HW MATH227/12 Solutions

1. rank(A) = 2 and $rank(A^T) = 2$

2.

- (a) rank=2, nullity=1.
- (b) rank=1, nullity=2.
- (c) rank=2, nullity=2.
- (d) rank=2, nullity=3.
- (e) rank=3, nullity=2.

3.

- (a) The largest possible value for the rank of 4×4 matrix is 4, and the smallest possible value for the nullity of 4×4 matrix is 0.
- (b) The largest possible value for the rank of 3×5 matrix is 3, and the smallest possible value for the nullity of 3×5 matrix is 2.
- (c) The largest possible value for the rank of 5×3 matrix is 3, and the smallest possible value for the nullity of 5×3 matrix is 0.
- 4. Using Gauss-Jordan elimination, the augmented matrix is equivalent to

$$\begin{bmatrix}
1 & 0 & 3b_2 - 2b_1 \\
0 & 1 & b_2 - b_1 \\
0 & 0 & b_3 - 4b_2 + 3b_1 \\
0 & 0 & b_4 + b_2 - 2b_1 \\
0 & 0 & b_5 - 8b_2 + 7b_1
\end{bmatrix}$$

then the system is consistent if and only if b_1 , b_2 , b_3 , b_4 , and b_5 satisfy

$$b_3 - 4b_2 + 3b_1 = 0$$

$$b_4 + b_2 - 2b_1 = 0$$

$$b_5 - 8b_2 + 7b_1 = 0$$

On solving this homogeneous linear system we get $b_1 = r$, $b_2 = s$, $b_3 = -3r + 4s$, $b_4 = 2r - s$, $b_5 = -7r + 8s$ where r and s are arbitrary.

5. The rank can not be 1 because there are two independent column vectors for any value of r and s. The rank is 2 for values of r = 2 and s = 1 so that the second column of the matrix is a zero vector.