HW MATH227/6 Solutions

- 1. (a) The components of the vector $\mathbf{v} \mathbf{w}$ is (-2, 1, -4).
- (b) The components of the vector $6\mathbf{u} + 2\mathbf{v}$ is (-10, 6, -4).
- (c) The components of the vector $-\mathbf{v} + \mathbf{w}$ is (-7, 1, 10).
- **2.** (a) The norm of the vector $\mathbf{u} = (4, -3)$ is $||\mathbf{u}|| = \sqrt{4^2 + (-3)^2} = 5$.
- (b) The norm of the vector $\mathbf{u} = (2, 2, 2)$ is $||\mathbf{u}|| = 2\sqrt{3}$.
- (c) The norm of the vector $\mathbf{u} = (-7, 2, -1)$ is $||\mathbf{u}|| = 3\sqrt{6}$.
- 3. (a) $\mathbf{u}.\mathbf{v} = 0$, for the given vectors we have $||u|| = \sqrt{53}$ and $||v|| = \sqrt{13}$ so that

$$\cos\,\theta = \frac{\mathbf{u}.\mathbf{v}}{||u||||v||} = 0$$

thus, $\theta = 90$.

(b) $\mathbf{u}.\mathbf{v} = -3$, for the given vectors we have $||u|| = \sqrt{6}$ and $||v|| = \sqrt{6}$ so that

$$\cos \theta = \frac{\mathbf{u}.\mathbf{v}}{||u||||v||} = \frac{-3}{\sqrt{6}\sqrt{6}} = -\frac{1}{2}$$

thus, $\theta = 120$.

- **4.** (a) (0,0,5) is a point in the plane and $\mathbf{n}=(-3,7,2)$ is a normal vector so that -3(x-0)+7(y-0)+2(z-5)=0 is a point-normal form. (b) (x-0)+0(y-0)-4(z-0)=0.
- 5. (a) The line of intersection consists of all the points (x, y, z) that satisfy the two equations in the system

$$-3x + 2y + z = -5$$
$$7x + 3y - 2z = -2$$

Solving the system gives

$$\left\{ \begin{array}{lll} x & = & \frac{11}{23} + \frac{7}{23}t \\ y & = & -\frac{41}{23} - \frac{1}{23}t \\ z & = & t \end{array} \right.$$

(b) The line of intersection consists of all the points (x, y, z) that satisfy the two equations in the system

$$5x - 7y + 2z = 0$$
$$y = 0$$

Solving the system gives

$$\begin{cases} x = -\frac{2}{5}t \\ y = 0 \\ z = t \end{cases}$$

 ${f 6.}\,\,{f u}$ and ${f v}$ are orthogonal when

(a)
$$k = -3$$

(b)
$$k = -2 \text{ and } k = -3$$

7.

$$\begin{cases} x_1 &= 1 \\ x_2 &= -1 \\ x_3 &= 2 \end{cases}$$