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Abstract— Addition of independent noise to measurements
can improve performance of some suboptimal detectors under
certain conditions. In this letter, sufficient conditions under which
the performance of a suboptimal detector cannot be enhanced
by additional independent noise are derived according to the
Neyman-Pearson criterion. Also, sufficient conditions are ob-
tained to specify when the detector performance can be improved.
In addition to a generic condition, various explicit sufficient
conditions are proposed for easy evaluation of improvability.
Finally, a numerical example is presented and the practicality
of the proposed conditions is discussed.

Index Terms— Detection, binary hypothesis-testing, Neyman-
Pearson.

I. INTRODUCTION

Performance of some suboptimal detectors can be improved
by adding independent noise to their measurements. Improving
the performance of a detector by adding a stochastic signal
to the measurement can be considered in the framework of
stochastic resonance (SR), which can be regarded as the
observation of noise benefits related to signal transmission
in nonlinear systems (please refer to [1]-[5] and references
therein for a detailed review of SR). In other words, for some
detectors, addition of controlled “noise” can improve detection
performance. Such noise benefits can be in various forms,
such as an increase in output signal-to-noise ratio (SNR) [2],
[6], a decrease in probability of error [7], or an increase in
probability of detection under a false-alarm rate constraint [1],
[8].

In this study, noise benefits are investigated in the Neyman-
Pearson framework [1], [8]; that is, improvements in the
probability of detection are considered under a constraint on
the probability of false-alarm. In [8], a theoretical framework
is developed for this problem, and the probability density
function (PDF) of optimal additional noise is specified. Specif-
ically, it is proven that optimal noise can be characterized by a
randomization of at most two discrete signals. Moreover, [8]
provides sufficient conditions under which the performance
of a suboptimal detector can or cannot be improved via
additional independent noise. The study in [1] focuses on
the same problem and obtains the optimal additional noise
PDF via an optimization theoretic approach. In addition, it
derives alternative improvability conditions for the case of
scalar observations.

In this paper, new improvability and non-improvability
conditions are proposed for detectors in the Neyman-Pearson
framework, and the improvability conditions in [1] are ex-
tended. The results also provide alternative sufficient condi-
tions to those in [8]. In other words, new sufficient conditions
are derived, under which the detection probability of a subop-
timal detector can or cannot be improved by additional inde-
pendent noise, under a constraint on the probability of false
alarm. All the proposed conditions are defined in terms of the
probabilities of detection and false alarm for given additional
noise values (cf. (5)) without the need for any other auxiliary
functions employed in [8]. In addition to deriving generic
conditions, simpler but less generic improvability conditions
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are provided for practical purposes. The results are compared
to those in [8], and the advantages and disadvantages are
specified for both approaches. In other words, comments are
provided regarding specific detection problems, for which one
approach can be more suitable than the other. Moreover, the
improvability conditions in [1] for scalar observations are
extended to more generic conditions for the case of vector
observations. Finally, a numerical example is presented to
illustrate an application of the improvability results.

II. SIGNAL MODEL

Consider a binary hypothesis-testing problem described as

H0 : p0(x) , H1 : p1(x) , (1)

where x is the K-dimensional data (measurement) vector, and
p0(x) and p1(x) represent the PDFs of x under H0 and H1,
respectively.

The decision rule (detector) is denoted by φ(x), which maps
the data vector into a real number in [0, 1], representing the
probability of selecting H1 [9]. Under certain circumstances,
detector performance can be improved by adding independent
noise to the data vector x [1], [8]. Let y represent the modified
data vector given by y = x + n, where n represents the
additional independent noise term.

The Neyman-Pearson framework is considered in this study,
and performance of a detector is specified by its probability
of detection and probability of false alarm [9]. Since the
additional noise is independent of the data, the probabilities
of detection and false alarm are given, respectively, by

Py
D =

∫

RK

φ(y)
[∫

RK

p1(y − x)pN(x)dx
]

dy , (2)

Py
F =

∫

RK

φ(y)
[∫

RK

p0(y − x)pN(x)dx
]

dy , (3)

where K is the dimension of the data vector. After some
manipulation, (2) and (3) can be expressed as [8]

Py
D = E{F1(N)} , Py

F = E{F0(N)} , (4)

where N is the random variable representing the additional
noise term and

Fi(n) .=
∫

RK

φ(y)pi(y − n)dy , i = 0, 1 . (5)

Note that in the absence of additional noise, i.e., n = 0,
the probabilities of detection and false alarm are given by
Px

D = F1(0) and Px
F = F0(0), respectively. The detector

φ(·) is called improvable if there exists additional noise n
that satisfies Py

D > Px
D = F1(0) and Py

F ≤ Px
F = F0(0).

Otherwise, the detector is called non-improvable.

III. NON-IMPROVABILITY CONDITIONS

In [8], sufficient conditions for improvability and non-
improvability are derived based on the following function:

J(t) = sup
{
F1(n) | F0(n) = t , n ∈ RK

}
, (6)

which defines the maximum probability of detection, obtained
by adding constant noise n, for a given probability of false



alarm. It is stated that if there exists a non-decreasing concave
function Ψ(t) that satisfies Ψ(t) ≥ J(t) ∀t and Ψ(Px

F) =
J(Px

F) = F1(0), then the detector is non-improvable [8]. The
main advantage of this result is that it is based on single-
variable functions J(t) and Ψ(t) irrespective of the dimension
of the data vector. However, in certain cases, it may be difficult
to calculate J(t) in (6) or to obtain Ψ(t). Therefore, we aim
to derive a non-improvability condition that depends directly
on F0 and F1 in (5). The following proposition provides a
sufficient condition for non-improvability based on convexity
and concavity arguments for F0 and F1.

Proposition 1: Assume that F0(n) ≤ F0(0) implies
F1(n) ≤ F1(0) for all n ∈ Sn, where Sn is a convex set1
consisting of all possible values of additional noise n. If F0(n)
is a convex function and F1(n) is a concave function over Sn,
then the detector is non-improvable.

Proof: Due to the convexity of F0, the probability of false
alarm in (4) can be bounded, via the Jensen’s inequality, as

Py
F = E{F0(N)} ≥ F0 (E{N}) . (7)

Since Py
F ≤ Px

F = F0(0) is a necessary condition for
improvability, (7) implies that F0 (E{N}) ≤ F0(0) is re-
quired. Since E{N} ∈ Sn, F0 (E{N}) ≤ F0(0) implies that
F1 (E{N}) ≤ F1(0) due to the assumption in the proposition.
Therefore,

Py
D = E{F1(N)} ≤ F1 (E{N}) ≤ F1(0) , (8)

where the first inequality results from the concavity of F1.
Then, from (7) and (8), it is concluded that Py

F ≤ F0(0) = Px
F

implies Py
D ≤ F1(0) = Px

D. Therefore, the detector is non-
improvable.2 ¤

Consider the assumption in the proposition, which states
that F0(n) ≤ F0(0) implies F1(n) ≤ F1(0) for all possible
values of n. This assumption is realistic in most practical
scenarios, since decreasing the probability of false alarm by
using a constant additional noise n does not usually result in
an increase in the probability of detection. In fact, if there
exists a noise component ñ such that F0(ñ) ≤ F0(0) and
F1(ñ) > F1(0), the detector can be improved simply by
adding ñ to the original data, i.e., for pN(x) = δ(x − ñ).
Therefore, the assumption in the proposition is in fact a
necessary condition for non-improvability.

As an example application of Proposition 1, consider a
hypothesis-testing problem in which H0 is represented by a
zero-mean Gaussian distribution with variance σ2 and H1 by
a Gaussian distribution with mean µ > 0 and variance σ2.
The decision rule selects H1 if y ≥ 0.5µ and H0 otherwise.
Let Sn = (−0.5µ, 0.5µ) represent the set of additional noise
values for possible performance improvement. From (5), F0

and F1 can be obtained as F0(x) = Q
(

0.5µ−x
σ

)
and F1(x) =

Q
(−0.5µ−x

σ

)
. It is observed that F0 is convex and F1 is con-

cave over Sn. Therefore, Proposition 1 implies that the detector
is non-improvable. Comparison of two Gaussian hypotheses
with different means as in this example is encountered, for
instance, in signal acquisition problems, where the aim is to
determine the presence of a signal component under Gaussian
noise for the purpose of aligning an incoming signal with
respect to a local reference signal at the receiver [11].

Comparison of the non-improvability condition in Propo-
sition 1 with that in [8], stated at the beginning of this

1Since convex combination of individual noise components can be obtained
via randomization [10], Sn can be modeled as convex.

2It would be sufficient to perform the proof for discrete PDFs, since it is
shown in [1] and [8] that the optimal noise PDF is in the form of pN(x) =
λ δ(x− n1) + (1− λ)δ(x− n2).

section, reveals that the former provides a more direct way
of evaluating the non-improvability since there is no need
to obtain auxiliary functions, such as Ψ(t) and J(t) in (6).
However, if J(t) can be obtained easily, then the result in [8]
can be more advantageous since it always deals with a function
of a single variable irrespective of the dimension of the data
vector. Therefore, for multi-dimensional measurements, the
result in [8] can be preferred if the calculation of J(t) in
(6) is tractable.

IV. IMPROVABILITY CONDITIONS

Based on the definition in (6), it is stated in [8] that the
detector is improvable if J(Px

F) > Px
D or J

′′
(Px

F) > 0
when J(t) is second-order continuously differentiable around
Px

F .3 Similar to the previous section, the aim is to obtain
improvability conditions that directly depend on F0 and F1

in (5) instead of J in (6).
First, it can be observed from (4) that if there exists a

noise component ñ such that F1(ñ) > F1(0) and F0(ñ) ≤
F0(0), then the detector can be improved by using pN(x) =
δ(x− ñ). From (6), it is concluded that this result provides a
generalization of the J(Px

F) > Px
D condition [8].

In practical scenarios, F0(n) ≤ F0(0) commonly implies
F1(n) ≤ F1(0). Therefore, the previous result cannot be
applied in many cases. Hence, a more generic improvability
condition is presented in the following proposition.

Proposition 2: The detector is improvable if there exist n1

and n2 that satisfy

[F0(0)− F0(n2)][F1(n1)− F1(n2)]
F0(n1)− F0(n2)

> F1(0)− F1(n2) . (9)

Proof: Consider additional noise n with pN(x) = λ δ(x−
n1)+(1−λ) δ(x−n2). The detector is improvable if n1, n2,
and λ ∈ [0, 1] satisfy

Py
F = En{F0(n)} = λF0(n1) + (1− λ)F0(n2) ≤ F0(0)

(10)
Py

D = En{F1(n)} = λF1(n1) + (1− λ)F1(n2) > F1(0)
(11)

Although Py
F ≤ F0(0) is sufficient for improvability, the

equality condition in (10), i.e., Py
F = F0(0), is satisfied

in most practical cases. As studied in Theorem 4 in [8],
Py

F < F0(0) implies a trivial case in which the detector
can be improved by using a constant noise value. Therefore,
the equality condition in (10) can be considered, although
it is not a necessary condition. Then, λ can be expressed
as λ = [F0(0) − F0(n2)]/[F0(n1) − F0(n2)], which can be
inserted in (11) to obtain (9). ¤

Although the condition in Proposition 2 can directly be
evaluated based on F0 and F1 functions in (5), finding suitable
n1 and n2 values can be time consuming in some cases. In
fact, it may not always be simpler to check the condition in
Proposition 2 than to calculate the optimal noise PDF as in [8].
Therefore, more explicit and simpler improvability conditions
are derived in the following.

Proposition 3: Assume that F0(x) and F1(x) are
second-order continuously differentiable around x = 0 .
Define f

(1)
j (x, z) .=

∑K
i=1 zi

∂Fj(x)
∂xi

and f
(2)
j (x, z) .=∑K

l=1

∑K
i=1 zlzi

∂2Fj(x)
∂xl∂xi

for j = 0, 1, where xi and zi repre-
sent the ith components of x and z, respectively. The detector

3In this paper, J
′
(a) and J

′′
(a) are used to represent, respectively, the

first and second derivatives of J(t) at t = a.



is improvable if there exists a K-dimensional vector z such
that f

(1)
j (x, z) > 0 for j = 0, 1 and

f
(2)
1 (x, z)f (1)

0 (x, z) > f
(2)
0 (x, z)f (1)

1 (x, z) (12)

are satisfied at x = 0.
Proof: Consider the improvability conditions in (10) and

(11) with infinitesimally small noise components, nj = εj

for j = 1, 2. Then, Fi(εj) can be approximated by using the
Taylor series expansion as Fi(0) + εT

j fi + 0.5 εT
j Hiεj , where

Hi and fi are the Hessian and the gradient of Fi(x) at x = 0,
respectively. Therefore, (10) and (11) require

λ εT
1 H0ε1 + (1− λ)εT

2 H0ε2 + 2[λ ε1 + (1− λ)ε2]T f0 < 0 ,

λ εT
1 H1ε1 + (1− λ)εT

2 H1ε2 + 2[λ ε1 + (1− λ)ε2]T f1 > 0 .
(13)

Let ε1 = κ z and ε2 = ν z, where κ and ν are infinitesimally
small real numbers, and z is a K-dimensional real vector.
Then, the conditions in (13) can be simplified, after some
manipulation, as

(
f

(2)
0 (x, z) + c f

(1)
0 (x, z)

) ∣∣∣
x=0

< 0 , (14)
(
f

(2)
1 (x, z) + c f

(1)
1 (x, z)

) ∣∣∣
x=0

> 0 , (15)

c
.=

2 [λκ + (1− λ) ν]
λκ2 + (1− λ) ν2

. (16)

Since f
(1)
j (x, z) > 0 at x = 0 for j = 0, 1, (14) and (15)

can also be expressed as
(
f

(2)
0 (x, z)f (1)

1 (x, z) + cf
(1)
0 (x, z)f (1)

1 (x, z)
) ∣∣∣

x=0
< 0, (17)

(
f

(2)
1 (x, z)f (1)

0 (x, z) + cf
(1)
0 (x, z)f (1)

1 (x, z)
) ∣∣∣

x=0
> 0. (18)

It is noted from (16) that c can take any real value by selecting
appropriate λ ∈ [0, 1] and infinitesimally small κ and ν values.
Therefore, under the condition in (12), which states that the
first term in (17) is smaller than the first term in (18), there
always exists c that satisfies the improvability conditions in
(17) and (18). ¤

Note that Proposition 3 employs only the first and second
derivatives of F0 and F1 without requiring the calculation
of n1 and n2 as in Proposition 2. In [1], an improvability
condition is obtained for scalar observations (i.e., for K = 1)
based only on ∂Fj(x)

∂x and ∂2Fj(x)
∂x2 terms for j = 0, 1. Hence,

Proposition 3 extends the improvability result in [1] not only
to the case of vector observations but also to a more generic
condition that involves partial derivatives, ∂2Fj(x)

∂xlxi
, as well.

Another improvability condition that depends directly on F0

and F1 is provided in the following proposition.
Proposition 4: The detector is improvable if F1(x) and

−F0(x) are strictly convex at x = 0 .
Proof: Consider the improvability conditions in (13). Let

ε1 = −ε2 = ε and λ = 0.5. Then, (13) becomes

εT H0ε < 0 , εT H1ε > 0 . (19)

Since F1(x) is strictly convex and F0(x) is strictly concave
at x = 0, H1 is positive definite and H0 is negative definite.
Hence, there exists ε that guarantees improvability. ¤

Finally, an improvability condition that depends on the first-
order partial derivatives of F0(x) and F1(x) is derived in
the following proposition, which can be considered as an
extension of the improvability condition in [1].

Proposition 5: Assume that F0(x) and F1(x) are con-
tinuously differentiable around x = 0 . The detector is im-
provable if there exists a K-dimensional vector s such that(∑K

i=1 si
∂F1(x)

∂xi

)(∑K
i=1 si

∂F0(x)
∂xi

)
< 0 is satisfied at x = 0 ,

where si represents the ith component of s.
Proof: Consider the improvability conditions in (13). Let

ε1 = ς s1 and ε2 = ς s2 where s1 and s2 are any K-
dimensional real vectors and ς is an infinitesimally small
positive real number. Then, it can be shown that when

[λ s1 + (1− λ) s2]T f0 < 0 and [λ s1 + (1− λ) s2]T f1 > 0
(20)

are satisfied, one can find an infinitesimally small positive ς
such that the conditions in (13) are satisfied. Let s .= λ s1 +
(1− λ) s2 . Note that s can be any K-dimensional real vector
for suitable values of s1, s2 and λ ∈ [0, 1]. Based on the
definition of s, (20) can be expressed as sT f0 < 0 and sT f1 >
0.

For ς < 0, similar argument can be used to show that
sT f0 > 0 and sT f1 < 0 are sufficient conditions for improv-
ability. Hence, (sT f1)(sT f0) < 0 can be obtained as the overall
improvability condition. ¤

Comparison of the improvability conditions in this section
with those in [8] reveals that the results in this section depend
on functions F0 and F1 in (5) directly, whereas those in [8]
are obtained based on J(t) defined in (6). Therefore, this
study provides a direct way of evaluating the improvability
of a detector. However, the approach in [8] can be more
advantageous in certain cases, as it deals with a single-variable
function irrespective of the dimension of the data vector.

One application of the improvability results studied in this
section is related to detection of communications signals in
the presence of co-channel interference, which can result in
Gaussian mixture noise at the receiver [12]. An example with
Gaussian mixture noise is provided in the next section.

V. NUMERICAL RESULTS

In this section, a binary hypothesis-testing problem is stud-
ied to provide an example of the results presented in the
previous sections. The hypotheses H0 and H1 are defined as

H0 : x = w , H1 : x = A1 + w , (21)

where x ∈ R2, 1 denotes a vector of ones, A > 0 is a
known scalar value, and w is Gaussian mixture noise with
the following PDF

pW(x) =
1
4π

[
e−

1
2 (x+µ)T Σ−1

1 (x+µ)

|Σ1|0.5
+

e−
1
2 (x−µ)T Σ−1

2 (x−µ)

|Σ2|0.5

]
,

(22)

where Σ1 =
[

σ2 ρ1σ
2

ρ1σ
2 σ2

]
, Σ2 =

[
σ2 ρ2σ

2

ρ2σ
2 σ2

]
, x =

[x1 x2]T , and µ = [µ1 µ2]T . In addition, the detector is
described by

φ(y) =
{

1 , y1 + y2 ≥ A/2
0 , y1 + y2 < A/2

, (23)

where y = x+n, with n representing the additional indepen-
dent noise term.

Based on (22), F0(x) and F1(x) can be calculated as
follows:

Fi(x) =
1
2

Q

(
A/2− γ2 − si

σ
√

2(1 + ρ1)

)
+

1
2

Q

(
A/2− γ1 − si

σ
√

2(1 + ρ2)

)
,

(24)
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Fig. 1. The improvability function obtained from Proposition 3 for various
values of A, where ρ1 = 0.1, ρ2 = 0.2, µ1 = 2, and µ2 = 3.
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Fig. 2. Detection probabilities of the original and noise modified detectors
versus σ for A = 2, ρ1 = 0.1, ρ2 = 0.2, µ1 = 2, and µ2 = 3.

for i = 0, 1, where s0 = 0, s1 = 2A, γ1
.= x1 +x2 +µ1 +µ2,

γ2
.= x1+x2−µ1−µ2, and Q(x) = 1√

2π

∫∞
x

e−t2/2dt denotes
the Q-function. From (24), the first and second derivatives can
be obtained as

∂Fi(x)
∂x1

=
∂Fi(x)

∂x2
=

e−
(A/2−γ2−si)

2

4σ2(1+ρ1)

4
√

πσ
√

1 + ρ1
+

e−
(A/2−γ1−si)

2

4σ2(1+ρ2)

4
√

πσ
√

1 + ρ2

∂2Fi(x)
∂x2

1

=
∂2Fi(x)

∂x2
2

=
∂2Fi(x)
∂x1∂x2

=
σ−3

8
√

π

(
(A/2− γ2 − si)√

(1 + ρ1)3

× e−
(A/2−γ2−si)

2

4σ2(1+ρ1) +
(A/2− γ1 − si)√

(1 + ρ2)3
e−

(A/2−γ1−si)
2

4σ2(1+ρ2)

)
(25)

for i = 0, 1. It is noted from (25) that the first-order
derivatives are always positive and all the first-order deriva-
tives and the second-order derivatives are the same. There-
fore, the improvability condition in (12) becomes indepen-
dent of z for this example. Hence, the improvability con-
dition in Proposition 3 can be stated as when g(σ) .=[

∂2F1(x)
∂x2

1

∂F0(x)
∂x1

− ∂2F0(x)
∂x2

1

∂F1(x)
∂x1

] ∣∣∣
x=0

is positive, the detec-
tor is improvable. Fig. 1 plots the improvability function g(σ)
for various values of A. It is observed that the detector
performance can be improved for A = 1 if σ ∈ [0.55, 3.24],
for A = 2 if σ ∈ [0.42, 3.09], for A = 4 if σ ∈ [0.29, 2.38]. On
the other hand, when the more generic result in Proposition 2
is applied to the same example, it is obtained that the detector
is improvable for A = 1 if σ ≤ 3.24, for A = 2 if σ ≤ 3.14,

and for A = 4 if σ ≤ 2.59. Hence, Proposition 2 provides
more generic improvability conditions as expected.

Fig. 2 plots the detection probabilities of the original (no
additional noise) and the noise modified detectors with respect
to σ for A = 2. For the noise modified detector, the optimal
additional noise is calculated for each σ. For example, for
σ = 2, the optimal additional noise is pN(x) = 0.6838δ(x−
n1) + 0.3162δ(x − n2), where n1 = [5.6668 − 1.8180] and
n2 = [−1.3352 −4.6316]. From the figure, it is observed that
for smaller values of σ, more improvement is obtained, and
after σ = 3.14 there is no improvement as expected from the
improvability conditions.

In this specific example, it can be shown that the im-
provability conditions in Proposition 3 and in [8] are
equivalent. Since the functions F0 and F1 defined in
(24) are both monotone increasing functions of x1 + x2,
J(t) = sup {F1(x) | F0(x) = t} can be obtained as J(t) =
F̃1

(
F̃−1

0 (t)
)

, where F̃i(m) .= Fi(x)
∣∣
x1+x2=m

. Then,

J
′′
(t) = d

dt

{
F̃
′
1 (F̃−1

0 (t))
F̃
′
0 (F̃−1

0 (t))

}
can be obtained as

J
′′
(t) =

F̃
′′

1

(
F̃−1

0 (t)
)
− F̃

′
1 (F̃−1

0 (t))F̃
′′
0 (F̃−1

0 (t))
F̃
′
0 (F̃−1

0 (t))[
F̃
′

0

(
F̃−1

0 (t)
)]2 . (26)

At t = Px
F = F0(0) = F̃0(0), F̃−1

0 (t) becomes
equal to 0; hence, J

′′
(Px

F) > 0 implies F̃
′′

1 (0) −
F̃
′′

0 (0)F̃
′

1 (0)/F̃
′

0 (0) > 0. For this specific problem, it can
be shown that dF̃i(m)

dm

∣∣
m=0

= ∂Fi(x)
∂x1

∣∣
x=0

= ∂Fi(x)
∂x2

∣∣
x=0

and
d2F̃i(m)

dm2

∣∣
m=0

= ∂2Fi(x)
∂x2

1

∣∣
x=0

= ∂2Fi(x)
∂x2

2

∣∣
x=0

= ∂2Fi(x)
∂x1∂x2

∣∣
x=0

for i = 0, 1, and dF̃0(m)
dm

∣∣
m=0

is a positive constant. Therefore,
the improvability conditions in Proposition 3 and that in [8]
are equivalent in this specific example. However, it should be
noted that the two conditions are not equivalent in general
and the calculation of J(t) can be difficult in the absence of
monotonicity properties of F0.
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