MATH 241 - Fall 2012

HW #4

Due 02/11/2012

Due 04/11/2012 if typed and uploaded as .pdf

1) Obtain an orthonormal basis for the subspace of \Re^4 spanned by

$$\underline{v}_1 = \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \underline{v}_2 = \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix} \text{ and } \underline{v}_3 = \begin{bmatrix} -1\\1\\0\\1 \end{bmatrix}.$$

- 2) Question 9.9.11 from your textbook¹.
- 3) Question 9.9.13 from your textbook, parts (a), (c) and (e).
- 4) Let S denote the subspace of \Re^3 consisting of all points lying on the plane with the equation $-x_1 x_2 + x_3 = 0$.
 - (a) Determine a basis for S.
 - (b) Extend your basis for S to obtain a basis for \Re^3 .

(c) find the best approximation of the vector $\underline{b} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$ on this subspace.

5) Let the vector space $C^0[a, b]$ be all real-valued functions that are continuous on the interval [a, b]. In this vector space the mapping $\langle f, g \rangle = \int_a^b f(x) g(x) dx$ defines an inner product. You can view $\langle f, g \rangle$ as $f \cdot g$ (i.e., dot product) for functions. Therefore,

- (i) two functions are orthogonal if $\langle f, g \rangle = 0$,
- (ii) $||f|| = \left[\int_{a}^{b} (f(x))^{2} dx\right]^{1/2}$

Determine an orthonormal basis for the subspace of $C^{0}[-1,1]$ spanned by the functions $f_{1}(x) = x$ and $f_{2}(x) = x^{3}$.

- 6) Question 9.10.3 from your textbook.
- 7) Let $M_n(\Re)$ be a real vector space of all $n \times n$ matrices with real elements.
 - (a) Write a basis for $M_3(\Re)$.
 - (b) What is the dimension of $M_3(\Re)$?
 - (c) What is the dimension of $\boldsymbol{M}_n(\Re)$?
- 8) Let S be the set of all $n \times n$ diagonal matrices with zero trace (i.e., $s = \{\underline{\underline{A}} \in S : \underline{\underline{A}} = \{a_{i,j}\}_{n \times n} \text{ such that } a_{i,j} = 0 \text{ if } i \neq j \text{ and } trace(\underline{\underline{A}}) = 0 \}$).
 - (a) Show that \boldsymbol{S} is a subspace.
 - (b) What is the dimension of \boldsymbol{S} ?
- 9) Question 10.2.12 form your textbook, parts (a), (b).

10) Question 10.2.15 form your textbook, parts (a), (b).

 $^{^1\}mathrm{Textbook}$ refers to Advanced Engineering Mathematics by Greenberg.