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1 INTRODUCTION

This study is motivated by a desire to distinguish between those conditions for stability
which result as consequences of behavioral assumptions and those that are somewhat
more fundamental or structural. Towards this, we adopt a model which does not impose
any behavior on the states. While this model may be a naive representation of reality, it
is common to a number of more sophisticated models that appeared in the literature. The
results obtained by studying this common denominator complement the aforementioned
attempts towards identifying premises that best describe states in conflict.

The following are the defining features of the model. There is a world of n states having
fixed nonnegative resources 71, ...,7,. The state ¢ has full control over r; and none over
the resources of other states. Each state however knows all resource values. Each state
allocates all of its resource against the remaining states so that each r; is infinitely divisible
and the allocated portions add up to ;. The model itself is the set of all n x n matrices
A with its ij-th entry A(%,j) equal to the resource allocated by i against j. The i-th row
sum of the matrix A is the resource r; controlled by the state .

Let us say that the world is “in equilibrium” if the resources are so apportioned that any
two states have equal amounts allocated against each other, or equivalently, if the matrix
A is symmetric. If an equilibrium exists, then let us say that the world is “balanced'”. It
is crucial to note the distinction between the equilibrium and the balance. The equilib-
rium has to do with allocated (apportionment, targeting) resources and the balance with
resources controlled by states and with their relative magnitudes.?

Whether states are willing to achieve an equilibrium or not, whether they are cooperative
or not, the following questions seem legitimate to ask on this simple model.

Q1. When is the world balanced? Equivalently, does there exist an equilibrium?

Q2. What are the allocations that achieve an equilibrium provided the world is balanced?

If n = 2, the answers are obvious: The world is balanced if and only if the two states have
equal amounts of resources in which case an equilibrium is achieved with full allocations
against each other. If n > 3, then Q1 and Q2 are answered by Theorem 1 below. The
answer to Q1 turns out to be one of the most frequently encountered conditions in the
literature, known as a “no predominance” or “no hegemony” condition. A world of n
states is balanced precisely when no country controls more than half of the total world
resource. Thus, the world is balanced in a continuum of situations ranging from equality of
resources to the existence of a state controlling exactly one half of the total world resource.
In Aumann and Machler (1964) and Niou and Ordeshook (1986), for n = 3, the condition
characterizes, respectively, discrete bargaining set (with a different interpretation of r;’s!)
and system stability. For larger n, the condition is necessary for system stability of Niou

!Both terms “equilibrium” and “balance” are loaded with a plethora of different meanings. In this
paper, we do not intend to mean anything more than what is attributed by their formal definitions.
2We elaborate more on this point in Section 2.



and Ordeshook (1986) (but not sufficient). The main contention of Zinnes (1970) is that
this no hegemony condition should be taken as the definition of balance of power. Theorem
1 clarifies exactly what type of balance this condition avails, namely, the capacity of states
for equilibrium allocations.

Although the necessity of no hegemony condition for a balanced world is seen on a mo-
ment’s reflection, the sufficiency which amounts to answering Q2 is more difficult. It
turns out that while for n = 3 a unique allocation scheme achieves equilibrium, for n > 4,
there are infinitely many schemes achieving equilibrium unless one state controls exactly
one half of the total world resource. This “near predominance” or “almost hegemony”
condition characterizes resource stability in the (static) cooperative game of Niou and Or-
deshook (1986) and the perfect equilibrium in the noncooperative game of Wagner (1986).
An interesting interpretation of the uniqueness result of Theorem 1 in terms of the co-
operative n-person game for n > 4 of Niou and Ordeshook (1986) is that the existence of
unique and nonunique equilibrium allocations correspond, respectively, to the game being
inessential and essential. In fact, if the condition (5) holds with strict inequality, then
there are infinitely many equilibrium allocations and the cooperative n-person game of
Niou and Ordeshook (1986) has no core. If (5) holds with equality for some i, on the
other hand, there is a unique choice of equilibrium allocations and the game of Niou and
Ordeshook (1986) has a core.

If the resource values do not allow a balanced world, i.e., when there is a hegemon, then we
may investigate what allocations yield as close an equilibrium as possible. This is asking
for an optimal® equilibrium. In case n = 2, since the model allows no other possibility
for the states but full allocations against each other, this scheme is optimal under any
criterion of optimality. Theorem 2 shows that if “closeness” is quantified as minimizing
the maximum disequilibrium among pairs of states, then the optimal allocations are as
follows. If there is a hegemon, then it distributes its resource “evenly” among the weaker
states while facing full allocations by every one of them. If there is no hegemon, then the
optimal allocations are the equilibrium allocations of Theorem 1. The somewhat limited
conclusion (since this is only one among infinitely many notions of optimality) one can
draw from this result is that, the weak states take no action against each other for an
optimal equilibrium in the presence of a hegemon.

The notion of balance we temporarily agreed upon is by no means the only one that can
be allowed in our simple model. By preserving an equal treatment to every state, i.e., the
symmetry among states, one can consider a stronger notion of equilibrium and balance.
For want of a better term, let us say that the world is “in perfect equilibrium” if the
total allocations by every pair of disjoint subsets of states, consisting of an equal number
of members, against each other is the same. The world is called “perfectly balanced” if
the resource values permit a perfect equilibrium. Here, the allocated resource by a subset
of states to another subset of states is the sum of the allocations of the member states.
After resolving some ambiguities this definition contains, we may ask the same questions
as Q1 and Q2 for perfect balance. It turns out that (see Theorem 3) a perfectly balanced

3 Although optimal means “the best”, the entrenched usage does not carry any such association as
there are many alternative criteria of optimality.



world is possible just in case the sum of the resources of the two weakest states is no
less than the arithmetic average (the mean) of the resources of remaining states. If this
condition holds, then there is a unique scheme of allocations, i.e., there is exactly one
possible way of apportioning the resources, achieving the perfect equilibrium in any world
of n states. The significance of the notion of perfect balance lies in this latter result. The
nonuniqueness of the allocation schemes achieving equilibrium for n > 4 leaves space for
considering a stronger notion of balance. Perfect balance is just strong enough a notion
that narrows the allocation schemes down to a single one. At the time of the writing of
this article, the relevance of perfect balance, or the condition for it, to more sophisticated
game theoretic models is not clear to us.

The last definition of balance we examine is motivated by the concept of system stability
of Niou and Ordeshook (1986). The definition requires incorporation of coalitions into our
model. A coalition is simply a subset of states with the resource of a coalition taken to
be the sum of the resources of member states. The world of n states is called “threat-
balanced” if for every state there is a division of the remaining states into two coalitions
such that the reduced world of three states is balanced. It turns out (see Theorem 4) that
the world is threat-balanced if and only if it is system stable in the sense of Niou and
Ordeshook. This also explains our reference to such a balance as threat-balance since in
a system stable world each state faced by a threat has a viable counterthreat (Niou and
Ordeshook, 1986).

The following are the main conclusions reached by our analysis:

1. Understanding the balance of power as the absence of a hegemon can be justified
on the grounds that the lack of a hegemon is equivalent to the states being able to
apportion (target) their resources to attain equal allocations in every one-against-
one confrontation.

2. The absence of a hegemon, however, is not the only possible way of associating
balance with equal allocations. Perfect balance which is the capacity of states to
achieve a stronger equilibrium, wiz., equality of allocations between every pair of
subsets of states with the same cardinality, is also a possibility.

3. The existence of an almost hegemon, which appears as a condition for resource
stability of Niou and Ordeshook as well as subgame perfect equilibrium of Wagner,
can be given a meaning devoid of any behavioral association in a world of more than
three states, namely, it is a necessary and sufficient condition for the existence of a
unique equilibrium allocation scheme.

4. The system stability of Niou and Ordeshook is another concept which has a struc-
tural meaning. It is a necessary and sufficient condition for a reduced world of three
states consisting of the weakest state and two coalitions formed by the remaining
states to be balanced.

5. Optimal allocation schemes towards achieving an equilibrium yield somewhat triv-
ial and expected results in case a hegemon exists. If there is no hegemon, then



all straightforward definitions of optimality yield that optimal allocations are the
equilibrium allocations.

6. Both perfect and threat-balance require viewing the world of n states as a reduced
world of three effective states. Moreover, the two and three state worlds are dis-
tinguished by the uniqueness of equilibrium allocations whenever they exist. These
indicate that conclusions reached by studying two and three country worlds can
in many cases be easily extended to m country worlds. The recent concentration
of efforts in Bueno de Mesquita and Lalman (1992), Wagner (1994), Fearon (1995),
and Powell (1996) is thus on the right track.

2 A BALANCED WORLD

Given a set of states N/ = {1, ..., n}, suppose that the i-th state has a resource r; > 0 which
it uses to allocate against the remaining states N' — {i}. Let a;; denote the allocation
of state ¢ against the state 5. The whole r; is distributed among the remaining states so
that a;;’s satisfy

Z aij:riViGN' (1)
JEN—{i}
and

We call a set of allocations {a;; : {7,7} C N} a b-equilibrium (“b” for “bilateral”) if (1),
(2) hold and

A5 = Qjj A {Z,j}CN (3)

Figure 1 illustrates a five-state-system at b-equilibrium. The lines emanating from a state
denote its respective allocations and the sum of their values equals the total resource of
that state. As two emanating lines are connected, this is interpreted as the equality of
bilateral allocations. This section is mainly concerned with the question: Given n states
with resources ri, ..., ry, does there exist a b-equilibrium? If the answer is in the affirmative,
then such an n-state-world will be called balanced.

It is clear that the answer is not always in the affirmative. In fact, in the trivial case of
n = 2, the admissible allocations are a1 = 7 and a9, = ry due to the restrictions (1).
Thus, (2) holds and the world is balanced if and only if 7y = ry. By way of emphasizing
the distinction between b-equilibrium and balance, we note that in a balanced world
of more than two states both equilibrium and disequilibrium allocations exist. In the
world of three states with resources r; = 8,17, = 6,73 = 4, allocations a2 = ag; = 5,
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Figure 1: Bilateral-Equilibrium

a13 = a3; = 3, agg = aze = 1 yield a b-equilibrium. If the first state changes its allocations
to a;3 = 4,a;3 = 4 the world is no longer in b-equilibrium. This world is balanced
since there is at least one b-equilibrium. On the other hand, the world of three states of
resources r, = 10,79 = 6,73 = 3 is not balanced since a b-equilibrium does not exist. *
Note that if a state & has no resource, i.e., 7, = 0, then az; = 0 for all i # k; 7 € N and
for equilibrium the choices a;, = 0; i@ # k; i € N are enforced by (3). Consequently, the
problem is reduced to the same problem with n —1 states and there is no loss of generality
in assuming

ri >0V ieN. (4)

Theorem 1. A world of n states with resources r1, ..., satisfying (4) is balanced if and
only if

< Y 1 VieN. (5)
JeEN—{i}

(i) If (5) holds and n < 3, then there is a unique b-equilibrium.

(i1) If (5) holds and n > 3, then there is a unique b-equilibrium if and only if equality
holds in (5) for some i € N.

4Mathematically, the problem is to determine when the set of n(n +1)/2 equations (1), (3) in n(n—1)
unknowns have a solution satisfying the constraint (2). Although there are many algorithms to determine
a solution to such problems (Chvétal, 1983), we are interested in determining a solvability condition in
terms of the problem data rq, ...,7y,.



(iit) If (5) holds, then there is always a b-equilibrium in which n(n — 3) of the a;;’s are
zero.

A proof of Theorem 1 is given in the Appendix. Here, we give a set of a;;’s achieving a
b-equilibrium provided (5) holds. Let us number the states in such a way that

7‘127'22...27'”. (6)

Let k be the smallest integer such that the following inequalities are satisfied:
k n k
D rai- Z Z T2i—1; (7)

k+1 k+1

ZTQZ 1>ZTg 27'21'—1- (8)

Thus k is such that the sum of the resources of the odd-numbered states 1,3,...,2k — 1
is not more than the sum of the resources of the remaining states but when the resource
of the state 2k + 1 is added, the situation is reversed. By (5), such a k > 1 always exists
and by (6) satisfies 2k +1 < n for n > 3. Let

n k
c= er - 227"21-_1,
k—|—1

—QZTZZ 1_27"7

A b-equilibrium is then given by

A1(2k+1) = G(2k+1)1 = d/2;

Q1(2k) = O(2k)1 = A2 + Top — Top41,

Q(2k) (2k+1) = Q2k+1)(2k) = €/2,

Q1)1 = Q1(21) = T2t — T21+1, 9)
a,(gl)(QH_l) = a(2l+1)(2l) = Tol+1, for | = 1, . k—1ifk 2 2,

a1; = aj =1y, for j =2k+2,...,nif 2k +2 < n, and

a;; = 0 if it does not appear above.

2.1 On the Condition for Balance

The simple condition (5) reads: the strongest state’s resource is not more than the sum
of the resources of remaining states, or alternatively, no state controls more than half of



the total world resource. The condition (5) is a “no hegemony” or “no predominance”
condition in that no state has a resource exceeding the sum of resources of all other states.

The condition may very well fail to hold for a given n and given resources, a state may
have hegemony. For each n > 2, there are infinitely many resource values satisfying (5)
and not satisfying (5). The following is true: Given n, suppose ri, ..., , do not satisfy (5).
There exists 41 such that rq,...,rny1 satisfy (5). In fact, with (6), if r; is greater than
the sum of resources of remaining states, let r, 1 := r; —r9 — ... — r,. Then, although
state-1 is still the strongest, it no longer has hegemony and in the new world of n + 1
states an equilibrium can be achieved. An alternative and obvious way of achieving a
balanced world without increasing the number of states is of course a reduction, by way
of self-consumption, in the resource of state-1 by the amount r; — ro — ... — r,,. This
amount can be viewed as the maximum the hegemonic state can internally consume while
a b-equilibrium prevails.

2.2 On the Choice of Allocations

If (5) holds and a balanced world is possible, the sets of all a;;’s achieving a b-equilibrium
can be obtained through the intersection of a finite number of polyhedra in a suitable space
due to the nonnegativity constraint (2). In (9) we gave expressions for one b-equilibrium.
The above choice of a;;’s are such that n(n —3) of them are always zero which means that
n(n—3)

——— pairs of states need not allocate any resources against each other.

Let us now examine (9) more closely for some small n. For n = 3, the inequalities (7)
and (8) give with £ =1,

ri<ro+7r3, T +T3>"T0

which are satisfied by (5). The unique b-equilibrium is

a13 = ag1 = %(7“1 + 73 —12),
Q12 = Qg1 = %(7“14-7“2—7“3),
Q93 = Q39 = %(7"2+7"3 —7"1).

For n = 4, the inequalities (7) and (8) with £ = 1 give
1 ST2+7'3+T4, L+ 73 27”2+7'4,

which are satisfied by (5) and by (6). A b-equilibrium is obtained from (9) as

_ _1

a13 = a31 = §(T3+T’1 — T4 —T2),
1

ag =g = 5(ro +1r1 — 14 —13),
1

32 = A93 = 5(7‘4+T3+7“2—7'1),

G14 = Qg1 = T4,
Q42 = G4 = Q43 = a3z4 = 0.



For n = 5, the inequalities (7) and (8) give

k=1": 7’1§7‘2+7’3+7’4+T5, 7“1+7'3Z7"5+7‘4+7‘2,
k=2: ri4+r3<rs+ro+ry, ri+r3+r5>10+ 74

By (5) and by (6), one of the two sets of inequalities is satisfied. An admissible choice of
allocations is obtained from (9) as

(rs 411 =15 — 19 — 14),
ag1 = a1y = 5(rg + 11— 15 — 14 — 13),
a39 = Q923 = §(T5+7'2+7'3+7"4—T1),
Q41 = Q14 = T4,

az;y = a13 =

0O | 0 | =

a15 = as1 = Ts,

(54 = Q45 = G53 = U35 = 52 = A25 = U34 = (43 = Qo4 = Qg = 0,

if k=1 and as

1
a5 =051 = 5(r1 + 13+ 15 — 19 — T4),

Q41 = Q14 = %(T4+T'3+7”1—T5—7”2),

Q54 = Q45 = %(T5+T'2+7“4—T3—7”1),

Q21 = Q12 = T2 — T3,

Qg3 = Q32 = T3,

(34 = Q43 = G53 = U35 = G52 = (g5 = Q31 = (13 = g4 = Qg2 = 0,

it k= 2.

One can observe the following general features of the allocations achieving equilibrium:

i)

ii)

iii)

State-i needs to know the resource of every other state in order to determine its
allocations towards achieving an equilibrium. The actual attainment of an equilib-
rium is instantaneous in case there is a unique equilibrium. It may however be a
long and tedious process in case of nonunique equilibria.

In the bordering case of state-1 having a resource equal to the sum of the resources of
the remaining states, the unique equilibrium allocations are ai; = aj1 =7r;; j € N
and a;; = 0; 7 # 1,5 # 1. Each state allocates its whole resource against the almost
hegemon and none against each other.

Note that the value of £ is the largest possible in a world in which all states have the
same amount of resource. For small k relative to ”T_l, the gap between the stronger
and the weaker states is larger; for such k, the weaker states tend to allocate as
little resource as possible towards each other and as large as possible against the
stronger states. As k gets larger, the world is closer to an equilibrium to start with
and discrimination becomes less pronounced.



iv) From items (ii) and (iii) emerges the ad hoc principle that the equilibrium seeking
states are pushed (perhaps against their will) to coalitions by their dicriminating al-
locations against the weaker and the stronger states. Note that in order to make this
endogenous formation of coalitions more precise, one needs to examine all possible
equilibrium allocation schemes.

2.3 A Minimal Disequilibrium

It is tempting to rephrase the question at the beginning of this section in an optimality
setting: Given n states with resources r1, ..., rn, what are the allocations satisfying (1) and
(2) such that the world is as close to an equilibrium as possible?

There are many ways of quantifying the closeness to equilibrium. Here, we follow the
most obvious. We call a world of n states to be in an Ly -optimal ® equilibrium if the
allocations minimize

max |a'ij — Qj5, (10)
6J
i F ]

where |a| denotes the absolute value of a number a. Note that if the resources satisty (5),
then the minimum (10) is equal to zero and the allocations achieving this minimum are
the equilibrium allocations. If (5) fails, then by Theorem 1, it is known that the minimum
is a positive number. The following result yields the minimum value and the allocations
achieving this minimum.

Theorem 2. In a world of n states with resources ry, ..., r, satisfying (4) and (6), suppose
that (5) fails. Such a world is in Ly -optimal equilibrium if and only if

n

ayj = ﬁ <r1+ (n—1)r, —Zn) :
t=2

a1 = Ty,

Q35 = 0, Z,j = 2, ceey N

The allocations (11) achieve the value

1 n
min max |a;; — aj| = —— (7“1 — Z”) ) (12)
i ] n—1 =2
L F ]

A proof of Theorem 2 is given in the Appendix. We observe from this result that an L.-
optimal allocation scheme always exists, it is unique, and is rather simple: the hegemon,

5See e.g., Chvatal, 1983.



state-1, distributes its resource “evenly” among all the other states, i.e., in such a way
that its excess resource against other states are uniformly the same. The other states take
full action against the hegemon and none against each other. In the bordering case of the
state-1 being an almost hegemon, (11) yield the unique equilibrium allocations described
in remark (ii) of the previous subsection.

We note that if other well known definitions of optimality such as L, or L; optimality
are adopted, then while the optimal allocation scheme will no longer be unique, two
features will still be present: (i) If (5) holds, then optimal allocations are the equilibrium
allocations. (i) If (5) fails and a hegemon exists, then optimal allocations are such that
all the other states take full actions against the hegemon and none against each other.

2.4 Allowing internal consumption

Let us now suppose that each state ¢ uses a portion a;r;, a; € [0, 1], of its resource
for allocations against the other states. The remaining portion (1 — «;)r; is used for
internal consumption or, as in the next section, for some other purpose. It follows by
Theorem 1, that given k states {1,...,k} = K with total resource 7(K) = ¥¥  r; and
total allocation Y% | ayr; =: I € [0,7(K)], a b-equilibrium in K exists if and only if there
exist a; € [0,1], i € K satisfying

Z ar; =1, 0<ar; <min{r;, I/2}. (13)
1€

The following result characterizes the internal equilibrium and the possible choices of o;’s
in terms of total allocation I and the resources.

Theorem 3. Let K be a collection of states having positive resources ry, ..., with k > 2.

(i) An equilibrium can be attained in K if and only if
r <r(K)—=-Viek. (14)

(i) If (14) holds, then there is a unique choice of o;, i € K, satisfying (13) if and only if
either k=2, 1 =0, [ =r(K), or equality is attained in (14) for some i.

If the total allocation is I = r(K), then (14) reduces to r; < r(K)/2 V i € K and hence
Theorem 3.i reduces to Theorem 1.i. Note that the uniqueness of «;’s does not necessarily
imply that there is a unique b-equilibrium in K.% Also note that (14) is equivalent to
ri < (2r(K) —1)/2V i € K. If equality is attained for some i, then state-i is a (almost)
hegemon in I as 7(K) > I. Hence, the third possibility of unique a;’s in Theorem 3.ii
can be realized only if there is a (almost) hegemon in K.

61f I = r(K), k > 3, and no state is an almost hegemon in X, then Theorem 1.ii gives that there are
infinitely many equilibria inside K.

10



3 ALLIANCES

Let us now consider a system of n states partitioned into [ < n alliances A;, i = 1,...,1
which are nonempty and disjoint subsets of N := {1, ...,n} such that A; U...U A, = N.
Internally, each alliance A; is a system of n; states. Externally, each alliance is perceived
as a unit or as an effective-state by the other alliances. A fraction I; of the total resource

r(A) = >

JEA;

of A; is consumed internally and the remaining fraction E; is allocated externally to other
alliances so that E; + I; = r(A;). The internal allocation I; and the external allocation
E; are formed by fractions of the resource of each state in the alliance 7. Thus, for each
1=1,...,1, we have

Ii = Z QiTj, Ez = Z (1 - O&ij)rj (15)

JEA; JEA;

for some a;; € [0,1] V j € A;.

Given a fixed alliance configuration of [ alliances, a system of n states will be said to be in
alliance equilibrium if (i) each A; as a system of n; states is in equilibrium for s =1,...,1
and (i) the system of [ alliances, wieved as effective-states with resources F;, i = 1,...,1,
is in equilibrium. In Figure 4, a system of five states in alliance equilibrium with respect
to a configuration of two alliances is illustrated. Note that each alliance is (internally)
in equilibrium as well as the system of two alliances. For the case [ = 2, the external
allocations E7, Ey are necessarily the allocations of A; and A, against each other. When
[ > 3, the allocations of any alliance A; to other [ — 1 alliances sum up to Ej;.

It will be helpful to define a local hegemon to be a state in an alliance with resource
exceeding the sum of resources of the other members of that alliance. Further, let Ay be
called a hegemonic-alliance if r(Ay) is strictly more than the sum of the total resources
of the other alliances.

We now ask the most basic of possible questions for an alliance configuration where all
alliances are alignments (levels of internal or external allocations are not constrained).
Q3. Does there exist an alliance equilibrium, with respect to a given alliance configura-
tion, in a given system of n states?
Q4. What are the internal and external equilibrium allocation profiles provided they

exist?

It is not difficult to see that if a system of n states is in equilibrium, then it is also in
alliance equilibrium for any given alliance configuration. Thus, the absence of a global
hegemon implies that an alliance equilibrium is possible for any alliance configuration.

11



A, —

Figure 2: Alliance Equilibrium

An alliance equlibrium may hence be a less stringent requirement than equilibrium. The
fact that alliance equilibrium poses no restriction as to how an external allocation of
an alliance A; to another alliance A; should be distributed among the members of A,
also supports the expectation that an alliance equilibrium is easier to achieve than an
equilibrium. It turns out, however, that the absence of a global hegemon is also necessary
for the existence of an alliance equilibrium so that equilibrium and alliance equilibrium
are equivalent as far as the existence conditions are concerned. The difference is in the
equilibrium allocation profiles.

Theorem 4. In a system of n states with positive resources r1, ..., Ty, the following hold.

(i) If there is a global hegemon, then no alliance equilibrium exists for any alliance con-
figuration.

(i1) If there is no global hegemon, then there always exists an alliance equilibrium for any
gwen alliance configuration. Any equilibrium allocation profile of Theorem 1 is also an
alliance equilibrium allocation profile. The following particular external allocations also
exist and allow an alliance equilibrium to be attained: Fori=1,...,1

,

0 if A; has no local hegemon,
B = r(A;) if A; is not a hegemonic-alliance and has a local hegemon, (16)

ZT(.A]') if A; is a hegemonic-alliance and has a local hegemon.
\ J#
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(1i1) Suppose there is no global hegemon. There is a unique choice of alliance equilibrium
allocation profiles (both internal and external equilibrium allocation profiles are unique) if
and only if either n < 3 or an almost global hegemon exists.

4 A PERFECTLY BALANCED WORLD

The nonuniqueness of the equilibrium allocation scheme for n > 3 suggests considering a
stronger notion of equilibrium than the one in the previous section. This is our objective
in this section.

In an n-state-system with n > 3, let the equilibrium allocations further satisfy the follow-
ing: For any given pair of states {k,(},

Qi — Q41 = Ajk — A4y, (17)

for every 4,7 € N — {k,l}. By (17), aix > a; if and only if a;, > aj and ay = a; if and
only if aj; = aj;. Thus, states 7 and j consistently emphasize one of any given two states
k and [ by their allocations. The condition (17) requires that the amount of emphases
are equal in addition to being consistent. We call an allocation profile to be a perfect
equilibrium if it is a b-equilibrium and the allocations of every pair of disjoint subsets
{1,7} and {k, 1} of N satisfy (17).

The following result shows that the world is perfectly balanced if and only if the sum of
resources of every pair of states is not less than the average resource of the remaining
states.

Theorem 3. A world of n states with n > 3 and resources r1,...,r, Satisfying (4) is
perfectly balanced if and only if

1
Ti+7‘j_— Z TtV{i,j}CN. (18)
= 2 4N {ij)

If (18) holds, then there is a unique set of allocations achieving the perfect equilibrium
given by

aij:ﬁ (7‘1-4—7’]-—5 > rt> v {i,j} C . (19)

A proof of Theorem 3 is given in the Appendix.

4.1 On Perfect Balance

Our definition of perfect balance is based on the equality of allocated resources between
every pair of disjoint groups consisting of equal number of states. It might be wondered
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whether this definition can be strengthened by also requiring an equilibrium between
every possible pairs of groups. This additional requirement however can never be satisfied
since the equilibrium condition (3) implies that there are at least two groups of unequal
number of states out of equilibrium.

The condition (18) reads: the total resource of the weakest two states is not less than the
average resource of the remaining states. In fact, assuming (6), the condition (18) reduces
to only one inequality for i =n — 1, j = n.

For n = 3, the extra requirement (17) is inapplicable so that the condition (18) and
the perfect equilibrium allocations are, respectively, the same as (5) and the equilibrium
allocations. It is interesting to observe that even for n > 3, the condition (18) is equivalent
to (5) with n = 3 provided that each collection of n — 2 states is considered as a single
state with resource equal to the arithmetic average of their resources. Also note that the
perfect equilibrium allocations are all nonzero unless equality holds for the weakest two
states in (18) (in which case only their allocations against each other are zero). This is
in contrast with equilibrium allocations.

If n > 4, the set of resources satisfying (18) is a proper subset of the set of resources
satisfying (5). Suppose (18) fails so that a perfect equilibrium is not possible. It is
possible to obtain a perfect world by introducing new states into the world of n states,
i.e., by an expansion of the world, as in the case of balance. Suppose with (4) and (6)
that

1
Tn—1 -+ Tn < m(rl + ...+ ’l"n,Q).

Let [ > 2n — 1 be the smallest integer satisfying I, > r1 + ...+ r,_1 and let r; = r,; j =
n+1,...,l—n-+2. In the new world of | —n + 2 states a perfect balance is obtained since
it can be verified that (I — n)(rj_pnie + ri—nt1) > 71+ oo + 7ip-

5 CONCLUSIONS

Starting with as few assumptions as possible concerning states and their resources, we have
investigated some alternative concepts of balance among states. By sharply distinguishing
between equilibrium, which is equality of allocations, and balance, which is capacity to
achieve equilibrium, we examined the implications of three different concepts of static
equilibrium on balances. Each balance is characterized by certain inequalities among
resources.

The more fundamental of the three is the concept of balance, which is capacity to allocate
resources to achieve equality in every one-against-one confrontation among states, and is
characterized by the no hegemony condition. This condition is satisfied in a continuum of
situations ranging from equality of resources among all states to the existence of an almost
hegemon among states. For the case of three states, the equilibrium allocation is unique
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whenever it exists. For the case of more than three states, the equilibrium allocation is
unique just in case there is an almost hegemon. The concept of perfect balance, which
is capacity to allocate resources to achieve equality in every confrontation of two subsets
of the same number of states, is characterized by the arithmetic average condition. The
perfect equilibrium allocation is unique whenever it exists. The concept of threat-balance,
which is the capacity to achieve equilibrium in a reduced world of three effective states, is
characterized by every state being able to change the relative strengths of two coalitions
formed by the other states.

The main conclusion one can draw from this analysis is that many crucial conditions
on resource distribution that emerge in empirical and theoretical studies of balance of
power correspond tightly with the capacity of states to achieve some kind of structural
equilibrium. The foregoing analysis also clarifies the idea behind defining balance of
power as the absence of a hegemon since, by Theorem 1, this is equivalent to the states
being able to achieve an equilibrium in the sense of Section 2. Other plausible definitions
perfect and threat-balance are consequences of stronger notions of equilibrium among
states. Although they both imply balance, they are equally legitimate means of viewing
balance of power within the realm of our model.

The model, resource allocation matrix, used in our analysis is intended to capture the
common components present in a number of more sophisticated models and it would be
superfluous to discuss how much of the reality it reflects. Nevertheless, it is necessary
to discuss its limitations if it were viewed as a model with explanatory power. We start
by pinpointing its mathematical limitations. The model has no dimension of time or
sequentiality of decisions. It is therefore a static model and only allows questions con-
cerning equilibrium. Since the dynamic aspects are lacking in the model, whether a given
equilibrium is stable or not can not be answered. This means that wars, negotiations,
threats, formation of coalitions, and the like can not be fully considered within the present
model. Since the whole resource of a state is apportioned among the others and since
all states are treated equally, the model can not accommodate “internal consumption vs.
defense spending” (Powell, 1993), considerations and it disregards “geographic limitations
or advantages” (Niou and Ordeshook, 1989). A more fundamental limitation of course is
the fact that the model neglects behavioral features altogether. Some of the behavioral
aspects incorporated in game theoretic models of Wagner (1986) and Niou, Ordeshook,
and Rose (1989) are appropriate enrichments of the present model. As discussed by Wag-
ner (1994), however, no single model may ever be rich enough to help us understand why
states prefer one course of action to another in every given time and place. There are
factors other than resources like beliefs in other states’ motives or uncertainty about the
outcome of a confrontation which are sometimes more determinative and which are diffi-
cult to justly incorporate into a model that claims sufficient generality. These cautionary
advices while bringing forth the importance of structural analysis does not mean that the
behavioral aspects can not be studied via formal models. It only means that those as-
sumptions that characterize a specific situation should carefully be incorporated into the
formal model developed for that particular situation. Some of the above mathematical
limitations can be remedied remaining within the domain of structural analysis without
imposing rules of behavior and strategy. The conclusions reached by such structural anal-
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ysis would serve as useful inputs to game theoretic studies which may still be considered
as the correct way of studying behavioral phenomena.

APPENDIX

The appendix contains proofs of Lemma 1 and Theorems 1-3 which are straightforward
except those of the uniqueness claims of Theorems 1 and 3 that occupy most of the space.

Proof of Theorem 1. Let the states be numbered as in (6).

Necessity of (5): Necessity of (5) being clear for n = 2, suppose n > 3. Let a;;’s satisfy
(1)-(3). By (1), we can write

Zri_erzz Z aij—QZalj. (20)
7j=2

i=1 i=1j=1,j#i

Since by (3) a;; = aj; for all 4, j, we can write (20) as

Z '_2T1_22 Z Qij — QZGIJ—QZ Z @i (21)

i=1 i=1 j=i+1 =2 j=i+1

where the right hand side is nonnegative. Hence,

n

Zri—er >0

i=1

which, in view of (6), implies (5).

Sufficiency of (5): Suppose n = 2. Then (5) gives 1 = 75 so that a balance is achieved
by a12 = a1 = r1. Suppose n > 3. Let a;;’s be chosen as in (9). They satisfy (3) by
definition. We now show that they also satisfy (2) and (1). First observe that ¢ > 0 and
d > 0 where the first inequality follows by (7) and the second by (8). Taking into account
(6), it follows that all the other a;;’s are also nonnegative. Hence, (2) holds. Consider (1)
with ¢ = 1. We have

n k—1 n
Zalj = d+7”21c—T2k+1+Z(T21—7"2l+1)+ Z T;
k—1 k—1
= - 2(7’% —T9ip1) + Z(Tw — Ta141)

i=1 =1

= Ty,
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where the second equality follows by

n k+1 2k+1
d+Top —Tops1+ D, 75 =2D Toi1— D, Tj+Tok — Topsa
j=2k+2 i=1 j=1
k k-1
DI
i=1 j=1
k-1
=T — Z(Tzi — T9i41)-
i=1

For the sum (1) with ¢ = 2k + 1, we have

n

Y. agery; = (c+d)/2
j=1,j#2k+1
= T2k+1-

For the sum (1) with ¢ = 2k, we have

n
> apr; = (c+d)/24 1o — ropg
=102k
= T9-

Finally, for the sums (1) with i =20, =1,...,k — 1, we have

n

Z Qa1)j = Tot — Tou41 + T241 = T2
j=Lj#2

For any other value of ¢, each sum (1) contains only one nonzero term which is equal to
r;. Therefore, (1) holds for all i € N'. The above choice of allocations also proves the last
statement of the theorem.

Uniqueness: The statement on uniqueness of the equilibrium allocations for n = 2,3
follows since (1) and (3) impose, respectively, 3,6 independent equality constraints for
2,6 variables.

Suppose n > 3. If in (5) an equality exists, then by (6) it must be that
Z 7“]' =T1. (22)
j=2

Let a;;’s be any choice of allocations achieving equilibrium. Then, by (1) and (22),

Yoaj=ri=) 15 (23)
j=2 =2
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where, by (2) and (3), we have

0<aj=0a;<rj j=2,..,n. (24)
We claim that

aj =aj =7 j=2,..,n (25)

In fact, if a,; < 7, then by (23),

n—1 n—1
Z aj > Z Tj
j=2 j=2

which contradicts (24). Hence, a,; = 7, and (23) holds with n — 1 replacing n. By
induction, it follows that (25) holds. Then, as (25) gives a;1 = aj1 =14, j =2, ..., n, the
equalities (1) give that a;, = 0 for all j,k = 2,...,n and there is a unique set of values for
equilibrium allocations. To prove the converse, suppose

ZT]' > T (26)
j=2

Let k be the smallest integer such that ¢ > 0 and d > 0 and alter the definitions of a;;’s
in (9) by e as follows: If n is even, let

a1(2k+1) = a(2k+1)1 = [d + (TL — 2k — 2)6]/2,

a1(2k) = Gkt = [d+ (0 — 2k)€]/2 4+ ror, — Tor41,

Qo) (2k+1) = Qak+1)(2k) = [¢ — (n — 2Kk)€/2,

Qo1 = a2 = T — T2u+1,

Q(21+1) = G(2041)1 = T20+1, for [ = 1, . k—1ifk > 1,
15 = @1 =T; — €, fOl"j = 2k+2,,n1f2k+2 <n,
A(i4+1)(n—i+1) = A(n—i+1)(i+1) = €

Qi 2k)(n—it1) = Gn—it1)(i+2k) = € ¢ € N — {2k}, and
a;; = 0 if it does not appear above.

If n is odd, let

a1(2k+1) = a(2k+1)1 = [d + (n — 2k — 1)6]/2,

a1(2k) = Gkt = [d+ (n — 2k — 1)€]/2 + rop — Top41,

Q(2k) (2k+1) = G2k+1)(2k) = [€ — (n — 2k + 1)€]/2,

201 = a2ty = T21 — T21+1,

ay2141) = Gu+1)1 = T2+1 — 5, for [ = 1, ,k - 1, if k > 1,

a1 =aj =1; —¢€, for j =2k +2,...,n,if 2k + 2 < n,
A(i41)(n—i+1) = A(n—i+1)(i+1) = €

Q1) (n—it1) = Q(n—it1)i+1) = € ¢ € N —{1,2k, 2k + 1}, and
a;; = 0 if it does not appear above,
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where § = 0 if 4/ = n + 1 and § = € otherwise. It is now straightforward to verify that
(1)-(3) hold for every sufficiently small € > 0. O

Proof of Theorem 2.
Assuming the order (6), if (5) fails, then

n
L > ZTi'
1=2

It follows that the allocations (11) satisfy (1) and (2). A simple computation shows that
(11) achieves the value

1
n—1

m =

n
<T1 - Z”) = |alj - a'jl‘; 71=2,...,n.
1=2

Suppose the true minimum 77 is achieved by a;; satisfying (1) and (2). Hence,

m = max \&U—dﬂ|§m
¥
L F ]

If G;; # a;; for i = 1 and for some j = 2, ..., n, then by the fact that a,;’s satisfy (1), there
exists € > 0 and j = 2,...,n such that a;; = a;; + €. We must then have

a1 — a1 < <m = |ay; — aj1| = ai; — a;. (27)

Since &jl S Tj, it follows that &U — &jl Z Qa1 + € — ] > 0. Hence |CAL1]' — &j1| = &U - &jl
and (27) gives r; < a1 —e < r; —e which contradicts € > 0. Hence, a1; = a1;; j =2, ..., n.
If, on the other hand, a,; > 0 for some k, j = 2,...,n, then since dy;’s satisfy (1), we have
aj1 = rj — e for some € > 0 which gives |41, — d;1| = a1; —rj +€ > m. This implies . > m
which is only possible if € = 0. Therefore, a;; = a;; for all ¢ # j, ¥ = m, and the proof is
complete. O

Proof of Theorem 3. (i) If (13) holds, then, for all 7 € K, we have a;r; < I/2 so that
Yjex ajr; = I implies 3 gy oy > I/2. The last inequality gives (14). Conversely,
suppose (14) holds. Suppose the numbering is such that r; > ro > ... > 7. Then, (14)
is equivalent to r(K) —r > I/2. We first consider the case r; < I/2, or equivalently,
r; < I/2 for all i € K. Since 7(KC) > I, there exist oy € [0,1] such that 3;cx ar; = 1.
Note that o;r; € [0, min{r;, /2] for all j € K as required by (13). If, as the second case,
ry > I/2, then let oy € [0,1) be such that a;ry = I/2. By r(K) — ry > I/2, there also
exist o; € [0,1] for j = 2,..., k satisfying >5_, ojr; = I/2 and thus (13) is satisfied. (ii)
If I =0, then (13) gives that o; = 0, ¢ € K. If I = r(K), then it gives a; = 1, 7 € K.
If £k =2, then oy = I/(2r; and ap = I/2rs is the only possible choice for «;’s. Suppose,
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with the ordering r; > ... > 3, that 7(K) —ry = X% ,r; = I/2. Then, 5, ayr; < 1/2
and by (13), ayry = I/2. But this implies in turn that % , ayr; = I/2 = X%, ; so that
a; =1 foralli =2, ..., k. This proves the “if” part of the statement (ii). To see the “only
if” part, let us suppose that £ > 2, 0 < I < r(K), and r(K) —r; > I/2 for all i € K.
We show that (13) is satisfied by infinitely many «o;’s. Let a4, i € K be a set of choices
satisfying (13). Since 7(K) > I, o;; < 1 for some j € K. Suppose a;r; < I/2. If oy = 0
for all t € K — {j}, then a; > 0 and for an arbitrary ¢t € K — {j}, (13) implies that

€ €
(j — =)rj+(w+—)r+ >, ari=1 (28)
"3 Tt iek—{i)

holds for all sufficiently small € > 0. If, on the other hand, oy > 0 for some t € K — {j},
then (13) implies that

€ €
(j+=)rj+ (e — =)+ D> =1
" b iek—{it)

holds for all sufficiently small € > 0. This shows that if «;r; < I/2, then (13) is satisfied
by infinitely many choices of a;’s. Suppose now that «; < 1 but o;r; = I/2. Then,
Ytex—gj3 ury = 1/2 and r(K) —r; > I/2 implies that either a;ry < min{ry, I/2} for some
t € K—{j} in which case (28) again holds for infinitely many ¢ > 0 or o4 < 1 and
ayry = I1/2. In this case, for all s € K — {j,t}, we must have oz = 0 and (28) holds with
t replaces by s. Note that such an s exists by &£ > 2. O

Proof of Theorem 4. We first note by Theorem 3.i that for any ¢+ = 1, ..., [, the internal
allocation I; of A; should always satisfy

0 < I; < min{r(4;),2[r(A;) — ?é%”j]}' (29)

Moreover, any I; satisfying (29) is realizable as an internal equilibrium allocation, i.e.,
there exist equilibrium allocations inside A; such that the total allocated resource is
I;. Also note that, by Proposition 1, an external equilibrium can be attained among
A;,i=1,...,1if and only if

2F;, <Ei+..+E,Vj=1,.,1 (30)

(i) Suppose state-1 is a global hegemon and is a member of A;. Then, 2r; > r(A;) + ...+
r(A;). Moreover, state-1 is a local hegemon of 4; as well and by (29), E; > 2r; — r(A;).
For the other alliances, E; < r(A;), j = 2,...,1. It follows that E; > E, + ... + E;. With
such external allocations an equilibrium can not be attained, by Theorem 1 applied to [
states of resources FEi, ..., Ej.

(71) Suppose there is no global hegemon. By Theorem 1, an equilibrium allocation exists.
Any equilibrium allocation profile clearly gives an (internal) equilibrium for any alliance
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A;, i =1,...,1. Moreover, the external allocation of A; to another alliance Ay, is given by
E; = Z Z a;;. Since by equilibrium a;; = a4, we have Ej; equal to the allocation
JEA; teEAL
of A, to A;, i.e., Ey; = Z Z atj. We now show that the external allocations given in
teAL, jJEA;
(16) also yield an alliance equilibrium.

If there is an alliance Ay containing no local hegemon, by (16), Er = 0 and it is thus
enough to establish (30) for those alliances containing a local hegemon. That is, we can
assume without loss of generality that all alliances contain a local hegemon. Suppose
first that there is a hegemonic-alliance, say alliance 1. Then, all the other alliances are
not hegemonic-alliances. By (16), By = E> + ... + E; and E; = r(A;) for j =2,...,0. It
follows that (30) holds with equality and that (29) is satified for i = 2,...,{. Moreover,
2maxjeq, {r;} — (A1) < E; < r(A;), where the first equality follows by the fact that
there is no global hegemon and the second inequality by the fact that A; is a hegemonic-
alliance. It follows that (29) is satisfied by E; also. Suppose second that there is no
hegemonic-alliance. Then, by (16), E; = r(A;),j = 1,...,1 and (30) holds by the fact that
there is no hegemonic-alliance. These external allocations also satisfy the constraint (29).

(111) By (29) and (30), for any I; satisfying

max{0,7(4;) — Y. r(A)} < I <min{r(4;),2[r(A;) — maxr;]} (31)

. ‘. EA;
J=1,j#i I

an internal equilibrium allocation in A; exists. If the internal equilibrium allocations
are all unique, then (31) gives that for at least one i either 2[r(A4;) — maxjc4, ;| =
r(Ai) — D r(A) or r(A;) = maxjey, 1, ie., either A; is a singleton or there is an
i

almost giobeﬁé hegemon. If there is no almost global hegemon, then by the uniqueness of
internal allocations, at least one alliance must be a singleton. If, in addition, the external
equilibrium allocation is unique, then we must have [ < 3 or F; = Eé‘:u +i Ej. Suppose
I > 3. If A; is a singleton, then it must be an almost global hegemon. If A; is not
a singleton, then for some k # i, Ay is a singleton, i.e., F; — rp = Z;Zlﬁ{i’k} E;. In
this case, both internal allocations I; and I; — € for some small ¢ > 0 allow an external
equilibrium allocation profile and two different internal equilibrium allocation profiles in
A; by Theorem 3.ii. It follows that either [ < 3 or an almost global hegemon exists. If
I = 3 and one of the three alliances, say A; is not a singleton, then E; < F5 + E3 or one
of Ay, As is a global almost hegemon. In the first possibililty, both internal allocations
I, and I; — € for some small ¢ > 0 allow an external equilibrium allocation profile and
two different internal equilibrium allocation profiles in A;. It follows that n =1 = 3 or
there is an almost global hegemon. Finally let [ = 2. Then, external equilibrium gives
E; = FE,. Suppose A; is a singleton. If A, has more than two members, then Proposition
4.ii and the fact that there is a unique choice of ay;’s imply that there is an almost global
hegemon. Consequently, n < 3 or there is an almost global hegemon. This proves the
“only if” part of the statement (iii).

Suppose now that state-1 is an almost global hegemon in an alliance A;. Then 2r; =
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>t_, Ay; and since an internal equilibrium in A; exists, by Proposition 4, E; > 2r; —7(A;).
Hence, E; > Zizl,t# A > Zézl,#j FE;. By the existence of an external equilibrium, we
must have B; = Y_, . By = Yty 4z 7(Ar). It follows that E;, = r(A,) for all ¢ # j,
which implies by Proposition 4.ii that internal equilibrium allocations in all alliances are
all zero and are thus unique except possibly in A;. However, E; = Eézl,t# r(A;) so that
I = 2r(r(A;) — XL, r(A;) and hence 2r; = X r(A;) = 2r(A;) — I;. By Proposition
4.ii, the internal equilibrium allocations in .A; is unique as well. O

Proof of Theorem 5. Let us order the states as in (6).

Necessity of (18): Suppose there exist a;;’s satisfying (1)-(3) and (17) for all disjoint
subsets {7,5}, {k,1} of N'. By the fact that the world is balanced, we can write the
following equalities similarly to (21) for k € N

n n n—1 n
Zﬁ—??"k: Z Ti—Tk:2 Z Z aij. (32)

i=1 i=1,i£k i=1,ik j=i+1,j#k

Employing (32) for & = n, we have

ZT'L 7"71 1+Tn Zrz_rn n_]-)Tn 1—(n—3)7“n
n 2 n—1
=2 > ay—(n— 11— (n—3)r,
i=1 j—it1
Since
n—2 n—2
Tn—1 = Z (jn—-1) T AGn—1)n, Tn = Z Gjn + Qn—1)n;
j=1 j=1

we also have

Zn )(Tn1 + 7n)

n—3 n—2 n—2 n—2 (33)
=2> > a;—(n—=3)) ajm-1)— (n=3) Y ajn— 2(n— 2)am_1)n,
i=1 j=i+1 j=1 j=1

We now add and subtract
n—3 n—2

QZZ%”—?Z _1alm

=1 j=i+1
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on the right hand side of (33) to obtain

Zrl (n—2)(rpn—1+m)

n—3 n—2 n—2 (34)
=2 Z Z (aij —ajp) + 2 Z — Dag, — (n — 3) Z(Gj(n—l) + ajn) — 2(n = 2)ap 1y,
i=1 j=i+1 j=1

Since, by (17), we have a;; — ajn = Gi(n—1) — G(n—1)n, and also noting that

n—3 n—2 n—3 n—3 n—2
2 D> Gy =3 (n—k=2an 1), 23 D Gwovn = (0 —2)(n—3)a@ 1,
=1 j=i+1 k=1 =1 j=i+1

the equality (34) gives

n—2
Z ri — (n—2)(rp_1+14)
=1
n—2
_ZZn_k 2akn1+22 _1alm_n_3)z n1+zajn_'n'_1( 2)a(n71)n
j=1
n— n— 2
= Z(n — 2k — Dag(p_1) — »_ (n— 2k — Dagn — (n— 1)(n — 2)a(m_1yn,
k=1 k=1

where the second equality is obtained by combining the first sum with the third and the
second sum with the fourth. We now observe that

n—2 n—2

Z(n — 2k — 1)apm-1) — Z(n — 2k — 1)agy
k=1 k=1
=Y (n—2k —1)[artn 1) — akn] — (7 = 3)[a(n 2)(n 1) — An2)n]
k=1
n—3
=) (n—2k—1)am 2)m-1) = dn-2n] — (1 = 3)[a@m-2)n-1) — Un—2)n]
k=1
n—3
=|{2n—2k- 1) [@n-2)(n-1) = An-2)n] = (7 = 3)[@(n-2)(n-1) = A(n-2)n]
k=1
=0
n—3
since Gk(n—1) — Gkn = Gn—2)(n—1) — An—2)n by (17) and since Z(n —2k—1)=(n-3).
k=1
Therefore,

Z ri—(n—2)(rpm1 + 1) = —(n—1)(n — 2)ap-1n <0
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which by (6) gives (18) as we wanted to show.
Sufficiency of (18): If a;;’s are defined by (19), then a;; > 0 by (18) and (2) is satisfied.

To see that (1) is also satisfied, we write

n

(n=1)(n—-2) Z a; = ((n—1)(n+7~] g;rt>

J=1,j#1 J=L1,j#1 "
=n—-17%r;+(n—1) Z;ért n—l)t_zlrt
=(n-17%r;—(n—1)r;
=(n— 1)( —2)r;

which gives (1). The fact that a;;’s of (19) satisfy (3) is obvious. We finally show that
they also satisfy (17). In fact by (19) we have

(n —2)(ai — ay) = (n — 1)(rx, — 1),
(n —2)(ajk —aj) = (n—1)(rg — 1),

for every pair of disjoint subsets {4, j}, {k,} of V.

Uniqueness: If the allocations achieve perfect equilibrium, then (1)-(3), (32) hold and,
for every pair of disjoint subsets {7, 5}, {k,{} of N

Qi — Q51 = Qjk — Qji, (35)

holds. Since there are 3( 7 Pairs of disjoint subsets of cardinality 2 in N, (35) gives

=y
3(”74!),4| equalities. We first show that some of these are redundant, i.e., if (35) is satisfied

( 3)

for the following ™ pairs of disjoint subsets

(1,2} & {3,8), i=4,..,n
{1,3} & {2,4}, i=4,...n
{1,4} < {2,4}, i=5,..,n,
{1,5} < {2,i}, i=6,...,n, (36)

j[1,71—2]»(—){2,2'}, i=n—1,n,
{1,n -1} & {2,n}

of N, then it is also satisfied for every pair of disjoint subsets {i,j}, {k,l1} of N. In
order to prove this claim, we first note the following fact. Let {i,j} <> {k,(} denote the
equality (35). Then,

{15} o {k, 1} & {i,j} & {k,m} = {i,j} « {l,m} (37)
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for all distinct 4,7,l,m € N. This fact is easily obtained by subtracting both sides
of the antecedent equalities and employing the balance condition. Suppose now that the
equalities (36) are satisfied. To prove the claim we need to show that (35) or {7, j} <> {k, [}
holds for every distinct ¢ < j, k < [, where we can always assume that i < k. If 1 = 1,
j =2, then k£ > 3,1 > 4. By (36), we have {1,2} + {3, m} for m = 4,...,n which by
(37) gives {1,2} < {k,l}. If i =1, j > 2, then by (36), we have {1,;} <> {2,5 + 1} for
j =3,...,n— 1 which contain {1, 7} <> {2,k} and {1,;} < {2,1}. These two equalities
again imply by (37) that {1,2} « {k,l}. If i = 2, then 5 > 3 and, by (36), we have
{1,2} < {3,m} for m = 4,...,n which by (37) give {1,2} < {k,l}. Again by (36), we
also have {1,j} + {2,j + 1} for j = 3,...,n — 1 which by (37) give {1,j} + {k,l}.
Applying (37) once more, {1,2} < {k,l} and {1,;5} < {k,1} imply {2,5} < {k,I}.
Finally, if i > 2, then by (36) we can write {1,i} <> {2,i+4 1} for i = 3,...,n — 1 which by
(37) yield {1,:} <> {k,(}. Similarly, by (36), {1,7} <> {2,7+ 1} for j = 3,...,n — 1 which
by (37) yield {1, 5} <> {k,l}. Combining {1,i} < {k,l} and {1,5} <> {k,(} by (37), we
obtain {i,j} <> {k,{}. This proves the italicized claim above. We next observe that the
set of equalities in (36) are linearly independent since each term agq, ..., ag, and a;;;) for
1=3,...,n—1, 5 € N —iis contained in one and only one of these equalities. Let us now
consider (32) which is equivalent to

n—1 n 1 n
> X ay=5( > rm-m) keN. (38)
i=1i#k j=it1,j#k i=1,i#k

This set of equations can be written in matrix form Az = b, where the @-vector z in
transposed form is

T _ . .o .
r = [U/12, =0y Q1n; Q235 -+ Q215 -5 O(n—2)(n—1) s A(n—2)n} a’(n—l)n]a

and the n-vector b is

1 n 1 n 1 n—1
bT:[_( 'f'i—‘l"l),—( 7"2'_7"2),---,_( 'ri_'rn)]-

2 Z._ 2" Z 2 Z_

1=2 1=1,i#2 =1

Each entry of @ Xn-matrix A is either 1 or 0. In order to describe A explicitly, let us

index the columns by the subscript of the corresponding entry in z, i.e., the columns of A
are indexed by pairs of numbers 12,13, ...,1n, 23, ..., 2n, ..., (n—2)(n—1), (n—2)n, (n—1)n.
Then, an entry in the i-th row of A, say the entry A(i, jk),is 0 ifand only if i = jori =k
(it is equal to 1 if and only if ¢ # j and i # k). Each column indexed by jk hence contains
exactly two zeros at its j-th and k-th rows. The rows of A are linearly independent since
it is easy to show that its n x n submatrix consisting of the columns 12,13, ..., 1n, 23 is
nonsingular. Let us now write (36) also in matrix form Kz = 0, where z is as defined

n(n—3) n(n—1)

above and K is a —+— X

5 5 matrix the columns of which are indexed as the columns
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of A and the rows of which are indexed by 24, ...,2n,34,...,3n,45,....4n, ..., (n — 2)(n —
1), (n — 2)n, (n — 1)n. The row ij of K represents the equality

alg—alj—ai3+a,~j:0, if ’L:2,
alg—alj—ai2+a,~j:0, if 1> 2,

so that it contains two 1’s, two —1’s, and 0’s; the columns 13,25 of the ij-th row are 1
and the columns 17,73 are —1 for ¢ = 2; the columns 12,25 of the ij-th row are 1 and the
columns 15,72 are —1 for 4 > 2. It holds that AKT = 0. To see this consider the m-th
row of A which has a 0 in its [k-th column if m =1 or m = k. When multiplied with the
column 2j of K7 we have

A(m, 13)K (24,13) + A(m, 15)K (27, 17) + A(m, 23)K (2], 23) + A(m, 2§) K (27, 25)
= A(m,13) — A(m, 15) — A(m, 23) + A(m,2j) = 0,

and when multiplied with column ¢j of K7 for i > 2, we have

A(m,12)K (i3,12) + A(m, 1)K (ij, 17) + A(m, 2)K (15, 2) + A(m, ij) K (i, i5)
= A(m,12) — A(m, 15) — A(m, i2) + A(m,ij) =0,

where the second equalities follow by substituting values for A(m,ij). We have so far
shown that in a perfectly balanced world a;;’s must satisfy Az = b, Kz = 0, where A and
K are matrices with linearly independent rows satisfying AK” = 0. It follows that (36)
together with the n equalities of (38) form a linearly independent set of equations, i.e.,

A . . P
the rows of [ K ] are linearly independent. In fact, if it is not, then for some nonzero

vector y = l ya ], yt l }3 ] = 0 which gives y} AKT + yL KKT = yL KKT = 0 which in

Yk
turn gives yx = 0 and y4 = 0 since both K and A have linearly independent rows. This

contradiction proves the statement in italics above. Taking into account that l K ] is a

square matrix, we conclude that there is a unique solution to

= (o]

giving a unique solution for a;;’s and the proof is complete. O
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