Time: 10:00-12:00

STUDENT NO:

Math 206 Complex Calculus - Midterm Exam I

1	2	3	4	TOTAL
25	25	25	25	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 4 questions on your exam booklet.

No correct answer without a satisfactory reasoning is accepted. Show your work in detail.

Write your name on the top of every page.

Q-1) Find the value of $\frac{d}{dz}sin(cosh^2z)$ at $z=i\pi/4$.

Solution: $\frac{d}{dz}sin(cosh^2z) = 2cos(cosh^2z)coshzsinhz$ and $cosh(i\pi/4) = cos(\pi/4) = 1/\sqrt{2}$, $sinh(i\pi/4) = isin(\pi/4) = i/\sqrt{2}$ so that

$$\frac{d}{dz}\sin(\cosh^2 z)|_{z=i\pi/4} = i\cos(1/2).$$

Q-2) Find the image in the w=u+iv plane of the region $0 \le x \le ln(2), \ 0 \le y \le \pi$ in the z=x+iy plane under the transformation $w=e^z$.

Solution: The image is the closed region in the upper half uv-plane bounded by semicircles of radii 1 and 2 and the line segments $-2 \le x \le -1$ and $1 \le x \le 2$ on the real line.

Q-3) Find the principal values of (a) $Log(-\sqrt{3}+i)^3$ and (b) $(-3)^i$. Give your answers in the form a+ib.

Solution: (a) We have $(-\sqrt{3} + i)^3 = 8i$. Hence

$$log(-\sqrt{3}+i)^3 = ln(8) + i(\pi/2 + 2n\pi)$$

for any integer n with principal value

$$Log(-\sqrt{3}+i)^3 = ln \, 8 + i\pi/2.$$

(b) The principal value is $(-3)^i = exp[i Log(-3)] = exp(i \ln 3 - \pi) = e^{-\pi}[cos(\ln 3) + i sin(\ln 3)].$

- **Q-4)** Determine all solutions in rectangular form to the equation $\sin z = -i$ (a) by equating the real and imaginary parts of two sides and (b) by using the inverse of the complex sine function.
 - (a) $\sin z = -i$ if and only if $\sin x \cosh y = 0$, $\cos x \sinh y = -1$. The latter holds if and only if $x = n\pi$ and $\sinh(y) = 1$ when n is odd and $\sinh(y) = -1$ when n is even. Now, $\sinh(y) = \frac{1}{2}(e^y e^{-y}) = 1$ gives $y = \ln(1 + \sqrt{2})$. Since sinh function has symmetry w.r.t. the origin, we also have that $\sinh(y) = -1$ implies $y = -\ln(1 + \sqrt{2})$. Combining

$$\sin z = -i \text{ iff } z = n\pi - i(-1)^n \ln(1 + \sqrt{2}),$$

for any integer n.

(b) See the Example in Section 35 of the textbook.