
MATH 225 Linear Algebra and Differential Equations 

Fall 2007 MATLAB Homework 2 Solutions 
1. (a) Since the Hilbert matrices are nonsingular, it should reduce to the identity matrix. 
>> H8=hilb(8); 
>> R8=rref(H8); 
>> R8 
R8 = 
     1     0     0     0     0     0     0     0 
     0     1     0     0     0     0     0     0 
     0     0     1     0     0     0     0     0 
     0     0     0     1     0     0     0     0 
     0     0     0     0     1     0     0     0 
     0     0     0     0     0     1     0     0 
     0     0     0     0     0     0     1     0 
     0     0     0     0     0     0     0     1 

H8 is OK! 
 
>> H12=hilb(12); 
>> R12=rref(H12); 

We see that last R12≠I; its last column is not equal to e12 and its last row is zero.  
For n=15, the 13th and 15th columns are not equal to e12 and e12, and the last two rows are zero! 
Hence the situation is even worse! 
We were expecting identity matrices for all instances but we did not obtain the identity matrices 
for n=12 and n=15.  In fact, Matlab says that H12 and H15 is singular! This is because of the 
finite precision of the computers; for n=12 and n=15 the entries of Hilbert matrices becomes 
very small and they are not represented correctly on the computer. 
(b)  
n=8: 
>> x=ones(8,1); 
>> b=H8*x; 
>> xComputed=H8\b 
 
xComputed = 
 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 
    1.0000 

xComputed is OK for n=8! 
n=12: 
>> xComputed=H12\b 
Warning: Matrix is close to singular or badly scale d. 
         Results may be inaccurate. RCOND = 2.40932 0e-017. 
 
xComputed = 
 
    1.0000 
    1.0000 
    0.9999 



    1.0013 
    0.9907 
    1.0408 
    0.8867 
    1.2046 
    0.7605 
    1.1752 
    0.9272 
    1.0131 

n=15: 
>> x=ones(15,1); 
>> b=H15*x; 
>> xComputed=H15\b 
Warning: Matrix is close to singular or badly scale d. 
         Results may be inaccurate. RCOND = 1.54340 4e-018. 
 
xComputed = 
 
    1.0000 
    1.0000 
    1.0002 
    0.9962 
    1.0453 
    0.6907 
    2.3152 
   -2.6164 
    7.4503 
   -6.1175 
    4.9552 
    1.4203 
   -1.1554 
    2.2795 
    0.7366 

We see that as n gets larger, the solution gets worse. For the last two instances, the reduced row 
echelon forms are not correct, hence we get incorrect results when we solve the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2. invByCol  function: 
function  Ainv=invByCol(A)  
n=length(A);  
I=eye(n);  
Ainv=[];  
for  j=1:n  
    x=A\I(:,j);  
    Ainv=[Ainv x];  
end  

The inverse of the test matrix is 1
3 4 3
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A . You can find this by hand or by inv  

routine of Matlab. The invByCol(A) also returns this matrix. 
 
The code to compare inv and invByCol is 
function  compareInvMethods(n)  
A=rand(n);  
tic;  
inv(A);  
t=toc;  
disp( 'Built-in inv' );  
t  
tic;  
invByCol(A);  
t=toc;  
disp( 'invByCol' );  
t  
 
When we run this code with n=5,10,100, we get 
>> compareInvMethods(5) 
Built-in inv 
t = 
  1.1845e-004 
invByCol 
t = 
    0.0309 
 
>> compareInvMethods(10) 
Built-in inv 
t = 
  1.4303e-004 
invByCol 
t = 
  5.8192e-004 
 
>> compareInvMethods(100) 
Built-in inv 
t = 
    0.0609 
invByCol 
t = 
    0.2053 

We see that inv routine is much faster.  This is because Matlab uses more efficient LAPACK 
routines for this calculation. 



3. The parabola function: 
function  c=parabola(x,y)  
rhs=y;  
A(:,1)=x.^2;  
A(:,2)=x;  
A(:,3)=1;  
c=A\rhs; 
 

You can insert the following lines to this function for checking: 
xPoints=min(x):0.01:max(x);  
yComputed=c(1)*xPoints.^2+c(2)*xPoints+c(3);  
plot(xPoints,yComputed, 'LineWidth' ,2);  
hold on;  
for  i=1:3  
    plot(x(i),y(i), 'r*' , 'MarkerSize' ,14);  
end  
grid;  
hold off ;  
(a) 
>> x=[-2 1 2]'; 
>> y=[-1 -1 0]'; 
>> c=parabola(x,y) 
 
c = 
    0.2500 
    0.2500 
   -1.5000 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

 
(b) 
>> x=[-2 -1 2]'; 
>> y=[-2 1 -1]'; 
>> c=parabola(x,y) 
 
c = 
   -0.9167 
    0.2500 
    2.1667 
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