Date. November 21, 2000, Tuesday NAME.....

Time: 10:40-12:10

STUDENT NO:

Math 206 Complex Calculus - Midterm Exam II

PLEASE READ:

This is a closed-book exam. Check that there are 4 questions on your exam booklet. No correct answer without a satisfying reasoning is accepted. Show your work in detail. Write your name on the top of every page.

Q-1) Find two different Laurent series expansions for the function

$$f(z) = \frac{1}{z^3 (1-z)^2}$$

and indicate the regions where each expansion is valid.

Solution: f(z) is analytic in two annular domains $D_1: 0 < |z| < 1$ and $D_2: 0 < |z-1| < 1$. We thus have the Laurent series expansion in D_1 as

$$f(z) = \frac{1}{z^3} \frac{d}{dz} \sum_{n=0}^{\infty} z^n = \frac{1}{z^3} \sum_{n=1}^{\infty} n \, z^{n-1} = \frac{1}{z^3} + \frac{2}{z^2} + \frac{3}{z} + \sum_{k=0}^{\infty} (k+4) z^k,$$

where we used the fact that $\frac{1}{(1-z)^2} = \frac{d}{dz} \frac{1}{1-z}$. In D_2 , we have

$$f(z) = \frac{1}{(1-z)^2} \frac{1}{[1-(1-z)]^3}.$$

Now,

$$\frac{d^2}{dw^2} \frac{1}{1-w} = \frac{2}{(1-w)^3},$$

so that

$$\frac{2}{[1-(1-z)]^3} = \frac{d^2}{dz^2} \sum_{n=0}^{\infty} (1-z)^n = \sum_{n=2}^{\infty} n(n-1)(1-z)^{n-2}.$$

This gives

$$f(z) = \frac{1}{2} \sum_{n=2}^{\infty} n(n-1)(1-z)^{n-4} = \sum_{k=-2}^{\infty} (k+3)(k+4)(1-z)^k \quad (0 < |z-1| < 1).$$

Q-2) Determine the residue at every isolated singularity of the functions

(10pts.) (i)
$$f(z) = \frac{1}{(z^3 + 3z^2 + 3z + 1)^2},$$
(15pts.) (ii)
$$g(z) = \frac{z - 1}{z(z - 2)}.$$

Solution: (i) The only (isolated) singularity of f(z) is at z = -1 and

$$f(z) = \frac{1}{(z+1)^6}$$

is already in Laurent series form with region of validity $0 < |z+1| < \infty$. The residue is hence $b_1 = 0$. (ii) There are two isolated singularities of g(z) at z = 0 and z = 2. To determine $Res_{z=0}g(z)$, we write

$$g(z) = (\frac{z-1}{z})(\frac{1}{2})(\frac{-1}{1-z/2}) = \frac{1}{2}(\frac{1}{z}-1)\sum_{n=0}^{\infty} \frac{z^n}{2^n} \ (|z|<2),$$

so that $Res_{z=0}g(z)=1/2$. To determine $Res_{z=2}g(z)$, we write

$$g(z) = \left(\frac{z-1}{z-2}\right)\left(\frac{1}{2+(z-2)}\right) = \left(1 + \frac{1}{z-2}\right)\frac{1}{2}\sum_{n=0}^{\infty} (-1)^n \frac{(z-2)^n}{2^n} \left(|z-2| < 2\right),$$

so that $Res_{z=2}g(z) = 1/2$.

Q-3) Use MacLaurin series expansions of sin(z) and $\frac{1}{1+z}$ to determine the residue at z=0 of

$$\frac{1}{(1+z)\sin(z)}.$$

Solution: We have

$$\frac{1}{1+z} = \sum_{n=0}^{\infty} (-1)^z z^n = 1 - z + z^2 - z^3 + \dots \quad (|z| < \infty),$$

$$sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} = z - \frac{z^3}{2} + \frac{z^5}{6} - \dots \ (|z| < \infty),$$

so that by long dividing the first by the second , we get

$$\frac{1}{(1+z)\sin(z)} = \frac{1}{z} - 1 + \frac{3z}{2} - \dots \ (0 < |z| < \infty),$$

This gives $Res_{z=0} \frac{1}{(z+1)sin(z)} = 1$.

Q-4) Find the value of the integrals

(10pts.) (i)
$$\int_C \frac{z e^z Log(z)}{(z-1)^3} dz$$
,

where C is the positively oriented circle |z - 1| = 1/2,

$$(15pts.) (ii) \int_C \frac{z^{99}}{2 z^{100} + 1} dz,$$

when C is the positively oriented circle |z| = 1.

Solution: (i) We use Cauchy's generalized integral formula with $z_0 = 1, n = 2$, and $f(z) = z e^z Log(z)$. Since $f^{(1)}(z) = z e^z Log(z) + e^z Log(z) + e^z$ and $f^{(2)}(z) = z e^z Log(z) + 2 e^z Log(z) + 2 e^z + z^{-1} e^z$, we obtain

$$\int_C \frac{z e^z Log(z)}{(z-1)^3} dz = \frac{i2\pi}{2!} f^{(2)}(1) = i3e\pi.$$

(ii) Here, we use the fact that $f(z) = \frac{z^{99}}{2z^{100}+1}$ is analytic outside the circle |z| = 1 and has a finite number of isolated signlarities inside it. Hence,

$$\int_C \frac{z^{99}}{2z^{100}+1} dz = i2\pi \operatorname{Res}_{z=0} \left[\frac{1}{z^2} f(\frac{1}{z}) \right].$$

Now

$$\frac{1}{z^2}f(\frac{1}{z}) = \frac{z^{100-99-2}}{2+z^{100}} = \frac{1}{z(2+z^{100})} = \frac{1}{2z}\sum_{n=0}^{\infty} (-1)^n \frac{z^{100n}}{2^n}, \quad (0 < |z| < 2),$$

and we get $Res_{z=0} \left[\frac{1}{z^2} f(\frac{1}{z}) \right] = 1/2$, or,

$$\int_C \frac{z^{99}}{2z^{100} + 1} \, dz = i\pi.$$