
Introduction to Matlab

Bart Moelans
Bart.Moelans@luc.ac.be

January 5, 2004

Abstract

This paper gives an introduction to Matlab. A big part of this paper is based on the Matlab
basics of Paolo Rapisarde, assistant professor at the University of Maastricht, department of
mathematics. Like Paolo once said to me: ”Why invent the wheel if it already exists?”.

Contents

1 Introduction 1

2 Matrices 2

3 Matrix-tools 4

4 Polynomials 7

5 M-files 8

6 Functions 9

7 Plotting 10

8 Iterations 10

9 Input-output files 14

10 Questions? 14

1 Introduction

In these notes some of the main commands of Matlab are explained in a hands-on way, the idea is
that while reading these pages, you will have Matlab running on your computer, and you will type
the commands (the words you find in typewriter font) in order to check the results.
What is explained in these notes is about 2% of Matlab, much more is available, but is either too

1

Bart Moelans Introduction to Matlab 2

specialistic to be explained in introductory material, or it pertains toolboxes, the Matlab word for a
collection of functions concerning a specific domain such as, for example, neural networks (but also
control theory, signal processing, and so on).
Final remark: you can read these notes, but unless you try them out, meaning type what is written
in them on your keyboard, curse for a while because of some forgotten special symbol, try some
modification, and so on, you will never get the hang of it... (to this purpose, it may be interesting for
you to know that Matlab distinguishes between low and capital case letters- for example, a variable
named a is different from another one called A).
The main goal of this course is to give you enough basics of Matlab to make the exercises for the
course datamining. So these notes have no pretense of originality or particular depth, but there is
no reason not to improve them for the students who will make use of them in the next years.
Comments and remarks from you will be gratefully acknowledged.

2 Matrices

The word ‘Matlab’ is the abreviation for ‘MATrix LABoratory’. All calculations in Matlab are based
on matrices. You can write the following in a Matlab command window:

>>5*3

So no matrices are involved, but you can see this as a vector (what is actually a single row matrix)
multiplication.
In order to create a (row)vector, enter each element of the vector (separated by a space or komma)
between [] brackets, and set it equal to a variable. For example, to create the vectors a, b, enter
into the Matlab command window:

>>a = [1 2 3 4 5 6 9 8 7];
>>b = [1, 1, 2, 3, 5, 8, 5, 9, 7];

Notice the semicolumn, this prevents Matlab of writing out the result, example:

>> c = 2*3;
>> c
c =

6
>> d=2*3
d =

6

Now you can calculate a ∗ b, but just typing this in Matlab will give an error, because what you
(should) actually mean is a ∗ bT , you can write this in Matlab using the apostrophe:

>>a*b’
ans =

260

Bart Moelans Introduction to Matlab 3

You even can write a′ ∗ b, then Matlab multiplies each element of a with the rows of b.
Note that you don’t have to use variables, you can also write:

>>[1 2 3 4 5 6 9 8 7]’*[1, 1, 2, 3, 5, 8, 5, 9, 7]
ans =

1 1 2 3 5 8 5 9 7
2 2 4 6 10 16 10 18 14
3 3 6 9 15 24 15 27 21
4 4 8 12 20 32 20 36 28
5 5 10 15 25 40 25 45 35
6 6 12 18 30 48 30 54 42
9 9 18 27 45 72 45 81 63
8 8 16 24 40 64 40 72 56
7 7 14 21 35 56 35 63 49

It is also possible to make a column vector b, you can do this by seperating rows with a semicolumn:

>>[1 2 3 4 5 6 9 8 7]*[1; 1; 2; 3; 5; 8; 5; 9; 7]

Now it’s very intuitive how to create a matrix. Lets create a 3-matrix:

>>A=[1,2.5; 9,27; 2.8 3.9]
A =

1.0000 2.5000
9.0000 27.0000
2.8000 3.9000

Notice that you should use a ‘.’ to create decimals.
Suppose that you want to create a matrix/vector with a logical order in it, for instance a =
[0, 2, 4, 6, 8, 10]. You can create this in Matlab as follows:

>>a=[0:2:10]

If we write it symbolical as a : b : c, then a indicates the start value, b the stepvalue and c the stop
value. When you leave the b value away, b = 1 is used as default value. Try the following commands:

>>a=[0:10]
>>b=[-3:-3:-9]
>>c=[-3:-3:-10]

You will notice that b and c have the same value. The best way to understand this statement is to
see it as for-loop.
Another handy command is ‘...’. Suppose you have a very long vector to enter, but you want a
maximum of 10 numbers at each line. Then you can type the following; use shift-enter instead of a
hard enter:

>> a =[1,2,6,8,5,...
7,8,9,10,12]

Bart Moelans Introduction to Matlab 4

3 Matrix-tools

Matrices in Matlab can be manipulated in many ways.
For one, you can find the transpose of a matrix using the apostrophe key:

>>B = [1 2 3 4;5 6 7 8;9 10 11 12]
>>C = B’
C =

1 5 9
2 6 10
3 7 11
4 8 12

It should be noted that when B had been complex, the apostrophe would have given the complex
conjugate transpose. To get the transpose, use ‘.’ (the two commands are the same if the matrix
is not complex). Now you can multiply the two matrices B and C. Remember that order matters
when multiplying matrices.

>>D = B * C
D =

30 70 110
70 174 278
110 278 446

>>D = C * B
D =

107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

Another option for matrix manipulation is multiplying the corresponding elements of two matrices
using the ‘.*’ operator (the matrices must have the same dimension to do this).

>>E = [1 2;3 4],F = [2 3;4 5],G = E .* F
E =

1 2
3 4

F =
2 3
4 5

G =
2 6
12 20

If you have a square matrix, like E, you can also multiply it by itself as many times as you like by
raising it to a given power.

Bart Moelans Introduction to Matlab 5

>>E^3
ans =

37 54
81 118

If wanted to cube each element in the matrix, just use the element-by-element cubing (note the dot
in front of the ‘’ sign!).

>>E.^3
ans =

1 8
27 64

You can also find the inverse of a matrix:

>>X = inv(E)
X =

-2.0000 1.0000
1.5000 -0.5000

or its eigenvalues:

>>eig(E)
ans =

-0.3723
5.3723

There is even a function to find the coefficients of the characteristic polynomial of a matrix. The
poly function creates a vector that includes the coefficients of the characteristic polynomial.

>>p = poly(E)
p =

1.0000 -5.0000 -2.0000

Note: ∣∣∣∣∣λ
[

1 0
0 1

]
−

[
1 2
3 4

]∣∣∣∣∣ = λ2 − 5λ− 2

Remember that the eigenvalues of a matrix are the same as the roots of its characteristic polynomial:

>>roots(p)
ans =

5.3723
-0.3723

You can select each element of a matrix seperately, or whole colums/rows using ‘:’, for instance:

Bart Moelans Introduction to Matlab 6

>>M = [68 3 5; 7 3 98; 687 65 9];
>>M(2,3)
ans =

98
>> M(:,2)
ans =

3
3
65

>> M(1,:)
ans =

68 3 5
>> M(1:2,:)
ans =

68 3 5
7 3 98

>> M(2:3,2:3)
ans =

3 98
65 9

Some other nice functions are zeros, ones and eye, see following examples:

>> zeros(3,2)
ans =

0 0
0 0
0 0

>> ones(2,3)
ans =

1 1 1
1 1 1

>> eye(3,4)
ans =

1 0 0 0
0 1 0 0
0 0 1 0

>>eye(3)
ans =

1 0 0
0 1 0
0 0 1

Bart Moelans Introduction to Matlab 7

4 Polynomials

In Matlab, a polynomial is represented by a vector. To create a polynomial in Matlab, simply enter
each coefficient of the polynomial into the vector in descending order. For instance, lets say you
have the following polynomial:

s4 + 3s3 − 15s2 − 2s + 9

To enter this into Matlab, just enter it as a vector in the following manner:

>>x = [1 3 -15 -2 9]
x =

1 3 -15 -2 9

Matlab can interprete a vector of length n+1 as an n-th order polynomial. Thus, if your polynomial
is missing any coefficients, you must enter zeros in the appropriate place in the vector. For example:

s4 + 1

would be represented in Matlab as:

>>y = [1 0 0 0 1]

You can find the value of a polynomial for a given value of the variable using the polyval function.
For instance, to find the value of the above polynomial at s = 2, type:

>>z = polyval(y,2)
z =

17

You can also extract the roots of a polynomial. This is useful when you have a high-order polynomial
such as

s4 + 3s3 − 15s2 − 2s + 9

Finding the roots is as easy as entering the following command:

>>roots([1 3 -15 -2 9])
ans =

-5.5745
2.5836
-0.7951
0.7860

Let’s say you want to multiply two polynomials. The product of two polynomials is found by taking
the convolution of their coefficients. Matlabs function conv will do this for you:

>>x = [1 2];
>>y = [1 4 8];
>>z = conv(x,y)
z =

1 6 16 16

Bart Moelans Introduction to Matlab 8

Dividing two polynomials is just as easy. The deconv function will return the remainder as well as
the result. Lets divide z by y and see if we get x.

[xx, R] = deconv(z,y)
xx =

1 2
R =

0 0 0 0

As you can see, this is just the polynomial/vector x from before. If y had not gone into z evenly, the
remainder vector would have been something other than zero. If you want to add two polynomials
together whit the same order, a simple z = x + y will work (the vectors x and y must have the
same length). In general, a user-defined function, polyadd can be used. Such function adds two
polynomials together even if they do not have the same length. It makes use of the programming
construct if... else which I renounce to explain in detail because it works just as any if statement
you have seen until now.
The function polyadd looks as follows:

function[poly]=polyadd(poly1,poly2)
if length(poly1)<length(poly2)

short=poly1;
long=poly2;

else
short=poly2;
long=poly1;

end
mz=length(long)-length(short);
if mz>0

poly=[zeros(1,mz),short]+long;
else

poly=long+short;
end

To use polyadd, copy the function into an m-file, and then use it just as you would any other function
in the Matlab toolbox. Assuming you had the polyadd function stored as a m-file, and you wanted
to add the two uneven polynomials, x and y, you could accomplish this by entering the command:

z = polyadd(x,y)
x = 1 2
y = 1 4 8
z = 1 5 10

5 M-files

You can type everything you want in a Matlab command window, but this is rather impractical for
large exercises. Therefore you can use m-files, the nice thing is that you can save a m-file as an

Bart Moelans Introduction to Matlab 9

ASCII-file.
Creating an m-file goes as follows:
File->new->M-file
Before you can excecute an M-file, you need to save it using the same name as the function. In this
M-file you can type a list of commands and run them by pressing the Run-button (or press F5).
You can even debug an M-file.

6 Functions

To make programming easier, Matlab includes many standard functions, a function being a block of
code that accomplishes a specific task. Matlab contains the standard functions of most programming
languages such as sin, cos, log, exp, sqrt, as well as many others. Commonly used constants such
as π, and i as the square root of -1, are also incorporated into Matlab.

>>sin(pi/4)
ans =

0.7071

Note: if you want more decimals use ‘format’, more info:

help format

To determine the usage of any function, type help [function name] at the Matlab command window.
Matlab allows you to write your own functions in order to support the construction of large and
modular computer programs. Functions are defined with the function command which we will now
discuss in some detail.
When entering a command such as roots, plot, or init into Matlab what you are really doing is
running an m-file with inputs and outputs that has been written to accomplish a specific task.
These types of m-files are similar to subroutines in programming languages in that they have inputs
(parameters which are passed to the m-file), outputs (values which are returned from the m-file),
and a body of commands which can contain local variables. Matlab calls these m-files functions.
A new function must be given a filename with a ‘.m’ extension. This file should be saved in the
same directory as the Matlab software, or in a directory which is contained in Matlabs search path
(depending on the version of Matlab you are using, setting the path can be done either modifying
the variable directory with addpath, or using the Set path command of the pull-down File menu).
The first line of the m-file should contain the syntax for this function in the form:

function [output1,output2] = filename(input1,input2,input3)

A function can input or output as many variables as needed. The next few lines contain the text
that will appear when the help filename command is evoked. These lines are optional, but must be
entered using include comments in an ordinary m-file. Finally, below the help text, the actual text
of the function with all of the commands is included. One suggestion would be to start with the
line:

error(nargchk(x,y,nargin));

Bart Moelans Introduction to Matlab 10

The x and y represent the smallest and largest number of inputs that can be accepted by the
function, nargin represent the number of arguments. If more or less inputs are entered, an error
is triggered. Below you see a simple example of what the function, add.m summing two numbers,
might look like.

function [var3] = add(var1,var2)
% add is a function that adds two numbers
var3 = var1+var2;

Notice that the % -sign is used to write comment.
If you save these three lines in a file called add.m in the Matlab directory, then you can use it by
typing at the command line:

y = add(3,8)

Obviously, most functions will be more complex than the one demonstrated here. This example
just shows what the basic form looks like. Also see at example of the function polyadd. For more
sophisticated examples, look at the Matlab manuals.
Also look at rand and randn, these functions will probably be helpfull during the exercises.

7 Plotting

It is also easy to create plots in Matlab. Suppose you want to plot a sine wave as a function of time.
First make a time vector and then compute the sin value for each time.

>>t=0:0.25:7;
>>y=sin(t);
>>plot(t,y);

Variations of such instructions include specifying the color and the pattern of each graph, adding
titles and labels to the axes, etc. . . . See the help function on this. You can also plot 3D figures
using plot3, example:

>>t = 0:pi/50:10*pi;
>>plot3(sin(t),cos(t),t),grid on,axis square

You can also use ‘subplot’ to have several plots in 1 window. See the Matlab manual.

8 Iterations

In this section we demonstrate how the for and the while loops are used. First, the for loop is
discussed with examples for row operations on matrices. Next a demonstration of the while loop is
given.
The for loop allows us to repeat certain commands. If you want to repeat some action in a prede-
termined way, you can use the for loop. All of the loop structures in Matlab start with a keyword
such as for, or while and they all end with the word end.

Bart Moelans Introduction to Matlab 11

The for loop will loop around some statement, and you must tell Matlab where to start and where
to end. Basically, you give a vector in the for statement, and Matlab will loop through for each
value in the vector. For example, a simple loop that will go around four times:

>>for j=1:4,j,end
j =

1
j =

2
j =

3
j =

4

Once Matlab has read the end statement, it will loop through and print out j each time. Another
example, if we define a vector and later want to change the entries, we can step through and change
each individual entry:

v = [1:3:10]
v =

1 4 7 10
for j=1:4,v(j) = j;end;v
v =

1 2 3 4

Note, that this is a simple example and is a nice demonstration to show you how a for loop works.
However, using such construction in such case misses the whole point of Matlab. Matlab is an
interpreted language and looping through a vector like this is the slowest possible way to change a
vector. The notation used in the first statement is much faster than the loop, moreover, it is clearer
(one of the many reasons why Matlab is so much used for fast prototyping and design in engineering
firms is the fact that few lines correspond to many more operations than in any other language, and
that such lines correspond to the way a human, and not a computer, would solve the problem at
hand).
A better example is one in which we want to perform operations on the rows of a matrix. If you
want to start at the second row of a matrix and substract the previous row of the matrix and then
repeat this operation on the following rows, a for loop can do this in short order:

>>A = [[1 2 3]’, [3 2 1]’, [2 1 3]’]
A =

1 3 2
2 2 1
3 1 3

>>B = A;
>>for j=2:3,A(j,:) = A(j,:) - A(j-1,:),end
A =

Bart Moelans Introduction to Matlab 12

1 3 2
1 -1 -1
3 1 3

A =
1 3 2
1 -1 -1
2 2 4

And now a more realistic example, since we can now use loops and perform row operations on a
matrix. The Gaussian elimination (remember? pivots and elementary row operations, and so on?)
can be performed using only two loops and one statement:

>>for j=2:3,for i=j:3,B(i,:) = B(i,:) - B(j-1,:)*B(i,j-1)/B(j-1,j-1),end,end
B =

1 3 2
0 -4 -3
3 1 3

B =
1 3 2
0 -4 -3
0 -8 -3

B =
1 3 2
0 -4 -3
0 0 3

If you don’t like the for loop, you can also use a while loop. The while loop repeats a sequence of
commands as long as some condition is met. In this example the algorithm of Euclides is worked
out with a nice plot included:

% E U C L I D E S
% ===============
%
% Description:
% Find the greatest common divider
%
% Parameters:
% a,b real values
% PLOT if equal to 1 something is plotted
%
% Return:
% y gcd of a en b
%
function y = euclides(a,b,PLOT)

Bart Moelans Introduction to Matlab 13

clc; %clean command window

error(nargchk(2,3,nargin));

if (nargin == 2)
PLOT = 0;

end

A = [a]; %Evolution of the variable a
B = [b]; %Evolution of the variable b

while (a ~= b)
if (a > b)

a = a-b;
A = [A a];

else
b = b-a;
B = [B b];

end
end

y=a;

if (PLOT == 1)
clf; %clean figure
if(size(A)>size(B)) %first plot the greatest matrix

plot(0:size(A,2)-1,A,’*-r’);
hold on; %plot next plots in same windows
plot(0:size(B,2)-1,B,’+-g’);
hold off;

else
plot(0:size(B,2)-1,B,’*-r’);
hold on;
plot(0:size(A,2)-1,A,’+-g’);
hold off;

end
end

Now type help euclides in de command window.
You wrote a help-file :-).

Bart Moelans Introduction to Matlab 14

9 Input-output files

You can also write and read files in Matlab, I only give a small example, but you can find further
information in the Matlab help. This is how you can save a file:

x= 25*randn(100,1);
y= 25*rand(100,1);
DAM4data = [x,y];
save c:\data\DAMdataset4.mat DAM4data -ascii;

And this how to read it:

load c:\data\DAMdataset4.mat DAM4data -ascii;
plot(DAM4data(:,1),DAM4data(:,2),.);

10 Questions?

If you have any further question about Matlab post them at news://lumumba.luc.ac.be/courses.

