
Short Tutorial on Matlab
(©2003,2004 by Tomas Co)

Part 2. Ordinary Differential Equations

1. Suppose we want to simulate the following set of differential equations:

2
t

yd

d

2
3

t
yd

d







⋅+ 2 y⋅+ 4 exp 2− t⋅( )⋅ 5−

subject to the following initial conditions,

y 0( ) 2

t
y 0( )d

d
1−

2. You need to convert to state space form.  Let x1 = y and x2 = dy/dt, then we have

t
x1

d

d
x2

2
t

x2
d

d

2
3− x2⋅ 2 x1⋅− 4 exp 2− t⋅( )⋅+ 5−

x1 0( ) 2

x2 0( ) 1−



3. Next, create an m-file using either Matlab's editor or any text editor, e.g. "notepad":

function dx = tutorialEqn1(t,x)

    % x is the state vector
    % to minimize parentheses you could put them
    % in other variables

    x1=x(1);
    x2=x(2);

    % write the state equations

    dx1 = x2;
    dx2 = -3*x2 -2*x1 +4*exp(-2*t) - 5;

    % collect the derivatives into a column vector

    dx = [dx1;dx2];

then save as an m-file,  e.g.   tutorialEqn1.m



4. In matlab,  you can now invoke the ode solvers.  For example, you can use ode45
command:

>> [ t ,x]=ode45(@tutorialEqn1,[0 10],[2;-1])

Remarks:
a) Use the ' @'  symbol followed by the filename (without the file extension)
b) [0 10]   is the range of time values
c) [2;-1]   is the initial condition
d) [t ,x]  is the solution output.  t  stores the time values while x  stores the solution

where column 1 is x(1), etc.
5. You can now plot the solutions.  For instance,

>> plot( t,x(:,1))

will plot the first column of x.

6. Passing of parameters:  you can also pass parameters (either scalar of matrix).  For
instance, suppose you want to simulate the matrix equation: dx/dt = Ax.  The you can
use the general function:

function    dx = lindiff( t,x,A)

    dx = A*x;

Suppose, we have defined matrix A to be

>> A = [-3 4 0 ;0 -1 2;3 3 -6];

with intial condition vector

>> x0 =[ -1 ; 2 ;0.5 ];

then use the following command:

>> [ t ,x]=ode45(@ lindiff,[0 100],x0,[],A);

Note:  the ' [] '  between x0  and A is required as a placeholder for options (see
below, item 8).

7. Evaluating solutions at specified points

Scenario: since  ode45  may not have fixed integration points, you may need to
                 interpolate.  Another alternative is to use the command deval  .
                 However, this requires that the solution output is a structure.



Example: (assuming file  lindiff.m    given in item 6 above already exists)

>> A=[0 1 ;-2 -2];
>> testSoln = ode45(@ lindiff,[0 10],[0 -1],[],A);
>> new_t=linspace(0,10,101);
>> new_y=deval( testSoln,new_t);

This will result in an output that is uniformly incremented in ∆t=0.1

8. Changing Options.

This requires creating a structure object conforming to ODE45.  To create, use odeset.
For a list of available fields,

>> testOptions =odeset

This should list all the fields with empty (defaulted) values.

So, for example if we want to change the relative tolerance to 1e-5, and absolute
tolerance to [1e-4;1e-2] we could use

>> testOptions =odeset('RelTol',1e-5,'AbsTol',...
   [1e-4 ;1e-2])

To add more changes,

>> testOptions =odeset(testOptions,'Refine',10)

After all changes have been included, run the simulation using the created options
structure,

>> [ t ,y] = ode45(@ lindiff,[0 5],[0 -1], testOptions,A);


