MATH227/8 HW

- 1. Use the type of arguments given in Example 8 page 196 to calculate the eigenvalues and eigenvectors of T.
- (a) $T: R^2 \to R^2$ is the reflection about the x-axis.
- (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the reflection about the line y = x.
- (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ is the orthogonal projection on the x-axis.
- 2. Use the type of arguments given in Example 8 page 196 to calculate the eigenvalues and eigenvectors of T. 1
- (a) $T: R^3 \to R^3$ is the reflection about the yz-plane.
- (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the orthogonal projection on the xz-plane.
- (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$ is the dilation by a factor of 2.
- 3. Find the eigenvalues of the following matrices:

(a)
$$\begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 10 & -9 \\ 4 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 3 \\ 4 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} -2 & -7 \\ 1 & 2 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (f) $\begin{bmatrix} f & 0 \\ 0 & 1 \end{bmatrix}$

4. Find the eigenvalues of the following matrices:

(a)
$$\begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} -2 & 0 & 1 \\ -6 & -2 & 0 \\ 19 & 5 & -4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 5 & 0 & 1 \\ 1 & 1 & 0 \\ -7 & 1 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2 \end{bmatrix}$$

5. Find the eigenvalues of A^{25} for

$$A = \left[\begin{array}{rrr} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{array} \right]$$

6. Find det(A) given that A has $p(\lambda)$ as its characteristic polynomial. (a) $p(\lambda) = \lambda^3 - 2\lambda^2 + \lambda + 5$. (b) $p(\lambda) = \lambda^4 - \lambda^3 + 7$.

(a)
$$p(\lambda) = \lambda^3 - 2\lambda^2 + \lambda + 5$$
.

(b)
$$p(\lambda) = \lambda^4 - \lambda^3 + 7$$

7. Find a matrix P that diagonalizes A, and determine $P^{-1}AP$.

$$A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$$

8. Compute A^{11} , where

$$A = \left[\begin{array}{rrr} -1 & 7 & -1 \\ 0 & 1 & 0 \\ 0 & 15 & -2 \end{array} \right]$$