HW MATH227/10

- 1. Which of the following sets of vectors in P_2 are linearly dependent
- (a) $2 x + 4x^2$, $3 + 6x + 2x^2$, $2 + 10x 4x^2$.
- (b) $3 + x + x^2$, $2 x + 5x^2$, $4 3x^2$.
- (c) $6-x^2$, $1+x+4x^2$.
- (d) $1 + 3x + 3x^2$, $x + 4x^2$, $5 + 6x + 3x^2$, $7 + 2x x^2$.
- 2. Assume that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are vectors in \mathbf{R}^3 that have their initial points at the origin. In each part determine whether the three vectors lie in a plane.
- (a) $\mathbf{v}_1 = (2, -2, 0), \quad \mathbf{v}_2 = (6, 1, 4), \quad \mathbf{v}_3 = (2, 0, -4).$
- (b) $\mathbf{v}_1 = (-6, 7, 2), \quad \mathbf{v}_2 = (3, 2, 4), \quad \mathbf{v}_3 = (4, -1, 2).$
- 3. For which values of λ do the following vectors form a linearly dependent set in ${f R}^3$

$$\mathbf{v}_1 = (\lambda, -\frac{1}{2}, -\frac{1}{2}), \quad \mathbf{v}_2 = (-\frac{1}{2}, \lambda, -\frac{1}{2}), \quad \mathbf{v}_3 = (-\frac{1}{2}, -\frac{1}{2}, \lambda).$$

- **4.** Which of the following sets of vectors are bases for \mathbb{R}^2 .
- (a) (2,1), (3,0).
- (b) (4,1), (-7,-8).
- (c) (0,0), (1,3).
- (d) (3,9), (-4,-12).
- 5. Find the coordinate vector of \mathbf{w} relative to the basis $S = {\mathbf{u}_1, \mathbf{u}_2}$ for \mathbf{R}^2 .
- (a) $\mathbf{u}_1 = (1,0), \quad \mathbf{u}_2 = (0,1); \quad \mathbf{w} = (3,-7).$
- (b) $\mathbf{u}_1 = (2, -4), \quad \mathbf{u}_2 = (3, 8); \quad \mathbf{w} = (1, 1).$
- (c) $\mathbf{u}_1 = (1, 1), \quad \mathbf{u}_2 = (0, 2); \quad \mathbf{w} = (a, b).$
- 6. Determine the dimensions of the following subspaces of \mathbb{R}^4
- (a) all vectors of the form (a, b, c, 0).
- (b) all vectors of the form (a, b, c, d), where d = a + b and c = a b.
- (c) all vectors of the form (a, b, c, d), where a = b = c = d.