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Abstract
We study online supervised learning and introduce regression and classification algorithms
based on self-organizing trees (SOTs), which adaptively partition the feature space into
small regions and combine simple local learners defined in these regions. The proposed
algorithms sequentially minimize the cumulative loss by learning both the partitioning the
feature space and the parameters of the local learners defined in each region. The output
of the algorithm at each time instance is constructed by combining the outputs of a doubly
exponential number (in the depth of the SOT) of different predictors defined on this tree with
reduced computational and storage complexity. The introduced methods are generic such
that they can incorporate different tree construction methods than the ones presented in
this chapter. We present a comprehensive experimental study under stationary and non-
stationary environments using benchmark datasets and illustrate remarkable performance
improvements with respect to the state-of-the-art methods in the literature.

Keywords: Self-organizing trees, nonlinear learning, online learning, classification and
regression trees, adaptive nonlinear filtering, nonlinear modeling, supervised learning
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2 Adaptive Learning Methods for Nonlinear System Modeling

Chapter points
• We present a nonlinear modeling method for online supervised learning problems.
• Nonlinear modeling is introduced via SOTs, which adaptively partitions the feature

space to minimize the loss of the algorithm.
• Experimental validation shows huge empirical performance improvements with re-

spect to the state-of-the-art methods.

1. Introduction

Nonlinear adaptive learning is extensively investigated in the signal processing [1, 2,
3, 4] and machine learning literatures [5, 6, 7], especially for applications where linear
modeling is inadequate, hence, does not provide satisfactory results due to the struc-
tural constraint on linearity. Although nonlinear approaches can be more powerful than
linear methods in modeling, they usually suffer from overfitting, stability and conver-
gence issues [8], which considerably limit their application to signal processing and
machine learning problems. These issues are especially exacerbated in adaptive filter-
ing due to the presence of feedback, which is even hard to control for linear models
[9]. Furthermore, for applications involving big data, which require to process input
vectors with considerably large dimensions, nonlinear models are usually avoided due
to unmanageable computational complexity increase [10]. To overcome these diffi-
culties, tree based nonlinear adaptive filters or regressors are introduced as elegant
alternatives to linear models since these highly efficient methods retain the breadth of
nonlinear models while mitigating the overfitting and convergence issues [11, 12, 13].

In its most basic form, a tree defines a hierarchical or nested partitioning of the
feature space [12]. As an example, consider the binary tree in Figure 0.1, which par-
titions a two dimensional feature space. On this tree, each node is constructed by a
bisection of the feature space (where we use hyperplanes for separation), which results
in a complete nested and disjoint partitioning of the feature space. After the partitions
are defined, the local learners in each region can be chosen as desired. As an example,
to solve a regression problem, one can train a linear regressor in each region, which
yields an overall piecewise linear regressor. In this sense, tree based modeling is a
natural nonlinear extension of linear models via a tractable nested structure.

Although nonlinear modeling using trees is a powerful and efficient method, there
exist several algorithmic parameters and design choices that affect their performance
in many applications [11]. Tuning these parameters is a difficult task for applica-
tions involving nonstationary data exhibiting saturation effects, threshold phenomena
or chaotic behavior [14]. In particular, the performance of tree based models heavily
depends on a careful partitioning of the feature space. Selection of a good partition is
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Figure 0.1 Feature space partitioning using a binary tree. The partitioning of a two dimen-
sional feature space using a complete tree of depth-2 with hyperplanes for separation. The
feature space is first bisected by st,λ, which is defined by the hyperplane φt,λ, where the region
on the direction of φt,λ vector corresponds to the child with “1” label. We then continue to bisect
children regions using st,0 and st,1, defined by φt,0 and φt,1, respectively.

essential to balance the bias and variance of the regressor [12]. As an example, even
for a uniform binary tree, while increasing the depth of the tree improves the model-
ing power, such an increase usually results in overfitting [15]. To address this issue,
there exists nonlinear modeling algorithms that avoid such a direct commitment to a
particular partition but instead construct a weighted average of all possible partitions
(or equivalently, piecewise models) defined on a tree [6, 7, 16, 17]. Note that a full
binary tree of depth-d defines a doubly exponential number of different partitions of
the feature space [18] (For an example, see Figure 0.2). Each of these partitions can be
represented by a certain collection of the nodes of the tree, where each node represents
a particular region of the feature space. Any of these partitions can be used to con-
struct a nonlinear model, e.g., by training a linear model in each region, we can obtain
a piecewise linear model. Instead of selecting one of these partitions and fixing it as
the nonlinear model, one can run all partitions in parallel and combine their outputs
using a mixture of experts approach. Such methods are shown to mitigate the bias-
variance tradeoff in a deterministic framework [6, 7, 16, 19]. However, these methods
are naturally constrained to work on a fixed partitioning structure, i.e., the partitions
are fixed and cannot be adapted to data.

Although there exist numerous methods to partition the feature space, many of
these split criteria are typically chosen a priori and fixed such as the dyadic partition-
ing [20] and a specific loss (e.g., the gini index [21]) is minimized separately for each
node. For instance, multivariate trees are extended to allow the simultaneous use of
functional inner and leaf nodes to draw a decision in [13]. Similarly, the node spe-
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4 Adaptive Learning Methods for Nonlinear System Modeling
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Figure 0.2 Example partitioning for a binary classification problem. The left figure shows
an example partitioning of a 2-dimensional feature space using a depth-2 tree. The active region
corresponding to a node is shown colored, where the dashed line represents the separating
hyperplane at that node and the two different colored subregions in a node represents the local
classifier trained in that region. The right figure shows all different partitions (and consequently
classifiers) defined by the tree on the left.

cific individual decisions are combined in [22] via the context tree weighting method
[23] and a piecewise linear model for sequential classification is obtained. Since the
partitions in these methods are fixed and chosen even before the processing starts,
the nonlinear modeling capability of such methods is very limited and significantly
deteriorates in case of high dimensionality [24].

To resolve this issue, we introduce SOTs that jointly learns the optimal feature
space partitioning to minimize the loss of the algorithm. In particular, we consider a
binary tree, where a separator (e.g., a hyperplane) is used to bisect the feature space in
a nested manner, and an online linear predictor is assigned to each node. The sequen-
tial losses of these node predictors are combined (with their corresponding weights
that are sequentially learned) into a global loss that is parameterized via the separator
functions and the parameters of the node predictors. We minimize this global loss us-
ing online gradient descent, i.e., by updating the complete set of SOT parameters, i.e.,
the separators, the node predictors, and combination weights, at each time instance.
The resulting predictor is a highly dynamical SOT structure that jointly (and in an on-
line manner) learns the region classifiers and the optimal feature space partitioning.
In this respect, the proposed method is remarkably robust to drifting source statistics,
i.e., non-stationarity. Since our approach is essentially based on a finite combination
of linear models, it generalizes well and does not overfit or limitedly overfits (as also
shown by our extensive set of experiments).
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Online Nonlinear Modeling via Self-Organizing Trees 5

2. Self-Organizing Trees for Regression Problems

In this section, we consider the sequential nonlinear regression problem, where we
observe a desired signal {dt}t≥1, dt ∈ R, and regression vectors {xt}t≥1, xt ∈ R

p, such
that we sequentially estimate dt by

d̂t = ft(xt),

where ft(·) is the adaptive nonlinear regression function defined by the SOT. At each
time t, the regression error of the algorithm is given by

et = dt − d̂t,

and the objective of the algorithm is to minimize the square error loss
∑T

t=1 e2
t .

2.1. Notation
We first introduce a labeling for the tree nodes following [23]. The root node is labeled
with an empty binary string λ and assuming that a node has a label n, where p is a
binary string, we label its upper and lower children as p1 and p0, respectively. Here we
emphasize that a string can only take its letters from the binary alphabet {0, 1}, where
0 refers to the lower child, and 1 refers to the upper child of a node. We also introduce
another concept, i.e., the definition of the prefix of a string. We say that a string
n′ = q′1 . . . q

′
l′ is a prefix to string n = q1 . . . ql if l′ ≤ l and q′i = qi for all i = 1, . . . , l′,

and the empty string λ is a prefix to all strings. Let P(n) represent all prefixes to the
string n, i.e., P(n) , {n0, . . . , nl}, where l , l(n) is the length of the string n, ni is the
string with l(ni) = i, and n0 = λ is the empty string, such that the first i letters of the
string n forms the string ni for i = 0, . . . , l.

For a given SOT of depth D, we let ND denote all nodes defined on this SOT and
LD denote all leaf nodes defined on this SOT. We also let βD denote the number of
partitions defined on this SOT. This yields the recursion β j+1 = β2

j + 1 for all j ≥ 1,
with the base case β0 = 1. For a given partition k, we let Mk denote the set of all
nodes in this partition.

For a node n ∈ ND (defined on the SOT of depth D), we define SD(n) , {ń ∈
ND | P(ń) = n} as the set of all nodes of the SOT of depth D, whose set of prefixes
include node n.

For a node n ∈ ND (defined on the SOT of depth D) with length l(n) ≥ 1, the total
number of partitions that contain n can be found by the following recursion

γd
(
l(n)

)
,

l(n)∏
j=1

βd− j.

For l(n) = 0 case (i.e., for n = λ), one can clearly observe that there exists only one
partition containing λ, therefore γd(0) = 1.
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6 Adaptive Learning Methods for Nonlinear System Modeling

For two nodes n, ń ∈ ND (defined on the SOT of depth D), we let ρ(n, ń) denote
the number of partitions that contain both n and ń. Trivially, if ń = n, then ρ(n, ń) =

γd(l(n)). If n , ń, then letting n̄ denote the longest prefix to both n and ń, i.e., the
longest string in P(n) ∩ P(ń), we obtain

ρ(n, ń) ,


γd(l(n)), if n = ń
γd(l(n))γd−l(n̄)−1(l(ń)−l(n̄)−1)

βd−l(n̄)−1
, if n < P(ń) ∪ SD(ń)

0, otherwise

. (0.1)

Since l(n̄) + 1 ≤ l(n) and l(n̄) + 1 ≤ l(ń) from the definition of the SOT, we naturally
have ρ(n, ń) = ρ(ń, n).

2.2. Construction of the Algorithm
For each node n on the SOT, we define a node predictor

d̂t,n = vT
t,nxt, (0.2)

whose parameter vt,n is updated using the online gradient descent algorithm. We also
define a separator function for each node p on the SOT except the leaf nodes (note that
leaf nodes don’t have any children) using the sigmoid function

st,n =
1

1 + exp(φT
t,nxt)

. (0.3)

We then define the prediction of any partition according to the hierarchical structure of
the SOT as the weighted sum of the prediction of the nodes in that partition, where the
weighting is determined by the separator functions of the nodes between the leaf node
and the root node. In particular, the prediction of the kth partition at time t is defined
as follows

d̂(k)
t =

∑
n∈Mk

(
d̂t,n

l(n)−1∏
i=0

sqi
t,ni

)
, (0.4)

where ni ∈ P(n) is the prefix to string n with length i − 1, qi is the ith letter of the string
n, i.e., ni+1 = niqi, and finally sqi

t,ni
denotes the value of the separator function at node

ni such that

sqi
t,ni
,

st,ni , if qi = 0
1 − st,ni , otherwise

(0.5)

with st,ni defined as in (0.3). We emphasize that we dropped n-dependency of qi and
ni to simplify notation. Using these definitions, we can construct the final estimate of
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Online Nonlinear Modeling via Self-Organizing Trees 7

our algorithm as

d̂t =
∑
k∈βD

w(k)
t d̂(k)

t , (0.6)

where w(k)
t represents the weight of partition k at time t.

Having found a method to combine the predictions of all partitions to generate the
final prediction of the algorithm, we next aim to obtain a low complexity representation
since there are O(1.52D

) different partitions defined on the SOT and (0.10) requires a
storage and computational complexity of O(1.52D

). To this end, we denote the product
terms in (0.4) as follows

δ̂t,n , d̂t,n

l(n)−1∏
i=0

sqi
t,ni
, (0.7)

where δ̂t,n can be viewed as the estimate of the node n at time t. Then (0.4) can be
rewritten as follows

d̂(k)
t =

∑
p∈Mk

δ̂t,n.

Since we now have a compact form to represent the tree and the outputs of each
partition, we next introduce a method to calculate the combination weights of O(1.52D

)
partitions in a simplified manner. To this end, we assign a particular linear weight to
each node. We denote the weight of node n at time t as wt,n and then we define the
weight of the kth partition as the sum of the weights of its nodes, i.e.,

w(k)
t =

∑
n∈Mk

wt,n,

for all k ∈ {1, . . . , βD}. Since we use online gradient descent to update the weight of
each partition, the weight of partition k is recursively updated as

w(k)
t+1 = w(k)

t + µtetd̂
(k)
t .

This yields the following recursive update on the node weights

wt+1,n = wt,n + µtetδ̂t,n, (0.8)

where δ̂t,n is defined as in (0.7). This result implies that instead of managing O(1.52D
)

memory locations, and makingO(1.52D
) calculations, only keeping track of the weights

of every node is sufficient, and the number of nodes in a depth-D model is |ND| =

2D+1 − 1. Therefore, we can reduce the storage and computational complexity from
O(1.52D

) to O(2D) by performing the update in (0.21) for all n ∈ ND.
Using these node predictors and weights, we construct the final estimate of our
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8 Adaptive Learning Methods for Nonlinear System Modeling

algorithm as follows

d̂t =

βd∑
k=1


 ∑

n∈Mk

wt,n


 ∑

n∈Mk

δ̂t,n


 .

Here, we observe that for arbitrary two nodes n, ń ∈ Nd, the product wt,nδ̂t,ń appears
ρ(n, ń) times in d̂t (cf. (0.1)). Hence, the combination weight of the estimate of the
node n at time t can be calculated as follows

κt,n =
∑
ń∈Nd

ρ(n, ń)wt,ń. (0.9)

Using the combination weight (0.9), we obtain the final estimate of our algorithm as
follows

d̂t =
∑

n∈ND

κt,n δ̂t,n. (0.10)

Note that (0.10) is equal to (0.6) with a storage and computational complexity ofO(4D)
instead of O(1.52D

).
As we derived all the update rules for the node weights and the parameters of

the individual node predictors, what remains is to provide an update scheme for the
separator functions. To this end, we use the online gradient descent update

φt+1,n = φt,n −
1
2
ηt∇e2

t (φt,n), (0.11)

for all nodes n ∈ ND \ LD, where ηt is the learning rate of the algorithm and ∇e2
t (φt,n)

is the derivative of e2
t (φt,n) with respect to φt,n. After some algebra, we obtain

φt+1,n = φt,n + ηtet
∂d̂t

∂st,n

∂st,n

∂φt,n
,

= φt,n + ηtet

 ∑
ń∈ND

κt,ń
∂δ̂t,ń

∂st,n

 ∂st,n

∂φt,n

= φt,n + ηtet


1∑

q=0

∑
ń∈SD(nq)

(−1)qκt,ń
δ̂t,ń

sq
t,n

 ∂st,n

∂φt,n
, (0.12)

where we use the logistic regression classifier as our separator function, i.e., st,n =
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Algorithm 1 Self-Organizing Tree Regressor (SOTR)
1: for t = 1 to n do
2: Calculate separator functions st,p, for all p ∈ ND \ LD using (0.14).
3: Calculate node predictors d̂t,p, for all p ∈ LD using (0.2).
4: Define αt,p =

∏l(p)
i=1 sqi

t,νi
and calculate δ̂t,p, for all p ∈ LD using (0.7).

5: Calculate combination weights κt,p, for all p ∈ LD using (0.9).
6: Construct the final estimate d̂t using (0.10).
7: Observe the error et = dt − d̂t.
8: Update the node predictors vt+1,p = vt,p + µtetαt,pxt for all p ∈ LD.
9: Update the node weights wt+1,p = wt,p + µtetδ̂t,p for all p ∈ LD.

10: Update the separator functions φt,p for all p ∈ ND \ LD using (0.12).
11: end for

(
1 + exp(xT

t φt,n)
)−1

. Therefore, we have

∂st,n

∂φt,n
= −

(
1 + exp(xT

t φt,n)
)−2

exp(xT
t φt,n)xt

= −st,n(1 − st,n)xt. (0.13)

Note that other separator functions can also be used in a similar way by simply cal-
culating the gradient with respect to the extended direction vector and plugging in
(0.12) and (0.13). We emphasize that ∇e2

t (φt,n) includes the product of st,n and 1 − st,n

terms, hence in order not to slow down the learning rate of our algorithm, we restrict
s+ ≤ st ≤ 1 − s+ for some 0 < s+ < 0.5. According to this restriction, we define the
separator functions as follows

st = s+ +
1 − 2s+

1 + exT
t φt

. (0.14)

According to the update rule in (0.12), the computational complexity of the introduced
algorithm results in O(m4d). This concludes the construction of the algorithm and a
pseudocode is given in Algorithm 1.

2.3. Convergence of the Algorithm
For Algorithm 1, we have the following convergence guarantee, which implies that our
predictor (given in Algorithm 1), asymptotically achieves the performance of the best
linear combination of the O(1.52D

) different adaptive models that can be represented
using a depth-D tree with a computational complexity O(p4D). We emphasize that
while constructing the algorithm, we refrain from any statistical assumptions on the
underlying data, and our algorithm works for any sequence of {dt}t≥1 with an arbitrary
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10 Adaptive Learning Methods for Nonlinear System Modeling

length of n. Furthermore, one can use this algorithm to learn the region boundaries and
then feed this information to the first algorithm to reduce computational complexity.

Theorem 1. Let {dt}t≥1 and {xt}t≥1 be arbitrary, bounded, and real-valued sequences.
The predictor d̂t given in Algorithm 1 when applied these sequences yields

T∑
t=1

(
dt − d̂t

)2
− min

w∈Rβd

T∑
t=1

(
dt − wT d̂t

)2
≤ O

(
log(T )

)
, (0.15)

for all T , when e2
t (w) is strongly convex ∀t, where d̂t = [d̂(1)

t , . . . , d̂(βd)
t ]T and d̂(k)

t rep-
resents the estimate of dt at time t for the adaptive model k = 1, . . . , βd.

Proof of this theorem can be found in Appendix A.1.

3. Self-Organizing Trees for Binary Classification Problems

In this section, we study online binary classification, where we observe feature vectors
{xt}t≥1 and determine their labels {yt}t≥1 in an online manner. In particular, the aim is
to learn a classification function ft(xt) with xt ∈ R

p and yt ∈ {−1, 1} such that when
applied in an online manner to any streaming data, the empirical loss of the classifier
ft(·), i.e.,

LT ( ft) ,
T∑

t=1

1{ ft(xt),dt}, (0.16)

is asymptotically as small as (after averaging over T ) the empirical loss of the best
partition classifier defined over the SOT of depth D. To be more precise, we measure
the relative performance of ft with respect to the performance of a partition classifier
f (k)
t , where k ∈ {1, . . . , βD}, using the following regret

RT ( ft; f (k)
t ) ,

LT ( ft) − LT ( f (k)
t )

T
, (0.17)

for any arbitrary length T . Our aim is then to construct an online algorithm with
guaranteed upper bounds on this regret for any partition classifier defined over the
SOT.

3.1. Construction of the Algorithm
Using the notations described in Section 2.1, the output of a partition classifier k ∈
{1, . . . , βD} is constructed as follows. Without loss of generality, suppose that the fea-
ture xt has fallen into the region represented by the leaf node n ∈ LD. Then, xt is
contained in the nodes n0, . . . , nD, where nd is the i letter prefix of n, i.e., nD = n and
n0 = λ. For example, if node nd is contained in partition k, then one can simply set
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f (k)
t (xt) = ft,nd (xt). Instead of making a hard selection, we allow an error margin for

the classification output ft,nd (xt) in order to be able to update the region boundaries
later in the proof. To achieve this, for each node contained in partition k, we define a
parameter called path probability to measure the contribution of each leaf node to the
classification task at time t. This parameter is equal to the multiplication of the separa-
tor functions of the nodes from the respective node to the root node, which represents
the probability that xt should be classified using the region classifier of node nd. This
path probability (similar to the node predictor definition in (0.7)) is defined as

Pt,nd (xt) ,
d−1∏
i=0

sqi+1
t,ni

(xt), (0.18)

where pqi+1
t,ni

(·) represents the value of the partitioning function corresponding to node ni

towards the qi+1 direction as in (0.5). We consider that the classification output of node
nd can be trusted with a probability of Pt,nd (xt). This and the other probabilities in our
development are independently defined for ease of exposition and gaining intuition,
i.e., these probabilities are not related to the unknown data statistics in any way and
they definitely cannot be regarded as certain assumptions on the data. Indeed, we do
not take any assumptions about the data source.

Intuitively, the path probability is low when the feature vector is close to the region
boundaries, hence we may consider to classify that feature vector by another node
classifier (e.g., the classifier of the sibling node). Using this path probabilities, we aim
to update the region boundaries by learning whether an efficient node classifier is used
to classify xt, instead of directly assigning xt to node nd and lose a significant degree
of freedom. To this end, we define the final output of each node classifier according to
a Bernoulli random variable with outcomes {− ft,nd (xt), ft,nd (xt)} where the probability
of the latter outcome is Pt,nd (xt). Although the final classification output of node nd is
generated according to this Bernoulli random variable, we continue to call ft,nd (xt) the
final classification output of node nd, with an abuse of notation. Then, the classification
output of the partition classifier is set to f (k)

t (xt) = ft,nd (xt).
Before constructing the SOT classifier, we first introduce certain definitions. Let

the instantaneous empirical loss of the proposed classifier ft at time t be denoted by
`t( ft) , 1{ ft(xt),yt}. Then, the expected empirical loss of this classifier over a sequence
of length T can be found by

LT ( ft) = E

 T∑
t=1

`t( ft)

 , (0.19)

with the expectation taken with respect to the randomization parameters of the clas-
sifier ft. We also define the effective region of each node nd at time t as follows
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12 Adaptive Learning Methods for Nonlinear System Modeling

Rt,nd ,
{
x : Pt,nd (x) ≥ (0.5)d

}
. Note that according to the aforementioned structure of

partition classifiers, node nd classifies an instance xt only if xt ∈ Rt,nd . Therefore, the
time accumulated empirical loss of any node n during the data stream is given by

LT,n ,
∑

t≤T :{xt}t≥1∈Rt,n

`t( ft,n). (0.20)

Similarly, the time accumulated empirical loss of a partition classifier k is L(k)
T ,∑

n∈Mk
LT,n.

We then use a mixture-of-experts approach to achieve the performance of the best
partition classifier that minimizes the accumulated classification error. To this end, we
set the final classification output of our algorithm as ft(xt) = f (k)

t with probability w(k)
t ,

where

w(k)
t =

1
Zt−1

2−J(k) exp
(
−b L(k)

t−1

)
,

b ≥ 0 is a constant controlling the learning rate of the algorithm, J(k) ≤ 2|L(k)| − 1
represents the number of bits required to code the partition k (which satisfies

∑βD
k=1 J(k) =

1), and Zt =
∑βD

k=1 2−J(k) exp
(
−b L(k)

t

)
is the normalization factor.

Although this randomized method can be used as the SOT classifier, in its current
form, it requires a computational complexity O(1.52D

p) since the randomization w(k)
t

is performed over the set {1, . . . , βD} and βD ≈ 1.52D
. However, the set of all possi-

ble classification outputs of these partitions has a cardinality as small as D + 1 since
xt ∈ Rt,nD for the corresponding leaf node nD (in which xt is included) and f (k)

t = ft,nd

for some d = 0, . . . ,D, ∀k ∈ {1, . . . , βD}. Hence, evaluating all the partition classifiers
in k at the instance xt to produce ft(xt) is unnecessary. In fact, the computational com-
plexity for producing ft(xt) can be reduced from O(1.52D

p) to O(Dp) by performing
the exact same randomization over ft,nd ’s using the new set of weights wt,nd , which can
be straightforwardly derived as follows

wt,nd =

βD∑
k=1

w(k)
t 1 f (k)

t (xt)= ft,nd (xt)
. (0.21)

To efficiently calculate (0.21) with complexity O(Dp), we consider the universal
coding scheme and let

Mt,n ,

exp
(
−bLt,n

)
, if n has depth D

1
2
[
Mt,n0Mt,n1 + exp

(
−bLt,n

)]
, otherwise

(0.22)

for any node n and observe that we have Mt,λ = Zt [23]. Therefore, we can use the
recursion (0.22) to obtain the denominator of the randomization probabilities w(k)

t .
To efficiently calculate the numerator of (0.21), we introduce another intermediate
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parameter as follows. Letting n′d denote the sibling of node nd, we recursively define

κt,nd ,


1
2 , if d = 0
1
2 Mt−1,n′d κt,nd−1 , if 0 < d < D
Mt−1,n′d κt,nd−1 , if d = D

, (0.23)

∀d ∈ {0, . . . ,D}, where xt ∈ Rt,nD . Using the intermediate parameters in (0.22) and
(0.23), it can be shown that we have

wt,nd =
κt,nd exp

(
−b Lt,nd

)
Mt,λ

. (0.24)

Hence, we can obtain the final output of the algorithm as ft(xt) = ft,nd (xt) with proba-
bility wt,nd , where d ∈ {0, . . . ,D} (i.e., with a computational complexity O(D)).

We then use the final output of the introduced algorithm and update the region
boundaries of the tree (i.e., organize the tree) to minimize the final classification error.
To this end, we minimize the loss E

[
`t( ft)

]
= E[1{ ft(xt),yt}] = 1

4 E
[
(yt − ft(xt))2

]
with

respect to the region boundary parameters, i.e., we use the stochastic gradient descent
method, as follows

φt+1,nd
= φt,nd

− η∇E
[
`t( ft)

]
= φt,nd

− (−1)qd+1 η (yt − ft(xt)) s
q′d+1
t,nd

(xt)

 D∑
i=d+1

ft,ni(xt)

 xt, (0.25)

∀d ∈ {0, . . . ,D − 1}, where η denotes the learning rate of the algorithm and q′d+1 repre-
sents the complementary letter to qd+1 from the binary alphabet {0, 1}. Defining a new
intermediate variable

πt,nd ,

 ft,nd (xt) , if d = D − 1
πt,nd+1 + ft,nd (xt) , if d < D − 1

, (0.26)

one can perform the update in (0.25) with a computational complexity O(p) for each
node nd, where d ∈ {0, . . . ,D − 1}, resulting in an overall computational complexity of
O(Dp) as follows

φt+1,nd
= φt,nd

− (−1)md+1 η (yt − ft(xt)) πt,nd s
q′d+1
t,nd

(xt) xt. (0.27)

This concludes the construction of the algorithm and the pseudocode of the SOT clas-
sifier can be found in 2.

3.2. Convergence of the Algorithm
In this section, we illustrate that the performance of Algorithm 2 is asymptotically
as well as the best partition classifier such that as T → ∞, we have RT ( ft; f (k)

t )→
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Algorithm 2 Self-Organizing Tree Classifier (SOTC)
1: for t = 1 to T do
2: Propagate {xt}t≥1 from the root to the leaf and obtain the visited nodes

n0, . . . , nD.
3: Calculate Pt,nd (xt) for all d ∈ 0, ...,D using (0.18).
4: Calculate wt,nd (xt) for all d ∈ 0, ...,D using (0.24).
5: Draw a node among n0, . . . , nD with probabilities wt,n0 , . . . ,wt,nD , respectively;

suppose that nd is drawn.
6: Draw a classification output {1,−1} with probabilities Pt,nd (xt) and 1 − Pt,nd (xt),

respectively; ft(xt) is equated to the selected output.
7: Update the region classifiers (perceptron) at the visited nodes [25].
8: `t( ft)← 1{ ft(xt),yt}

9: Update Lt,nd for all d ∈ 0, ...,D using (0.20).
10: Apply the recursion in (0.22) to update Mt+1,nd for all d ∈ 0, ...,D.
11: Update the separator parameters φ using (0.27).
12: end for

0. Hence, Algorithm 2 asymptotically achieves the performance of the best partition
classifier among O(1.52D

) different classifiers that can be represented using the SOT
of depth D with a significantly reduced computational complexity of O(p4D) without
any statistical assumptions on data.

Theorem 2. Let {xt}t≥1 and {yt}t≥1 be arbitrary and real-valued sequence of feature
vectors and their labels, respectively. Then, Algorithm 2, when applied to these data
sequences, sequentially yields

max
k∈{1,...,βD}

E
[
RT ( ft; f (k)

t )
]
≤ O


√

2D

T

 , (0.28)

for all T with a computational complexity O(Dp), where p represents the dimension-
ality of the feature vectors and the expectation is with respect to the randomization
parameters.

Proof of this theorem can be found in Appendix A.2.

4. Numerical Results

In this section, we illustrate the performance of SOTs under different scenarios with
respect to state-of-the-art methods.
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4.1. Numerical Results for Regression Problems
Throughout this section, “SOTR” represents the self-organizing tree regressor defined
in Algorithm 1. “CTW” represents the context tree weighting algorithm of [16],
“OBR” represents the optimal batch regressor, “VF” represents the truncated Volterra
filter [1], “LF” represents the simple linear filter, “B-SAF” and “CR-SAF” represent
the Beizer and the Catmul-Rom spline adaptive filter of [2], respectively, “FNF” and
“EMFNF” represent the Fourier and even mirror Fourier nonlinear filter of [3], respec-
tively. Finally, “GKR” represents the Gaussian-Kernel regressor and it is constructed
using n node regressors, say d̂t,1, . . . , d̂t,n, and a fixed Gaussian mixture weighting (that
is selected according to the underlying sequence in hindsight), giving

d̂t =

n∑
i=1

f
(
xt;µi,Σi

)
d̂t,i,

where d̂t,i = vT
t,ixt and

f
(
xt;µi,Σi

)
,

1
2π
√
|Σi|

e−
1
2 (xt−µi)

TΣ
−1
i (xt−µi),

for all i = 1, . . . , n.
For a fair performance comparison, in the corresponding experiments in Subsec-

tion 4.1.2, the desired data and the regressor vectors are normalized between [−1, 1]
since the satisfactory performance of the several algorithms require the knowledge on
the upper bounds (such as the B-SAF and the CR-SAF) and some require these upper
bounds to be between [−1, 1] (such as the FNF and the EMFNF). Moreover, in the
corresponding experiments in Subsection 4.1.1, the desired data and the regressor vec-
tors are normalized between [−1, 1] for the VF, the FNF, and the EMFNF algorithms
due to the aforementioned reason. The regression errors of these algorithms are then
scaled back to their original values for a fair comparison.

Considering the illustrated examples in the respective papers [2, 3, 16], the orders
of the FNF and the EMFNF are set to 3 for the experiments in Subsection 4.1.1 and
2 for the experiments in Subsection 4.1.2. The order of the VF is set to 2 for all
experiments. Similarly, the depth of the trees for the SOTR and CTW algorithms
is set to 2 for all experiments. For these tree based algorithms, the feature space
is initially partitioned by the direction vectors φt,n = [φ(1)

t,n , . . . , φ
(p)
t,n ]T for all nodes n ∈

ND \ LD, where φ(i)
t,n = −1 if i ≡ l(n) (mod D), e.g., when D = p = 2, we have the four

quadrants as the four leaf nodes of the tree. Finally, we use cubic B-SAF and CR-SAF
algorithms, whose number of knots are set to 21 for all experiments. We emphasize
that both these parameters and the learning rates of these algorithms are selected to
give equal rate of performance and convergence.
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Figure 0.3 Regression error performances for the second order piecewise linear model in (0.29).

4.1.1. Mismatched Partitions
In this subsection, we consider the case where the desired data is generated by a piece-
wise linear model that mismatches with the initial partitioning of the tree based algo-
rithms. Specifically, the desired signal is generated by the following piecewise linear
model

dt =


wT xt + πt, if φT

0 xt ≥ 0.5 and φT
1 xt ≥ 1

−wT xt + πt, if φT
0 xt ≥ 0.5 and φT

1 xt < 1
−wT xt + πt, if φT

0 xt < 0.5 and φT
2 xt ≥ −1

wT xt + πt, if φT
0 xt < 0.5 and φT

2 xt < −1

, (0.29)

where w = [1, 1]T , φ0 = [4, −1]T , φ1 = [1, 1]T , φ2 = [1, 2]T , xt = [x1,t, x2,t]T , πt is
a sample function from a zero mean white Gaussian process with variance 0.1, x1,t

and x2,t are sample functions of a jointly Gaussian process of mean [0, 0]T and vari-
ance I2. The learning rates are set to 0.005 for SOTR and CTW, 0.1 for FNF, 0.025
for B-SAF and CR-SAF, 0.05 for EMFNF and VF. Moreover, in order to match the
underlying partition, the mass points of GKR are set to µ1 = [1.4565, 1.0203]T , µ2 =

[0.6203, −0.4565]T , µ3 = [−0.5013, 0.5903]T , and µ4 = [−1.0903, −1.0013]T with the
same covariance matrix in the previous example.

Figure 0.3 shows the normalized time accumulated regression error of the pro-
posed algorithms. We emphasize that the SOTR algorithm achieves a better error
performance compared to its competitors. Comparing the performances of the SOTR
and CTW algorithms, we observe that the CTW algorithm fails to accurately predict
the desired data, whereas the SOTR algorithm learns the underlying partitioning of
the data, which significantly improves the performance of SOTR. This illustrates the
importance of the initial partitioning of the regressor space for tree based algorithms
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Figure 0.4 Changes in the boundaries of the leaf nodes of the SOT of depth 2 generated by the
SOTR algorithm at time instances t = 0, 1000, 2000, 5000, 20000, 50000. The separator functions
adaptively learn the boundaries of the piecewise linear model in (0.29).

to yield a satisfactory performance.
In particular, the CTW algorithm converges to the best batch regressor having the

predetermined leaf nodes (i.e., the best regressor having the four quadrants of two di-
mensional space as its leaf nodes). However that regressor is sub-optimal since the
underlying data is generated using another constellation, hence their time accumu-
lated regression error is always lower bounded by O(1) compared to the global opti-
mal regressor. The SOTR algorithm, on the other hand, adapts its region boundaries
and captures the underlying unevenly rotated and shifted regressor space partitioning,
perfectly. Figure 0.4 shows how our algorithm updates its separator functions and
illustrates the nonlinear modeling power of SOTs.

4.1.2. Chaotic Signals
In this subsection, we illustrate the performance of our algorithm when estimating a
chaotic data generated by the Henon map and the Lorenz attractor [26].

First, we consider a zero-mean sequence generated by the Henon map, a chaotic
process given by

dt = 1 − ζ d2
t−1 + η dt−2, (0.30)

and known to exhibit chaotic behavior for the values of ζ = 1.4 and η = 0.3. The
desired data at time t is denoted as dt whereas the extended regressor vector is xt =

[dt−1, dt−2, 1]T , i.e., we consider a prediction framework. The learning rates are set to
0.025 for B-SAF and CR-SAF, whereas it is set to 0.05 for the rest.
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Figure 0.5 Regression error performances of the proposed algorithms for the signal generated
by the Henon map in (0.30) (left figure) and for the Lorenz attractor in (0.31) with parameters
dt = 0.01, ρ = 28, σ = 10, and β = 8/3 (right figure).

Figure 0.5 (left plot) shows the normalized regression error performance of the pro-
posed algorithms. One can observe that the algorithms whose basis functions do not
include the necessary quadratic terms and the algorithms that rely on a fixed regressor
space partitioning yield unsatisfactory performance. On the other hand, we emphasize
that VF can capture the salient characteristics of this chaotic process since its order is
set to 2. Similarly, FNF can also learn the desired data since its basis functions can
well approximate the chaotic process. The SOTR algorithm, however, uses a piece-
wise linear modeling and still achieves the asymptotically same performance as the
VF algorithm, while outperforming the FNF algorithm.

Second, we consider the chaotic signal set generated using the Lorenz attractor
[26] that is defined by the following three discrete time equations:

xt = xt−1 + (σ(y − x))dt

yt = yt−1 + (xt−1(ρ − zt−1) − yt−1)dt (0.31)
zt = zt−1 + (xt−1yt−1 − βzt−1)dt,

where we set dt = 0.01, ρ = 28, σ = 10, and β = 8/3 to generate the well-known
chaotic solution of the Lorenz attractor. In the experiment, xt is selected as the de-
sired data and the two dimensional region represented by yt, zt is set as the regressor
space, that is, we try to estimate xt with respect to yt and zt. The learning rates are set
to 0.01 for all algorithms.

Figure 0.5 (right plot) illustrates the nonlinear modeling power of the SOTR algo-
rithm even when estimating a highly nonlinear chaotic signal set. As can be observed
from Figure 0.5, the SOTR algorithm significantly outperforms its competitors and
achieves a superior error performance since it tunes its region boundaries to the opti-
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Table 0.1 Average classification errors (in percentage) of algorithms on benchmark datasets.

Data Set PER OZAB OGB OSB TNC SOTC

Heart 24.66 23.96 23.28 23.63 21.75 20.09
Breast Cancer 5.77 5.44 5.71 5.23 4.84 4.65
Australian 20.82 20.26 19.70 20.01 15.92 14.86
Diabetes 32.25 32.43 33.49 31.33 26.89 25.75
German 32.45 31.86 32.72 31.86 28.13 26.74
BMC 47.09 45.72 46.92 46.37 25.37 17.03
Splice 33.42 32.59 32.79 32.81 18.88 18.56
Banana 48.91 47.96 48.00 48.84 27.98 17.60

mal partitioning of the regressor space, whereas the performances of the other algo-
rithms directly rely on the initial selection of the basis functions and/or tree structures
and partitioning.

4.2. Numerical Results for Classification Problems
4.2.1. Stationary Data
In this section, we consider stationary classification problems and compare the SOTC
algorithm with the following methods: Perceptron - “PER” [25], Online AdaBoost -
“OZAB” [27], Online GradientBoost - “OGB” [28], Online SmoothBoost - “OSB”
[29], and Online Tree based Non-adaptive Competitive Classification - “TNC” [22].
The parameters for all of these compared methods are set as in their original propos-
als. For the method Online GradientBoost - “OGB” [28] which uses K weak learner
per M selectors essentially resulting in MK weak learners in total, we use K = 1, as
in [29], for a fair comparison along with the logit loss that has been shown to consis-
tently outperform other choices in [28]. The TNC algorithm is non-adaptive, i.e., not
self organizing, in terms of the space partitioning, which we use in our comparisons
to illustrate the gain due the proposed self-organizing structure. We use the percep-
tron algorithm as the weak learners and node classifiers in all algorithms. We set the
learning rate of the SOTC algorithm to η = 0.05 in all of our stationary as well as non-
stationary data experiments. We use N = 100 weak learners for the boosting methods,
whereas we use a depth-4 tree in SOTC and TNC algorithms, which corresponds to
31 = 25 − 1 local node classifiers. The SOTC algorithm has linear complexity in the
depth of the tree, whereas the compared methods have linear complexity in the number
of weak learners.

As can be observed in Table 0.1, the SOTC algorithm consistently outperforms the
compared methods. In particular, the compared methods essentially fail classifying
Banana and BMC datasets, which indicates that these methods are not able to extend
to complex nonlinear classification problems. On the contrary, the SOTC algorithm
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Figure 0.6 Performances of the algorithms in case of the abrupt and continuous concept
changes in the BMC dataset. On the left figure, at the 600th instance, there is a 180◦ clock-
wise rotation around the origin that is effectively a label flip. On the right figure, at each instance,
there is a 180◦/1200 clock-wise rotation around the origin.

successfully models these complex nonlinear relations with piecewise linear curves
and provides a superior performance. In general, the SOTC algorithm has a signif-
icantly better transient characteristics and the TNC algorithm occasionally performs
poorly (such as on BMC and Banana data sets) depending on the mismatch between
the initial partitions defined on the tree and the underlying optimal separation of the
data. This illustrates the importance of learning the region boundaries in piecewise
linear models.

4.2.2. Non-Stationary Data: Concept Change/Drift
In this section, we apply the SOTC algorithm to non-stationary data, where there might
be continuous or sudden/abrupt changes in the source statistics, i.e., concept change.
Since the SOTC algorithm processes data in a sequential manner, we choose the Dy-
namically Weighted Majority Algorithm (DWM) [30] with perceptron (DWM-P) or
naive bayes (DWM-N) experts for the comparison, since the DWM algorithm is also
an online algorithm. Although the batch algorithms do not truly fit into our framework,
we still devise an online version of the tree-based local space partitioning algorithm
[24] (which also learns the space partitioning and the classifier using the coordinate
ascent approach) using a sliding window approach and abbreviate it as the WLSP algo-
rithm. For the DWM method, which allows the addition and removal of experts during
the stream, we set the initial number of experts to 1, where the maximum number of
experts is bounded by 100. For the WLSP method, we use a window size of 100. The
parameters for these compared methods are set as in their original proposals.

We run these methods on the BMC dataset (1200 instances, Figure 0.6), where
a sudden/abrupt concept change is obtained by rotating the feature vectors (clock-
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Table 0.2 Running times (in seconds) of the compared methods when processing the BMC data
set on a daily-use machine (Intel(R) Core(TM) i5-3317U CPU @ 1.70 GHz with 4 GB memory).

PER OZAB OGB OSB TNC DWM-P DWM-N WLSP SOTC

0.06 12.90 3.57 3.91 0.43 2.06 6.91 68.40 0.62

wise around the origin) 180◦ after the 600th instance. This is effectively equivalent to
flipping the label of the feature vectors, hence the resulting dataset is denoted as BMC-
F. For a continuous concept drift, we rotate each feature vector 180◦/1200 starting
from the beginning; and the resulting dataset is denoted as BMC-C. In Figure 0.6, we
present the classification errors for the compared methods over 1000 trials. At each
10th instance, we test the algorithms with 1200 instances drawn from the active set of
statistics (active concept).

Since BMC data set is non-Gaussian with strongly nonlinear class separations, the
DWM method does not perform well on the BMC-F data. For instance, DWM-P op-
erates with an error rate fluctuating around 0.48 − 0.49 (random guess). This results
since the performance of the DWM method is directly dependent on the expert suc-
cess and observe that both base learners (perceptron or the naive bayes) fail due to
the high separation complexity in the BMC-F data. On the other hand, the WLSP
method quickly converges to steady state, however it is also asymptotically outper-
formed by the SOTC algorithm in both experiments. Increasing the window size is
clearly expected to boost the performance of WLSP, however at the expense of an in-
creased computational complexity. It is already significantly slower than the SOTC
method even when the window size is 100 (for a more detailed comparison see Table
0.2). When the performance of the WLSP method is significantly worse on the BMC-
C data set compared to the BMC-F data set, since in the former scenario, WLSP is
trained with a batch data of a continuous mixture of concepts in the sliding windows.
Under this continuous concept drift, the SOTC method always (not only asymptoti-
cally as in the case of the BMC-F data set) performs better than the WLSP nethod.
Hence, the sliding window approach is sensitive to the continuous drift. Our discus-
sion about the DWM method on the concept change data (BMC-F) remains valid in
the case of the concept drift (BMC-C) as well. In these experiments, the power of
self-organizing trees is obvious as the SOTC algorithm almost always outperforms the
TNC algorithm. We also observe from Table 0.2 that the SOTC algorithm is com-
putationally very efficient and the cost of region updates (compared with respect to
the TNC algorithm) does not increase the computational complexity of the algorithm
significantly.
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Appendix
A.1. Proof of Theorem 1

For the SOT of depth D, suppose d̂(k)
t , k = 1, . . . , βd, are obtained as described in Sec-

tion 2.2. To achieve the upper bound in (0.15), we use the online gradient descent
method and update the combination weights as

wt+1 = wt −
1
2
ηt∇e2

t (wt) = wt + ηtet d̂t, (.32)

where ηt is the learning rate of the online gradient descent algorithm. We derive an
upper bound on the sequential learning regret Rn, which is defined as

RT ,
T∑

t=1

e2
t (wt) −

T∑
t=1

e2
t (w∗n),

where w∗T is the optimal weight vector over T , i.e.,

w∗T , arg min
w∈Rβd

T∑
t=1

e2
t (w).

Following [31], using Taylor series approximation, for some point zt on the line seg-
ment connecting wt to w∗T , we have

e2
t (w∗T ) = e2

t (wt) +
(
∇e2

t (wt)
)T

(w∗T − wt) +
1
2

(w∗T − wt)T∇2e2
t (zt)(w∗T − wt). (.33)

According to the update rule in (.32), at each iteration the update on weights are per-
formed as wt+1 = wt −

ηt
2 ∇e2

t (wt). Hence, we have∣∣∣∣∣∣wt+1 − w∗T
∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣∣∣wt −
ηt

2
∇e2

t (wt) − w∗T
∣∣∣∣∣∣∣∣∣∣2

=
∣∣∣∣∣∣wt − w∗T

∣∣∣∣∣∣2 − ηt

(
∇e2

t (wt)
)T

(wt − w∗T ) +
η2

t

4

∣∣∣∣∣∣∇e2
t (wt)

∣∣∣∣∣∣2 .
This yields(

∇e2
t (wt)

)T
(wt − w∗T ) =

∣∣∣∣∣∣wt − w∗T
∣∣∣∣∣∣2 − ∣∣∣∣∣∣wt+1 − w∗T

∣∣∣∣∣∣2
ηt

+ ηt

∣∣∣∣∣∣∇e2
t (wt)

∣∣∣∣∣∣2
4

.

Under the mild assumptions that
∣∣∣∣∣∣∇e2

t (wt)
∣∣∣∣∣∣2 ≤ A2 for some A > 0 and e2

t (w∗T ) is λ-
strong convex for some λ > 0 [31], we achieve the following upper bound

e2
t (wt) − e2

t (w∗T ) ≤

∣∣∣∣∣∣wt − w∗T
∣∣∣∣∣∣2 − ∣∣∣∣∣∣wt+1 − w∗T

∣∣∣∣∣∣2
ηt

−
λ

2

∣∣∣∣∣∣wt − w∗T
∣∣∣∣∣∣2 + ηt

A2

4
. (.34)



i
i

“chapter10” — 2017/4/27 — 23:13 — page 23 — #23 i
i

i
i

i
i

By selecting ηt = 2
λt and summing up the regret terms in (.34), we get

Rn =

n∑
t=1

{
e2

t (wt) − e2
t (w∗T )

}
≤

n∑
t=1

∣∣∣∣∣∣wt − w∗T
∣∣∣∣∣∣2 ( 1

ηt
−

1
ηt−1
−
λ

2

)
+

A2

4

n∑
t=1

ηt

=
A2

4

n∑
t=1

2
λt
≤

A2

2λ
(
1 + log(n)

)
.

A.2. Proof of Theorem 2

Since Zt is a summation of terms that are all positive, we have Zt ≥ 2−J(k) exp
(
−b L(k)

t

)
and after taking the logarithm of both sides and rearranging the terms, we get

−
1
b

log ZT ≤ L(k)
T +

J(k) log 2
b

(.35)

for all k ∈ {1, . . . , βD} at the (last) iteration at time T . We then make the following
observation

ZT =

T∏
t=1

Zt

Zt−1
=

T∏
t=1

βD∑
k=1

2−J(k) exp
(
−b L(k)

t−1

)
Zt−1

exp
(
−b `t( f (k)

t )
)

≤ exp
(
−b LT ( ft) +

Tb2

8

)
, (.36)

where the second line follows from the definition of Zt and the last line follows from
the Hoeffding’s inequality by treating the w(k)

t = 2−J(k) exp
(
−b L(k)

t−1

) /
Zt−1 terms as the

randomization probabilities. Note that LT ( ft) represents the expected loss of the final
algorithm, cf. (0.19). Combining (.35) and (.36), we obtain

LT ( ft)
T

≤
L(k)

T

T
+

J(k) log 2
Tb

+
b
8
,

and choosing b =
√

2D/T , we find the desired upper bound in (0.28) since J(k) ≤
2D+1 − 1, for all k ∈ {1, . . . , βD}.

ACKNOWLEDGMENTS
The authors would like to thank Huseyin Ozkan for his contributions in this work.

REFERENCE
1. M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems. John Wiley & Sons, NJ, 1980.

c© Elsevier Ltd.
All rights reserved. 23



i
i

“chapter10” — 2017/4/27 — 23:13 — page 24 — #24 i
i

i
i

i
i

24 Adaptive Learning Methods for Nonlinear System Modeling

2. M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini. Nonlinear spline adaptive filtering. Signal
Processing, 93(4):772 – 783, 2013.

3. A. Carini and G. L. Sicuranza. Fourier nonlinear filters. Signal Processing, 94(0):183 – 194, 2014.
4. N. D. Vanli, M. O. Sayin, I. Delibalta, and S. S. Kozat. Sequential nonlinear learning for distributed

multiagent systems via extreme learning machines. IEEE Transactions on Neural Networks and
Learning Systems, 28(3):546–558, March 2017.

5. D. P. Helmbold and R. E. Schapire. Predicting nearly as well as the best pruning of a decision tree.
Mach. Learn., 27(1):51–68, 1997.

6. E. Takimoto, A. Maruoka, and V. Vovk. Predicting nearly as well as the best pruning of a decision
tree through dyanamic programming scheme. Theoretical Computer Science, 261:179–209, 2001.

7. E. Takimoto and M. K. Warmuth. Predicting nearly as well as the best pruning of a planar decision
graph. Theoretical Computer Science, 288:217–235, 2002.

8. D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.
9. A. H. Sayed. Fundamentals of Adaptive Filtering. John Wiley & Sons, NJ, 2003.

10. S. Dasgupta and Y. Freund. Random projection trees for vector quantization. IEEE Transactions on
Information Theory, 55(7):3229–3242, 2009.

11. W.-Y. Loh. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 1(1):14–23, 2011.

12. L. Brieman, J. Friedman, C. J. Stone, and R. A. Olsen. Classification and Regression Trees. Chapman
& Hall, 1984.

13. J. Gama. Functional trees. Machine Learning, 55(3):219–250, 2004.
14. O. J. J. Michel, A. O. Hero, and A.-E. Badel. Tree-structured nonlinear signal modeling and predic-

tion. IEEE Trans. Signal Process., 47(11):3027–3041, Nov 1999.
15. H. Ozkan, N. D. Vanli, and S. S. Kozat. Online classification via self-organizing space partitioning.

IEEE Transactions on Signal Processing, 64(15):3895–3908, Aug 2016.
16. S. S. Kozat, A. C. Singer, and G. C. Zeitler. Universal piecewise linear prediction via context trees.

IEEE Trans. Signal Process., 55(7):3730–3745, 2007.
17. N. D. Vanli, M. O. Sayin, and S. S. Kozat. Predicting nearly as well as the optimal twice differentiable

regressor. CoRR, abs/1401.6413, 2014.
18. A. V. Aho and N. J. A. Sloane. Some doubly exponential sequences. Fibonacci Quarterly, 11:429–

437, 1970.
19. N. D. Vanli, K. Gokcesu, M. O. Sayin, H. Yildiz, and S. S. Kozat. Sequential prediction over hierar-

chical structures. IEEE Transactions on Signal Processing, 64(23):6284–6298, Dec 2016.
20. C. Scott and R. D Nowak. Minimax-optimal classification with dyadic decision trees. IEEE Trans.

Inf. Theory, 52(4):1335–1353, 2006.
21. C. Strobl, A.-L. Boulesteix, and T. Augustin. Unbiased split selection for classification trees based

on the gini index. Computational Statistics & Data Analysis, 52(1):483–501, 2007.
22. H. Ozkan, M. A. Donmez, O. S. Pelvan, A. Akman, and S. S. Kozat. Competitive and online piece-

wise linear classification. In IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 3452–3456, May 2013.

23. F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context-tree weighting method: basic
properties. IEEE Transactions on Information Theory, 41(3):653–664, 1995.

24. J. Wang and V. Saligrama. Local supervised learning through space partitioning. In Advances in
Neural Information Processing Systems (NIPS), pages 91–99. 2012.

25. Y. Freund and R. E Schapire. Large margin classification using the perceptron algorithm. Mach.
Learn., 37(3):277–296, 1999.

26. E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130–141,
1963.

27. N. C. Oza and S. Russell. Online bagging and boosting. In Artificial Intelligence and Statistics, pages
105–112, 2001.

28. C. Leistner, A. Saffari, P. M. Roth, and H. Bischof. On robustness of on-line boosting-a competitive
study. In IEEE 12th International Conference on Computer Vision Workshops, pages 1362–1369,
2009.



i
i

“chapter10” — 2017/4/27 — 23:13 — page 25 — #25 i
i

i
i

i
i

Online Nonlinear Modeling via Self-Organizing Trees 25

29. S.-T. Chen, H.-T. Lin, and C.-J. Lu. An online boosting algorithm with theoretical justifications.
International Conference on Machine Learning, 2012.

30. J. Zico Kolter and Marcus Maloof. Dynamic weighted majority- an ensemble method for drifting
concepts. J. Mach. Learn. Res., 8:2755–2790, 2007.

31. E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimization.
Mach. Learn., 69(2-3):169–192, 2007.


