MATH227/9 Solutions HW

- The set of all triplets of real numbers (x, y, z) with the operations (x, y, z) + (x', y', z') =(x+x',y+y',z+z') and k(x,y,z)=(0,0,0) is a not vector space. For any triplet of real numbers (x, y, z) we have $1(x, y, z) = (0, 0, 0) \neq (x, y, z)$ whenever $(x, y, z) \neq (0, 0, 0)$, hence axiom 10 $(1\mathbf{u} = \mathbf{u})$ does not hold.
- Let the set of all 2×2 matrices of the form $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix}$ be denoted by V. Let $A_1 = \begin{bmatrix} a_1 & 1 \\ 1 & b_1 \end{bmatrix}$ and $A_2 = \begin{bmatrix} a_2 & 1 \\ 1 & b_2 \end{bmatrix}$ then $A_1 + A_2 = \begin{bmatrix} a_1 + a_2 & 2 \\ 2 & b_1 + b_2 \end{bmatrix}$ which does not belong to V, hence axiom 1 does not hold and V is not a vector space
- 3. (a) Let the set of all vectors of the form (a,0,0) be denoted by W. W is a vector subspace since $(a_1, 0, 0) + (a_2, 0, 0) = (a_1 + a_2, 0, 0) \in W$ and $k(a, 0, 0) = (ka, 0, 0) \in W$.

(b) Let the set of all vectors of the form (a, 1, 1) be denoted by W. W is not a vector subspace since k = 0, $k(a, 1, 1) = (0, 0, 0) \notin W$.

- (c) Let the set of vectors of the form (a, b, c), where b = a + c be denoted by W. W is a vector space: $(a_3, b_3, c_3) = (a_1, b_1, c_1) + (a_2, b_2, c_2) \in W$ since $b_3 = a_3 + c_3$. Similarly we have $k(a, b, c) \in W$.
- (d) Let the set of vectors of the form (a, b, c), where b = a + c + 1 be denoted by W. Wis not a vector subspace since $(a_1, b_1, c_1) = 0 \times (a, b, c) = (0, 0, 0) \notin W$ as $b_1 \neq a_1 + b_1 + 1$.
- 4. (a) Since $tr(A_1 + A_2) = tr(A_1) + tr(A_2) = 0$ and tr(kA) = ktr(A) = 0, the set of all $n \times n$ matrices A such that tr(A) = 0 is a subspace of \mathbf{M}_{nn} .

(b) $A_3^T = (A_1 + A_2)^T = A_1^T + A_2^T = -A_1 - A_2 = -A_3$ and $(kA)^T = kA^T = -kA$, therefore all $n \times n$ matrices A such that $A^T = -A$ is a vector subspace of \mathbf{M}_{nn} .

- (c) The set of all $n \times n$ matrices A such that the linear system $A\mathbf{x} = \mathbf{0}$ has only the trivial solution is not a subspace \mathbf{M}_{nn} since for any matrix A and k=0 the linear system kAx = 0 has solutions other than the trivial solution.
- (d) Let $A_3 = A_1 + A_2$, $A_3B = (A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2) = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = B(A_1 + A_2)B = A_1B + A_2B = BA_1 + BA_2 = BA_1 +$ BA_3 and (kA)B = kBA = BkA, therefore all all $n \times n$ matrices A such that AB = BAfor a fixed $n \times n$ matrix B is a subspace of \mathbf{M}_{nn} .

5.

(a) In order for $-9-7x-15x^2$ to be a linear combination of \mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , there must be scalars k_1 , k_2 and k_3 such that $-9-7x-15x^2=k_1\mathbf{p}_1+k_2\mathbf{p}_2+k_3\mathbf{p}_3$ that is

$$\begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 4 & 3 & 5 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \\ k_3 \end{bmatrix} = \begin{bmatrix} -9 \\ -7 \\ -15 \end{bmatrix}.$$

Solving this system yields $k_1 = -2$, $k_2 = 1$, and $k_3 = -2$, hence $-9 - 7x - 15x^2 = 1$ $-2\mathbf{p}_1 + \mathbf{p}_2 - 2\mathbf{p}_3$.

$$-2\mathbf{p}_1 + \mathbf{p}_2 - 2\mathbf{p}_3.$$
(b) $6 + 11x + 6x^2 = 4\mathbf{p}_1 - 5\mathbf{p}_2 + \mathbf{p}_3.$
(c) $7 + 8x + 9x^2 = -2\mathbf{p}_2 + 3\mathbf{p}_3.$

(c)
$$7 + 8x + 9x^2 = -2\mathbf{p}_2 + 3\mathbf{p}_3$$

6.

(a) The vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 span \mathbf{R}^3 if and only if the matrix $A = [\mathbf{v}_1 | \mathbf{v}_2 | \mathbf{v}_3]$ has nonzero determinant. $det(A) = \begin{vmatrix} 2 & 0 & 0 \\ 2 & 0 & 1 \\ 2 & 3 & 1 \end{vmatrix} = -6$, so that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 span \mathbf{R}^3 .

(b) $det(A) = \begin{vmatrix} 2 & 4 & 8 \\ -1 & 1 & -1 \\ 3 & 2 & 8 \end{vmatrix} = 0$, so that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 do not span \mathbf{R}^3 .

(b)
$$det(A) = \begin{vmatrix} 2 & 4 & 8 \\ -1 & 1 & -1 \\ 3 & 2 & 8 \end{vmatrix} = 0$$
, so that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 do not span \mathbf{R}^3 .

(c) Since we have four vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 we must check if there is a combi-

nation formed by any 3 of these vectors that spans
$$\mathbf{R}^3$$
. For $\{\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3\}$, we have $det(A) = \begin{vmatrix} 3 & 2 & 5 \\ 1 & -3 & -2 \\ 4 & 5 & 9 \end{vmatrix} = 0$. For $\{\mathbf{v}_2, \ \mathbf{v}_3, \ \mathbf{v}_4\}$, we have $det(A) = \begin{vmatrix} 2 & 5 & 1 \\ -3 & -2 & 4 \\ 5 & 9 & -1 \end{vmatrix} = 0$.

For $\{\mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_4\}$, we have $det(A) = \begin{vmatrix} 3 & 2 & 1 \\ 1 & -3 & 4 \\ 4 & 5 & -1 \end{vmatrix} = 0$. For $\{\mathbf{v}_1, \ \mathbf{v}_3, \ \mathbf{v}_4\}$, we have

$$det(A) = \begin{vmatrix} 3 & 1 & 5 \\ 1 & 4 & -2 \\ 4 & -1 & 9 \end{vmatrix} = 0, \text{ so that } \mathbf{v}_1, \ \mathbf{v}_2, \ \mathbf{v}_3 \text{ and } \mathbf{v}_4 \text{ do not span } \mathbf{R}^3.$$

(d)
$$det(A) = \begin{vmatrix} 1 & 3 & 4 \\ 2 & 4 & 3 \\ 6 & 1 & 1 \end{vmatrix} = -39$$
, so that \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 span \mathbf{R}^3 and \mathbf{v}_4 can be written

as a linear combination of v_1 , v_2 , and v_3 .