HW MATH227/10 Solutions

1.

(a) The set of vectors are linearly independent since there is no $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ such that

$$\alpha(2-x+4x^2) + \beta(3+6x+2x^2) + \gamma(2+10x-4x^2) = 0.$$

(b) The set of vectors are linearly independent since there is no $(\alpha, \beta, \gamma) \neq (0, 0, 0)$ such that

$$\alpha(3+x+x^2) + \beta(2-x+5x^2) + \gamma(4-3x^2) = 0.$$

(c) The set of vectors are linearly independent since there is no $(\alpha, \beta) \neq (0, 0)$ such that $\alpha(6-x^2) + \beta(1+x+4x^2) = 0$.

(d) The set of vectors

$$1 + 3x + 3x^2$$
, $x + 4x^2$, $5 + 6x + 3x^2$, $7 + 2x - x^2$

in P_2 are linearly dependent since

$$-17(1 + 3x + 3x^{2}) + 5(x + 4x^{2}) + 9(5 + 6x + 3x^{2}) - 4(7 + 2x - x^{2}) = 0.$$

2.

(a) \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 form a linearly independent set, so they do not lie on the same plane.

(b) \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 form a linearly dependent set, so they lie on the same plane.

Q

For $\lambda = 1$ or $\lambda = -\frac{1}{2}$ the vectors form a linearly dependent set in \mathbf{R}^3 since $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 0$ when $\lambda = 1$ or $\lambda = -\frac{1}{2}$.

4

(a) The vectors (2,1), (3,0) span \mathbb{R}^2 and are linearly independent, therefore this set of vectors is a basis for \mathbb{R}^2 .

(b) The vectors (4,1), (-7,-8) span \mathbb{R}^2 and are linearly independent, therefore this set of vectors is a basis for \mathbb{R}^2 .

(c) (0,0), (1,3) are not linearly independent, therefore this set of vectors is not a basis for \mathbb{R}^2 .

(d) (3,9), (-4,-12) are not linearly independent, therefore this set of vectors is not a basis for \mathbb{R}^2 .

5.

(a)
$$(\mathbf{w})_S = (3, -7)$$
 which means $\mathbf{w} = 3\mathbf{u}_1 + (-7)\mathbf{u}_2$.

(b)
$$(\mathbf{w})_S = (\frac{5}{28}, \frac{3}{14})$$
 which means $\mathbf{w} = \frac{5}{28}\mathbf{u}_1 + \frac{3}{14}\mathbf{u}_2$.

(a)
$$(\mathbf{w})_S = (3, -7)$$
 which means $\mathbf{w} = 3\mathbf{u}_1 + (-7)\mathbf{u}_2$.
(b) $(\mathbf{w})_S = (\frac{5}{28}, \frac{3}{14})$ which means $\mathbf{w} = \frac{5}{28}\mathbf{u}_1 + \frac{3}{14}\mathbf{u}_2$.
(c) $(\mathbf{w})_S = (a, \frac{b-a}{2})$ which means $\mathbf{w} = a\mathbf{u}_1 + \frac{b-a}{2}\mathbf{u}_2$.

6.

(a) A basis for the set of all vectors of the form (a, b, c, 0) is

$$\left[egin{array}{c} a \ 0 \ 0 \ 0 \end{array}
ight], \,\, \left[egin{array}{c} 0 \ b \ 0 \ 0 \end{array}
ight], \,\, \left[egin{array}{c} 0 \ 0 \ c \ 0 \end{array}
ight]$$

therefore the dimension of this subspace is 3.

(b) A basis for the set of all vectors of the form (a, b, c, d), where d = a + b and c = a - bis

$$\left[\begin{array}{c} a \\ 0 \\ a \\ a \end{array}\right], \left[\begin{array}{c} 0 \\ b \\ -b \\ b \end{array}\right]$$

therefore the dimension of this subspace is 2.

(c) A basis for the set of all vectors of the form (a, b, c, d), where a = b = c = d is

$$\begin{bmatrix} a \\ a \\ a \\ a \end{bmatrix}$$

therefore the dimension of this subspace is 1.