MATH227/1 HW

1. Find the solution set of each of the following linear equations.

(a)
$$7x - 5y = 3$$

(a)
$$7x - 5y = 3$$

(b) $-8x_1 + 2x_2 - 5x_3 + 6x_4 = 1$

2. Find the augmented matrix for each of the following systems of linear equations.

$$\begin{array}{cccccc}
(a) & 3x_1 & -2x_2 & = & -1 \\
& 4x_1 & +5x_2 & = & 3 \\
& 7x_1 & +3x_2 & = & 2
\end{array}$$

$$4x_1 + 5x_2 = 3$$

$$7x_1 + 3x_2 = 2$$

(b)
$$x_1 + 2x_2 -x_4 + x_5 = 1$$

 $3x_2 + x_3 -x_5 = 2$
 $x_3 + 7x_4 = 1$

$$x_3 + 7x_4 = 1$$

3. Find a system of linear equations corresponding to the augmented matrix.

١

$$(a) \quad \begin{bmatrix} 3 & 0 & -2 & 5 \\ 7 & 1 & 4 & -3 \\ 0 & -2 & 1 & 7 \end{bmatrix}$$

$$(b) \quad \begin{bmatrix} 1 & 0 & 0 & 0 & 7 \\ 0 & 1 & 0 & 0 & -2 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

4. In each part suppose that the augmented matrix for a system of linear equations has been reduced by row operations to the given reuced row-echelon form. Solve the system

$$(b) \quad \begin{bmatrix} 1 & -3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5. Reduce

$$\left[\begin{array}{ccc}
2 & 1 & 3 \\
0 & -2 & -29 \\
3 & 4 & 5
\end{array}\right]$$

to reduced row-echelon form without introducing any fractions.

6. Find two different row-echelon forms of

$$\left[\begin{array}{cc} 1 & 3 \\ 2 & 7 \end{array}\right]$$

7. Solve the system

for x_1 , x_2 , and x_3 in the two cases $\lambda = 1$, $\lambda = 2$.