MATH227/6 HW

1. Let $\mathbf{u} = (-3, 1, 2)$, $\mathbf{v} = (4, 0, -8)$, and $\mathbf{w} = (6, -1, -4)$. Find the components of

(a)
$$\mathbf{v} - \mathbf{w}$$

(b)
$$6u + 2v$$

(c)
$$-\mathbf{v} + \mathbf{u}$$

2. Find the norm of \mathbf{v}

(a)
$$\mathbf{v} = (4, -3)$$

(b)
$$\mathbf{v} = (2, 2, 2)$$

(c)
$$\mathbf{v} = (-7, 2, -1)$$

3. Find $\mathbf{u}.\mathbf{v}$ and determine the angle θ between \mathbf{u} and \mathbf{v} .

(a)
$$\mathbf{u} = (6, 1, 4), \mathbf{v} = (2, 0, -3)$$

(b)
$$\mathbf{u} = (2, -1, -1), \mathbf{v} = (-1, -1, 2)$$

4. Find a point-normal form.

(a)
$$-3x + 7y + 2z = 10$$

$$(b) \quad x - 4z = 0$$

5. Find parametric equations for the line of intersection of the planes

(a)
$$-3x + 2y + z = -5$$
 and $7x + 3y - 2z = -2$

(b)
$$5x - 7y + 2z = 0$$
 and $y = 0$

6. For which values of k are **u** and **v** orthogonal?

(a)
$$\mathbf{u} = (2, 1, 3), \quad \mathbf{v} = (1, 7, k)$$

(b)
$$\mathbf{u} = (k, k, 1), \quad \mathbf{v} = (k, 5, 6)$$

7. Solve the following linear system of equations for x_1 , x_2 , and x_3 .

$$(1,-1,4) \cdot (x_1,x_2,x_3) = 10$$

$$(3,2,0) \cdot (x_1,x_2,x_3) = 1$$

$$\begin{array}{cccc} (3,2,0) & \cdot & (x_1,x_2,x_3) & = & \\ (4,-5,-1) & \cdot & (x_1,x_2,x_3) & = & \end{array}$$