock at day . The wealth achieved
after trading periods on is then given by .
When the vector , i.e., the apportionment of assets
at each point in time is a fixed constant convex combination

over all time, the strategy is called a “constant rebalanced
portfolio.” This name arises from the need to rebalance the
distribution of assets among stocks before each trading period,
due to the changes in asset value that occur from the previous
trading period. For example, when , and ,
if , then after trading period , the assets in
Stock 1 will be double those in Stock 2. Hence, to maintain the
constant portfolio assignment , the assets need
to be rebalanced, i.e., a portion of the assets in Stock 1 need to
be sold and invested into Stock 2, such that the asset allocation
between the two stocks is again equal. This framework is exten-
sively discussed in [17]. In the context of probabilistic model
combinations, such a “constant rebalanced portfolio” would
amount to a constant weighting among constituent probabilistic
models, i.e., an a priori weighting.

For our competitive framework, the performance measure is
defined with respect to that of the best algorithm from a class of
competing algorithms. As an example of this framework, Cover
[17] presented a portfolio selection algorithm which achieves
the rate of wealth growth of the best constant rebalanced port-
folio (CRP) from the class of all constant rebalanced portfolios
(CRPs) for any sequence of price relative vectors in hindsight.
We refer to such algorithms that can asymptotically achieve the
performance of the best algorithm from a given class of algo-
rithms (for any sequence of outcomes) “static universal algo-
rithms,” since the competition class contains a fixed set of algo-
rithms, and performance is compared with that of the best fixed
element from the class applied to the entire outcome sequence.

In this paper, we extend results for static algorithms to a
framework where the underlying competition class includes the
ability to switch among the various static elements. We first in-
vestigate this problem, when each competing algorithm can di-
vide the sequence of outcomes into arbitrary segments, say
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of them, and fit each contiguous segment with the best “port-
folio” from a given class of static algorithms for that segment,
such as a fixed CRP. For such transitions, there exist
segments. The total gain achieved by a class member with such
a partition is the combined gains of all fixed static algorithms
associated with each segment. The best partition is the one that
yields the maximum total gain. We can also let the competing
algorithm choose the number of possible switches . A natural
restriction for the number of possible segments (switches) is

, where is the length of the sequence of outcomes.
Unlike [17]–[19], here we try to exploit the time varying na-
ture of the best choice of algorithm for any given sequence of
outcomes, since the choice of best algorithm from a class of
static algorithms can change over time. Nevertheless, instead of
trying to find the best partition (best possible switching points)
or best number of transitions, our objective is simply to achieve
the performance of the best partition directly. The algorithms
we provide are strongly sequential such that they do not need
the number of transitions, times of these transitions, or length
of the data a priori; however, they can asymptotically achieve
the gain of the best algorithm in the competition class which
can select the number of transitions, locations of these transi-
tions, and the best static algorithm for each segment, based on
observing the whole sequence of outcomes in advance.

Let represent a sequence of price relative vectors
that is deterministic and arbitrary. For all , a competing algo-
rithm with a transition path with transitions, represented
by , divides into segments such that is
represented by the concatenation of

Given and , there exist such possible transi-

tion paths . Given the past values of the price rel-
atives , a competing algorithm
assigns a vector in each segment as where

. For notational simplicity
we assume and . Here, the competing
class contains all CRPs in each segment that have the same
for each sample of the sequence for ,
where each can be selected independently for each region

. In determining the best algorithm in the
competing class, we attempt to outperform all such portfolios,
including the one that has been selected by choosing the transi-
tion path , the number of transitions and the CRP vectors

in each segment based on observing the entire sequence
in advance. As such, we try to find a sequential strategy when

applied to will minimize for any the following gain
ratio:

(1)

where is a sequential assignment at time , i.e., may be
a function of but does not depend on the fu-
ture, is any transition path representing with
an arbitrary number of transitions . In other words, we seek
an algorithm such that even in the worst case, it will achieve
the performance of the best algorithm in the competition class,
uniformly for all sequences and all . We will con-
struct a sequential portfolio selection algorithm for which the
logarithm of this gain ratio, or regret, is at most

for any or without any
knowledge of or a priori. Hence, for any ,
the performance of our algorithm on for all is at most

different than the
optimal algorithm in the competition class that is tuned for
for all . We recognize the term as a pa-
rameter regret or additional loss due to uncertainty of the best
CRP vector in each of the separate regions and the term

as the transition path regret due to uncertainty in the best
transitions times. In a separate paper, we demonstrated an algo-
rithm similar to the algorithm introduced in here that achieves
the performance of the best algorithm in the competition class
with a rate , when there are fixed-rate
transaction costs involved [20].

We then continue our discussion when there are a finite
number of such strategies, e.g., for some ,
for the competing algorithm to choose within each segment
[21]. As an example when we compete against “pure strate-
gies,” each corresponds to selecting only one element
from the mixture (i.e., a single stock). In this case, a competing
algorithm chooses both the transition path and one of these
strategies (single mixture element) for each segment of the
transition path. In determining the best algorithm in the class,
we attempt to outperform all such strategies, including the
one that has been selected by choosing the transition path

, the number of transitions and the best strategy in
each segment based on observing the entire sequence in
advance. Hence, we try to minimize the gain ratio shown in (2)
at the bottom of the page, where is a sequential portfolio
assignment at time , i.e., is a function of
but does not depend on the future, is any transition path
representing with an arbitrary number of transitions

. We will show that we can construct a sequential selection
algorithm for which the logarithm of this regret is at most

(2)
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for any of or with
no knowledge of or a priori.

We then consider the case when the switching among the var-
ious static elements, e.g., is represented by a
side-information sequence , where . We
use the side-information sequence to label the sequence of out-
comes, e.g., without loss of generality, if , then we
choose for time . Here, there exist labels to choose from
for each time. A competing algorithm can divide the sequence
of vectors using this side-information sequence and assign a dif-
ferent algorithm to each label. The natural restriction is .
Unlike [17], [19], we do not assume that the side-information
sequence or the algorithm to generate the side information are
known a priori. In determining the best algorithm in the com-
peting class, we attempt to outperform all such portfolios, in-
cluding the one that has been selected by choosing the side-in-
formation sequence and the best algorithm for each
label based on observing the entire sequence in advance. In
this case, we try to minimize

where is a sequential portfolio assignment at time , i.e.,
may be a function of but does not depend on
the future, is any side-information sequence with labels.
We will show that the sequential algorithm constructed for the
corresponding in (2) representing can be used to con-
struct a sequential selection algorithm for which the logarithm
of this regret is at most for any

(and corresponding ), , or with no knowledge of
or a priori.

Universal algorithms that can compete against CRPs or
against a set of finite portfolio selection algorithms are studied
in [18], [19], [22], and [23]. In [19], the authors introduce
a portfolio selection algorithm based on the multiplicative
update rule of [24]. Although their bounds are inferior to [17],
complexities of their algorithms are linear in , i.e., the number
of trading times. In [18], Vovk interpreted Cover’s universal
algorithm as a special case of his aggregating algorithm (AA)
[25] and extended it to include different learning rates. In [26],
a heuristic algorithm motivated by Cover’s rebalancing strategy
is introduced that is shown to have excellent performance on
historical data. However, this algorithm is not a universal algo-
rithm, i.e., it does not guarantee a low or vanishing regret which
is the framework studied in this paper. Although we use Cover’s
universal algorithm in our derivations for the corresponding
bounds, the methods we use are generic. The algorithms we
introduce can easily build on other algorithms such as [19]
instead of [17], or any other algorithm that is universal with
respect to a static class, such as [18], [19], [22], and [23]. The
additional complexity of our algorithms over the complexity
of the static algorithms used in the construction is linear in the
data size . Transaction costs (applicable both in the context of
investing as well as to the probabilistic model mixture scenario
as a regularization penalizing paths that switch too rapidly) can
also be included within the framework of universal portfolios.
In [27], after providing a simple analysis of [17], the authors

show that an extended version of Cover’s algorithm is also
competitive in the presence of such costs. Extension of the
basic universal portfolio selection problem with arbitrary obser-
vation vectors and positive portfolio vectors is also studied for
bounded stocks and portfolios allowing margin and short sales
in [28] and [18] and stocks with restrictions in [29]. Moreover,
in [22], the authors extend the notion of internal regret to online
portfolio selection. They refer to the form of regret studied in
this paper, the regret between an online algorithm and the best
from a class of algorithms, an “external regret.” The examples
of observation sequences provided in [22] that show good
internal regret, but poor external regret, exhibit the type of
piecewise behavior exploited by the algorithms developed in
this paper, hence motivate this work.

Competition against portfolio selection algorithms that can
switch among a finite number of static algorithms (not
against CRPs) is studied in [30]. In [30], the authors apply a
sequential portfolio selection algorithm for each transition path

independently to construct universal algorithms that can
compete against the class of all switching portfolios. Initially,
they use a geometric distribution to weight each transition path

. The first algorithm introduced requires a constant param-
eter to be selected a priori for the geometric distribution. This
algorithm is along the lines of [24], where a similar algorithm
is used for tracking the best expert in a universal prediction
context. Nevertheless, due to the unbounded loss in this frame-
work, i.e., , the derivations in [24] do not extend to this
case. This algorithm, with the a priori selected constant, has
an additional regret of over the
algorithm with the best transition path. This initial algorithm
[30] is then extended by allowing the constant parameter vary
in time to appropriately weight all transition paths based on
performance. This algorithm then achieves the performance of
the best algorithm with the best transition path in the competi-
tion class with a regret . This
approach is similar to weighting methods introduced by [31]
for tracking the best expert in the prediction context. Neverthe-
less, in [30], the authors are unable to provide a final portfolio
assignment that achieves this performance. In this paper, we
not only show that by using different weighting methods, we
can improve the final regret to , but
also show that we can actually construct the portfolios that can
achieve this overall gain. The methods of [30] do not extend to
include the best CRP in each region, due to the transition path
structure used. We provide this by using a full transition path
diagram to keep all the switching or segmentation information,
together with a universal CRP for each such segment. The
approach taken in this paper leverages work from universal
source coding [32] and universal prediction [33]. The linear
transition diagram of [32] was used in [33] for the problem of
universal piecewise linear least squares prediction. Aside from
using a similar data structure (the linear transition diagram),
the methods of [33] apply to accumulated square error, rather
than the loss considered here. Hence, the methods of [33] are
not applicable to problem considered in this paper.

A related class of sequential decision problems with of a sim-
ilar metric to that used in this paper are also considered in [34],
where the authors investigate the portfolio selection problem
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using context trees. Rather than considering a possible temporal
switching among various constant mixtures, in [34], the space
of past observation vectors is partitioned into disjoint regions
represented using a context tree. A different mixture vector is
then fitted to each region independently. The underlying mix-
ture vector therefore becomes data dependent and can approx-
imate any nonlinear function of the past observations through
finer partitions within the context tree. However, unlike here,
the context tree algorithm used to partition the sequence of past
observations is fixed and can be thought as a static algorithm in
the nomenclature of this paper. The context tree algorithm can
be chosen as a constituent algorithm among many to be selected
for each “region” as considered here. As an example, one can
choose context trees with different partitions to compete against
each other for each segment.

The organization of this paper is as follows. In Section II, we
provide the main results of the paper as guaranteed performance
results given through respective upper bounds on regret. The
construction of the actual portfolios are provided in Section III
along with the proofs of each theorem, where we give a com-
plete Matlab implementation of the switching portfolio selec-
tion algorithm. We then conclude the paper with some example
applications of these algorithms to simulated and real stock mar-
kets.

III. UPPER BOUNDS

The main results of this section are given as guaranteed per-
formance bounds contained in following theorems. We first in-
vestigate CRPs in each segment in Section III-A. We then ex-
tend our discussion to the case when there are only a finite class
of algorithms in each segment to choose from in Section III-B.
Competition against a finite class of algorithms in each seg-
ment is then extended to portfolios with side-information in
Section III-C. The corresponding universal and strongly sequen-
tial portfolio algorithms that achieve these performance guaran-
tees are constructed at the end of each proof in Section IV.

A. Constant Rebalanced Portfolios in Each Segment

Let represent a sequence of price relative vectors.
For all , a competing portfolio selection algorithm with a tran-
sition path with transitions, represented by ,
divides into segments such that is represented by
the concatenation of

Given the past values of the desired price relatives
, a competing algorithm assigns a portfolio vector

in each segment as where
. For notational simplicity, we assume and
. For this setting we have the following theorem.

Theorem 1: We have a sequential strategy such that for
any sequence of price relative vectors

(and some components of can be zero), the performance
of on for all , defined as the following wealth ratio:

(3)

for all and , satisfies

(4)

and

(5)

for any representing transition path and any ,
such that does not depend on or . The introduced

has computational complexity linear in for each in-
vestment period.

Construction of uses the portfolio introduced in The-
orem 2 of Cover and Ordentlich [17]. The computational com-
plexity, i.e., number of additions and multiplications,
of per investment period is due to the calculation of Cover’s
universal portfolios [17] which has computational complexity

per investment. The actual complexity of the combina-
tion algorithm is . As an example, if one replaces Cover’s
algorithm with [19], the complexity overall would be , al-
beit with different performance guarantees. To implement ,
we need to store and update auxiliary variables at each invest-
ment period. Theorem 1 states that the regret of the universal
sequential portfolio is within of the best
batch piecewise CRPs with transitions (tuned to the under-
lying sequence in hindsight), uniformly, for every sequence of
price relatives and .

B. Finite Number of Portfolio Selection Algorithms for
Each Segment

Here, we compete against a finite set of algorithms in each re-
gion for a given -partition. Let represent a sequence
of price relative vectors. We now consider a class of dif-
ferent portfolio strategies producing
working in parallel. For all and a sequence of price relative
vectors , a transition path with
transitions, represented by , divides and into

segments such that and each can be represented as
a concatenation of

and
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respectively. For all , the competing algorithm achieving the
maximum total wealth would choose the best , the best transi-
tion path and the best algorithms for each segment from the
class of these algorithms. Here, we have a sequential strategy

when applied to , that achieves, for all and ,
the wealth

with no knowledge of , or , for any transition path ,
where is the best algorithm for the th segment such that

if

(6)

for .
Theorem 2: We have a sequential strategy such that

for any sequence of price relative vectors
(and some components of can be zero), the performance of

on for all , defined as the wealth ratio shown in the
equation at the bottom of the page, for all and , satisfies

(7)

and

(8)

for any represented by and , without any
knowledge of or a priori. The introduced does
not depend on or and have computational complexity

per investment period.
Theorem 2 states that, for all , the regret of the universal

sequential portfolio is within of an algo-
rithm that can select the best algorithm for each segment from
the class of algorithms, with transitions and the location of
these transitions, i.e., , (tuned to the underlying sequence),
uniformly, for every sequence of price relatives .

C. Competition Against the Best Side-Information

Let represent a sequence of price relatives and
, represent portfolios working in

parallel on . We use a side-information sequence
, where for all , to label the

sequence of price relative vectors. Naturally, . A
competing algorithm with side-information sequence
assigns, for each trading day . Previously,
this framework is investigated in [17] and [19] for a restricted
case when the side information or the mechanism generating
the side information for labeling the data were known by the
universal algorithm. In [17], the side-information sequence is
used both by the competition class and the universal algorithm
to partition the sequence of price relative vectors. However,
for our framework, the side information is unknown to the
universal algorithm. We compete against an algorithm that can
observe the whole sequence of price relative vectors and in
hindsight choose the best side-information sequence to label
the data. For this setting, we have the following result.

Corollary 3: We have a sequential strategy such that
for any sequence of price relative vectors
(and some components of can be zero), the performance of

on for all , defined as the following wealth ratio:

(9)

satisfies

(10)

and

(11)

where for any with transitions among
labels , such that does not depend on
or .

Corollary 3 states that the regret of universal sequential port-
folio is within of the best batch portfolio
with the best side-information sequence that has transitions
among labels on (that is tuned to the
underlying sequence), uniformly, for every sequence of price
relative vectors .
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IV. CONSTRUCTION OF THE UNIVERSAL PORTFOLIOS

Proof of Theorem 1: The proof of Theorem 1 follows along
similar lines to the proof of Theorem 2 from [33], where the au-
thors use ideas from universal lossless source coding to com-
bine an exponential number of switching predictors. Here, we
present the general method and mainly focus on the differences.

Let represent a sequence of price relative vectors.
Our goal is to find a strongly sequential portfolio such that
the logarithm of the wealth achieved by over for

all , i.e., , is asymptotically as large as

for any and for any possible deterministic . In doing
this, can only use to invest at time ,
nothing else from the future.

For all , we can construct different transition
paths, , each representing a partition
of . For a transition path representing
with transitions, we can assign constant vector of portfolios

, where each represents a CRP vector for
the th region. The wealth that will be achieved by this pairing

on is given by .
If were known, one could first optimize CRPs in each region

holding
fixed and then select among all transition paths with tran-

sitions to yield .
Our goal is to find , which achieves for
all , for any and for any .

Clearly, is not known to a sequential algorithm, hence, this
optimization is an impossible task. However, we will demon-
strate that can be achieved asymptotically by
a sequential portfolio for all , uniformly without
any knowledge of or . This algorithm will be a double mix-
ture algorithm [32] such that we will first find a sequential al-
gorithm that achieves asymptotically given
a and then combine all such sequential algorithms corre-
sponding to all possible paths . The final sequential port-
folio we seek will be given as the portfolio that achieves
this combined wealth, hence .

For all , there exist possible partitions of . For every
possible such , one can apply the se-
quential portfolio from [17] on in each segment indepen-
dently

(12)

where is an th order Dirichlet distribution,
is the simplex, i.e.,

and in (12). Due to Theorem 2

of Cover and Ordentlich [17], in each segment this algorithm
asymptotically achieves the performance of the best CRP for
that region in the following sense [17]:

(13)

where here . Applying this result for all segments

(14)

yields

(15)

Hence given , using in each segment defines a se-
quential portfolio that asymptotically achieves the performance
of the algorithm with the best CRP for each segment.

For all and , we can construct a similar sequential algo-
rithm yielding a total of such sequential portfolios. Hypo-
thetically, we could have invested a portion of our initial wealth,

, to each of the sequential algorithms and then col-
lect the combined wealth at the end. The final combined wealth
of such sequential portfolios that correspond to all pos-
sible and , is given by

(16)

We will next show that by a proper selection of
can be made asymptotically as large

as for all and any . The constructed
will not explicitly implement all of these

algorithms for each . However, it will obtain a wealth of
for all including . Hence,

achieves for all .
Let us show how to select to make as large

as for all . Clearly, the portion of initial
wealth invested in each , i.e., the weight of each path, should
satisfy and the combined wealth

is as large as the wealth of any portfolio in the mix-
ture, i.e.,

(17)

Combining (17) and (15) yields
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for any transition path including . Obviously, the pro-
portion of the wealth invested on , directly con-
tributes to the wealth . Hence, it is desirable that the
portion of wealth invested on the “best rebalancing path” (i.e.,
the path with the largest wealth gain, which is not known a
priori) be as large as possible. In addition, the portion wealth
invested on each , should also be sequentially con-
structed for each new so that the resulting combined portfolio
can be sequentially computable. We will use two such sequen-
tial weighting algorithms with linear complexity in . These
weightings are introduced in [32] and [35] for universal loss-
less source coding to assign probabilities to binary sequences
and then later used in prediction context in [33] to construct uni-
versal switching linear predictors under square error loss. The
first form of initial investment, , is generated using a
Krichevsky–Trofimov (KT) weighting. Given a binary sequence
of length with ones and zeros, the KT weight as-
signed to this binary sequence is given by

. This weighting admits sequential up-
dates, i.e.,

and

(18)

for all . For a given , we first construct a binary
sequence in which each transition represents a one and lack of a
transition represents a zero, forming a binary sequence of length

. Hence, for , there are ones and zeros.
We next define , using KT
weights as follows:

(19)

In (19), we first assign weight to the first transition at time
as , which ends the first segment. We repeat
this for all segments. Since, in the last segment there is no
transition, we have for the last segment. It can
be shown [32] that and this weight
assignment satisfies [32], [36]

(20)

for any . By using this bound we obtain

(21)

For a tighter upper bound on , we can use
the weighting introduced in [35]. In this case, in-
stead of using KT estimates for each segment in (19),
we replace each term with

where

and is any positive
constant. This weighting will yield [35]

which is a tighter upper bound than (20). We will implement
our algorithms in a generic manner such that either of these two
weight assignments can be used in the implementation.

Hence, we now have a sequential strategy which invests the
portion of wealth on each and has a combined
wealth asymptotically achieving, to the first order in the expo-
nent, the same wealth as that achieved by any rebalancing path

as shown in (21). In this sense, is a “universal”
portfolio selection method for the class of all switching CRPs.
It still remains to find a sequential algorithm of reasonable com-
plexity whose wealth is as large as (the wealth achieved
by all sequential algorithms represented in (14) weighted by the
corresponding ).

We are now ready to find the actual universal portfolio
strategy. We observe that, by definition

for all . Thus, if we can find a strongly sequential portfolio
which satisfies for all

(22)

then this portfolio will achieve , for all (including
), i.e.,

for all . We recall that at each time asymp-
totically achieves the optimal wealth, ,
for any , on by definition. To find , we look at

closely. By (16), we have

where is the wealth achieved by the sequential
portfolio corresponding to on . Suppose, with an abuse of
notation, we represent ,

then , where
is Cover’s portfolio that started running at time and in-
vesting at time , trained on . Thus, we
have

(23)

Conceptually, to calculate the numerator of (23), we need to run
algorithms in parallel. Each of these sequential algo-

rithms will produce a portfolio vector to invest at time . Since,
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Fig. 1. Transition diagram for � � �. Each box represents a state, where each number in the top of the box is the time of the last transition.

for all these algorithms, on the last segment, the last investment
is on , for the numerator of (23), we have

(24)

where (and ). Hence, (23)
becomes (25), shown at the bottom of the page. Thus, we can
choose our sequential portfolio as (26), shown at the bottom of
the page. Equation (26) suggests the following algorithmic sim-
plification. To invest at time (before observing ), we collect
portfolio vectors from all sequential algorithms. We then
combine all these portfolios with the appropriate weights in the
numerator of (26), where the weights are the combination of the
performance of the sequential algorithm corresponding to
on and . This gives the numerator in (26). We then
normalize this combination by , since we desire the
final portfolio to sum up to 1, (this normalization to 1 will

be proved later in the derivations). Clearly, has no access to
or switching times; however, by construction, when applied

to , it achieves for all . We have that
is calculated by just observing . Although we
know all of the terms to calculate , in this form, needs
to combine all portfolios with the corresponding weights
for all . Our goal is to calculate efficiently with a compu-
tational complexity linear in .

We first show that (and ) can be calculated
efficiently, by grouping certain sequential algorithms and up-
dating their wealths together. At time , we divide the set of
all sequential strategies into classes (or sets) based
on their last transition times, and label them with state variables

, as in Fig. 1. At time , there exist only
such classes, each represented as a box on the Fig. 1. We

note that all sequential portfolios having the same last transition
time will use the same Cover portfolio in their last segment. We
then define as the combined wealth achieved
on by all sequential strategies that have the last transition
time at , i.e., if then

(25)

(26)
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where represents all paths of length with
the last transition time at . At time , each box in Fig. 1
is assigned a variable . Since these sets are
disjoint and cover all possible paths, this yields

Similarly, we have for

The next step is to show that each term
, can be recursively calculated from

, provided that permits such a
sequential update. While doing this update, we will also a get
a recursive calculation for . We now derive a recursive
update for each . In Fig. 1, any directed path rep-
resents a transition path, where a horizontal move represents
no transition, while an upward move represents a transition
to a new segment. We derive the recursive update first for

and then for .
At time , all the paths (or the sequential algorithms cor-

responding to these paths) that were included in state
will end up in state if no transition happens at time ,
i.e., a horizontal move in Fig. 1. Hence, the combined wealth

, should be updated as follows
to get . We note that all the sequential algorithms in

should come from the sequential
algorithms in (with no update at time ). Hence,
first all the sequential algorithms represented in
observe a new sample at time . Since ,
the Cover portfolio used in the last segments starts from the
same time instant for all algorithms in and
in . This will result an additional gain of
in over , where is the Cover
portfolio started at time , trained on .
However, the sequential algorithms in have dif-
ferent path weights than those in , i.e.,

, since the path lengths are increased by one due to
the new sample . Hence, all path weights should
be updated to get . Since all paths that end up in

should come from the paths in with
no transition, we need to scale path weights using (18) and (19)
to obtain the scaling

(27)

since only the last term of (19) should be changed in all paths.
Here, is the weight of a path of length
that ended at and is the continuation of

that path to length . Hence, combining these two terms yields,
for .

(28)

Hence, the recursive update for for .
We also need . For all the sequential algorithms
(or paths) that end up in , there should be a new
transition at time . All of these paths (or sequential algo-
rithms) can be generated from the sequential algorithms in

by a new transition at time
. Since, to obtain the wealths of the sequential algorithms

in from the wealths of the sequential algorithms in
, we need to first change the

path lengths. However, there is now a transition at time , i.e.,

(29)

, i.e., the weights for all the paths
that end up in with a switch

are changed. Next, for the sequential algorithms in
coming from , we observe a new sample .
Since, there is a transition at time , i.e., no data to train
on after the switch, all these algorithms use a uniform portfolio
in stocks, where we set as their portfolio and the is
vector of ones. Hence, combining these yields

(30)

Hence, the recursive update for , when .
Combining all updates (28) and (30) on yields
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This yields [see the equation shown at the bottom of the page].
Hence from (22), the portfolio vector we seek is given by

(31)

where the weights are defined as

(32)

Clearly, in (31), all the terms, i.e., all of the weights
and all portfolios , sums

to 1. Hence, adds up to 1 and is a valid portfolio.
To summarize the algorithm: at each time , after we make

the investment, , we observe . We then update weights
to get using (28) and (30). Then, we

will calculate using to invest at time . We
continue like this for all . Hence, we combine effectively
an exponential number of algorithms, i.e., , at each time ,
with complexity linear in . This algorithm has computational
complexity per investment period due to calculation
of Cover’s portfolios for each segment for each investment
period. Combining sequential algorithms to obtain (31)
only requires computation per sample. This completes the
proof of Theorem 1.

Proof of Theorem 2: The proof of Theorem 2 parallels
that of Theorem 1. Suppose portfolio vectors of algorithms
are represented as . For all ,
an algorithm from the competing class with transition path

will select a single algorithm for each segment inde-
pendently. Then for each such transition path , with
transitions, wealth of the best competing algorithm is con-

structed, where

is the best algorithm for each segment as in (6). Maxi-
mizing over all (with transitions) yields

. Here, corresponds to the best
algorithm in the competition class with transitions. Our goal
is to demonstrate a sequential algorithm , when applied
to , achieves for all and without a
priori knowledge of or .

Given any , we will now demonstrate an algorithm which
combines the static algorithms in each segment (indepen-

dently), and for that segment achieves the performance of the

best strategy for that segment, i.e., . This al-
gorithm is in this certain sense a discrete version of Cover’s al-
gorithm in (12). The derivation of this algorithm closely fol-
lows the derivation of (12) in [17]. We will then apply this algo-
rithm to each segment independently to construct the sequential
algorithm for . Then, as in Theorem 1, we will conceptu-
ally combine all these sequential algorithms corresponding to
all to get the final .

Given , in each segment , we first define a weighted
wealth achieved by the portfolio strategies as, for

(33)

where each algorithm has equal weight , sim-
ilar to selecting a uniform distribution on in (12).

Since,

for any , we conclude

. Hence, it is enough to
demonstrate a sequential algorithm that achieves the wealth

. By definition

(34)

If we look at each term closely in (34)

we conclude that

(35)
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Fig. 2. (a) Complete implementation of the universal switching algorithm in Matlab. (b) Pseudocode for the algorithm, where �� ��� is Cover’s portfolio started
running at time �. Here, �� ��� can be replaced by other sequential portfolios such as [19] started at time �.

where
are the weights of each algorithm . Hence, our algorithm which
achieves in each segment is given by

(36)

which is the in certain sense a discrete version of (12). Applying
this result for all segments

(37)

yields

For a given , running an independent (36) for each segment
yields a sequential portfolio assignment algorithm, similar to the
sequential portfolio assignment algorithm represented in (14).
After this point the derivation follows the proof of Theorem 1,
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Fig. 3. Performance of switching CRPs for two simulated stocks. (a) Performance of CRPs for different proportions of Fake1 stock. The dashed line is the per-
formance of Cover’s universal algorithm which is the weighted average of all CRPs. (b) Wealth gain achieved by buy-and-hold and switching universal algorithm.
(c) Portfolio vectors suggested by Cover’s algorithm and switching algorithm. C(f1) and S(f1) are the proportions of stock Fake1 in Cover’s algorithm and switching
universal algorithm respectively. Naturally, at all times, ����� � ����� � � and ����� � ����� � �. (d) Distribution of the weights � ��� in (32) at days
� � �� � � � � �		.

where we combine sequential algorithms as in (37) with a proper
to define a weighted mixture of the total wealth,

(38)

Hence, for the construction of the universal algorithm, we
need only replace the sequential portfolio vector in (31) with

where is the algorithm in (36)
trained on the constituent algorithms from time to . i.e.,

(39)

where the weights are defined as
. This completes

the proof of Theorem 2.
Proof of Corollary 3: Here, we will show that the universal

portfolio selection algorithm introduced in (39) also satisfies the
bound in Corollary 3. For any , there corresponds a transition
path . Hence, for any applying the universal algorithm
to yields the upper bounds in Theorem 2. Since the bounds
in Theorem 2 are with respect to the best algorithm in each seg-
ment, i.e., the universal algorithm achieved the performance of
the best static algorithm for that segment, they are also correct
for the particular static algorithm that is selected by the side-in-
formation sequence. Hence,

This completes the proof of Corollary 3.
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Fig. 4. Performance of various portfolio selection algorithms on Kinark–Iro-
quois stock pairs. (a) Wealth gain for buy-and-hold strategies on Kinark and
Iroquois. (b) Wealth gain for: switching portfolios with finite class of algo-
rithms; switching portfolios with simplified Cover’s algorithm; switching port-
folios with CRPs; best CRP; Cover’s universal portfolio.

A. Algorithmic Description

In this section, we provide a Matlab implementation of
the switching CRP. The corresponding implementation uses
Willems’ weighting [32] for transition probabilities. For other
weighting methods only the calculation of the transition vector
needs to be changed, i.e., in Fig. 2. For trading days
and stocks, we also construct an offline matrix of port-
folio vectors to make the implementation generic, where

is an matrix. For example, if one wishes to
use Cover’s algorithm in (12) at trading day , the entries

) (for ) would be
equal to Cover’s portfolio vector trained on price relative vectors
for trading days up to , i.e., . For [19],
the same entries would be the portfolio vector of [19] trained for
the same trading sequence. This matrix can be constructed

using any such algorithm from [17]–[19] and [26]. For this par-
ticular implementation, we also have at time : a vector of state
wealth, ;
a vector of state transitions,

. These vectors are up-
dated at each iteration, and the size of each vector is expanded
by one for each new trading day. Apart from the complexity
of constructing , the complexity of the universal algorithm
in Fig. 2 is , i.e., the complexity grows with data length.
Although we calculate offline for illustration, we point out
that in the algorithm we use sequentially. In Fig. 2, we
also provided a pseudocode implementation.

V. SIMULATIONS

In this section, we demonstrate the performance of the uni-
versal algorithms with several different examples. We first in-
vestigate switching CRPs for simulated data of two stocks. In
this example, the first stock increases its value by 1.12 during
initial 100 days and then decreases its value by during
the following 100 days. It then switches back and forth for a total
of 400 days, i.e., sequence of price relatives for stock Fake1 is

Price relatives for stock Fake2 is just the opposite, i.e.,

Clearly, there is no gain for buy-and-hold strategies. In Fig. 3,
the straight line displays the performance of CRPs for different
proportions of Fake1 to Fake2. Obviously, the maximum wealth
is achieved for CRP of since the price relatives
are symmetric. The dashed line is the performance of Cover’s
universal algorithm, which is the weighted average of all such
CRPs. We observe that due to hedging against all possible se-
quences of price relatives, the performance of Cover’s portfolio
is worse than the performance of the optimal . We plot the
wealth gain achieved in buy-and-hold strategies as well as the
gain achieved by the switching universal algorithm in Fig. 3(b)
on a logarithmic scale. Fig. 3(b) shows the exponential gain
achieved by the switching universal algorithm. It is clear that
at each trend change point, i.e., days 100, 200, 300, and 400,
the algorithm quickly adjusts to the new trend. We next provide
the portfolio suggested by the switching algorithm in (31) and
Cover’s portfolio in Fig. 3(c) to illustrate the learning behavior
of both algorithms. Due to the averaging performed in Cover’s
algorithm, this algorithm slowly adjusts to the trend change
while the switching algorithm quickly picks up the change and
transfers weights from the poorly performing stock to the other
accordingly at the switching days 100, 200, 300, and 400. This
behavior can be seen in Fig. 3(d), where we plot for each time

, the index of the state on the transition diagram and its asso-
ciated weight, i.e., from (32) for the switching universal
algorithm. In this figure, the y axis represents the state number,
i.e., date of origin of the CRP used by the state with the largest
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TABLE I
LANGUAGE MODEL COMBINATION BETWEEN UNIGRAM, BIAGRAM, AND TRIAGRAM LANGUAGE MODELS USING THE BEST FIXED OFFLINE WEIGHTING, COVER’S

WEIGHTING, AND UNIVERSAL ALGORITHM OF THEOREM 1. SCORES SHOWN ARE PERPLEXITIES, SUCH THAT A LOWER SCORE IMPLIES A BETTER MODEL

Fig. 5. Performance of various portfolio selection algorithms on Kinark–Iro-
quois stock pairs. (a) Wealth gain for buy-and-hold strategies on Meico and
Commercial Metals. (b) Wealth gain for: switching portfolios with finite class
of algorithms; switching portfolios with simplified Cover’s algorithm; switching
portfolios with CRPs; best CRP; Cover’s universal portfolio.

weight. The universal algorithm assigns, and continues to as-
sign, the largest weight in (32) to the transition paths that
switches at the transition times of the underlying price relative
sequence i.e., every 100 days.

As the next example, we apply our algorithms to histor-
ical data from [37] from the New York Stock Exchange over a
22-year period. We first apply our algorithms on the Kinark–Iro-
quois pair as shown in Fig. 4, which are chosen because of
their volatility. In Fig. 4(a), we first show the performance

Fig. 6. Performance of switching CRPs and Cover’s universal algorithm under
varying transaction costs: (a) wealth gain when � � ����� and (b) wealth gain
when � � ����.

of buy-and-hold strategies. We next plot wealth gain of the
following: the switching CRP algorithm from Section III-A;
the switching finite portfolio algorithm from Section III-B;
best CRP that is tuned for the underlying data set; and Cover’s
universal algorithm, in Fig. 4(b). The switching algorithm with
a finite number of algorithms uses only buy-and-hold strategies
and as seen from Fig. 4(b), it outperforms other algorithms
for this data set. We project that hedging against all CRPs
degrades the performance of both Cover’s algorithm as well
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as the switching CRP algorithm. Hence, in the same figure,
we also introduce and plot a simplified (or reduced) switching
CRP algorithm. In this algorithm, instead of averaging over all
CRPs in (12) for all , we only average over, three CRPs,

. The performance of this algo-
rithm improves over the switching CRP selection algorithm.
We next show the same set of experiments for another pair
of stocks, i.e., Meico and Commercial Metals in Fig. 5. We
observe similar behavior to that of the Kinark–Iroquois pair.

We next present results that show the performance of our al-
gorithms with varying amounts of transaction costs. In Fig. 6,
we present results on Kinark and Iroquois for a mild transaction
cost and a hefty transaction cost , where

is the fraction paid in commission for each transaction, i.e.,
is a 1% commission. Rebalancing is done everyday.

We observe that rebalancing weekly or daily gives similar re-
sults. In Fig. 6(a), we plot both switching CRPs and Cover’s
algorithm for . The performance is better for small
transaction costs, however, in both cases, the switching algo-
rithm outperforms Cover’s. Although we observe that transac-
tion costs effect the performance of the switching algorithm due
to extensive rebalancing, we can provide similar bounds on the
performance of our algorithms with respect to the best switching
strategy under a fixed-percent transaction cost model [20].

Finally, we simulate our algorithms for language model com-
bination. Here, we train unigram, biagram, and triagram lan-
guage models using modified Knesser Ney Smoothing with data
collect on the Web. We then score a related test set of 200
words, where each word is scored with respect to the language
model to get the corresponding probability of the word. For
each pair of language models, to sequentially find the optimal
weight combination parameters, we apply first the algorithm
from (31) and then Cover’s algorithm. The comparison of the
final perplexities, calculated from the combined model proba-
bilities, including the optimal (static) combination weight calcu-
lated offline “best weighting,” Cover’s algorithm “Cover’s alg.”
and switching algorithm (31) “switching alg.” are presented in
Table I. For these simulations, the switching algorithm is able
to outperform the other algorithms for all pairs.

VI. CONCLUSION

In this paper, we considered sequential (online) decisions
taken as convex combinations of observations and multiplica-
tively compounded over time. We focussed on sequential
portfolio selection for individual price relative sequences.
We developed strongly sequential algorithms, without a
priori knowledge of the data length or the number of piece-
wise constant segments, that achieve the performance of
the best switching CRP selection algorithm tuned to the
underlying sequence of price relatives. To achieve this, a
performance-weighted mixture of an exponential number of
sequential portfolios, one for each transition path, was shown to
asymptotically achieve the performance of the best algorithm
given any number of piecewise constant segments. We then
showed that this exponential number of algorithms can be im-
plicitly implemented with linear complexity in the data length
using a transition diagram similar to [32]. We then considered

the case when the members of the static class include only a
finite collection of portfolio selection algorithms.
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