Short Tutorial on M atlab
(©20032004 ly Tomas Co)

Part 2. Ordinary Differential Equations

1. Suppose we want to simulate the following set of differential equations:

&
dt°

y + 3ﬂy H+ 2y = 4lexp(-20) - £
Cot [

subject to the following initial conditions,

y(0) =2

d -_
EY(O) =-1

2. 'You need to convert to state space form. Let x; =y and x, = dy/dt, then we have

d
—X1 = X
at L 2

2
((:—tZXZ = _3B2 - 2&1 + 4@(“_2m) -t

Xl(0) =2

X2(0) =-1

3. Next, create an m-file using either Matlab's editor or any text editor, e.g. "notepad":

function dx = tutorial EQn1(t, x)

% x is the state vector
%to mnimze parentheses you could put them
% in other variabl es

x1=x(1);
x2=x(2);

%wite the state equations

dx1
dx2

X2;
-3*x2 -2*x1 +4*exp(-2*t) - 5;

% coll ect the derivatives into a colunn vector

dx = [dx1;dx2];

then save asan m-file, e.g. tutori al EQnl. m

4. In matlab, you can now invoke the ode solvers. For example, you can use ode45
command:

| >> [t ,x]=ode45(@tutorialEqn1,[0 10],[2;-1])

Remarks:
a) Usethe' @ symbol followed by the filename (without the file extension)
b) [010] istherange of time values
c) [2;-1] isthe initial condition
d) [t,x] isthesolutionoutput. t storesthetime values while X storesthe solution
where column 1 isx(1), etc.
5. You can now plot the solutions. For instance,

| >> plot(tx(:,1))

will plot the first column of x.

6. Passing of parameters. you can also pass parameters (either scalar of matrix). For
instance, suppose you want to simulate the matrix equation: dx/dt = Ax. The you can
use the general function:

function dx = lindiff(t,X,A)

dx = A*x;

Suppose, we have defined matrix A to be

[>> A=[340 ;0-1233-6];

with intial condition vector

|>> x0=[-1;2,05];

then use the following command:

| >> [t ,x]=0oded45(@ lindiff,[0 100],x0,[],A);

Note: the' [] ' between xO and A isrequired as a placeholder for options (see
below, item 8).

7. Evaluating solutions at specified points

Scenario: since ode45 may not have fixed integration points, you may need to
interpolate. Another alternative isto use the command deval
However, this requires that the solution output is a structure.

Example: (assuming file lindiff.m given in item 6 above already exists)

>>A=[01 ;-2-2];

>> testSoln = ode45(@ lindiff,[0 10],[0 -1],[],A);
>> new_t=linspace(0,10,101);

>> new_y=deval(testSoln,new_t);

Thiswill result in an output that is uniformly incremented in At=0.1
. Changing Options.

This requires creating a structure object conforming to ODE45. To create, use odeset.
For alist of available fields,

| >> testOptions =odeset

This should list all the fields with empty (defaulted) values.

So, for example if we want to change the relative tolerance to 1e-5, and absolute
toleranceto [1e-4;1e-2] we could use

>> testOptions =odeset('RelTol',1e-5,'AbsTol',...
[le-4 ;le-2))

To add more changes,

|>> testOptions =odeset(testOptions,'Refine’,10)

After all changes have been included, run the simulation using the created options
structure,

| >>[t,y]=oded5(@ lindiff,[0 5],[0 -1], testOptions,A);

