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Abstract— Performance of some suboptimal detectors can be
enhanced by adding independent noise to their observations. In
this paper, the effects of additive noise are investigated according
to the restricted Bayes criterion, which provides a generalization
of the Bayes and minimax criteria. Based on a generic )M -ary
composite hypothesis-testing formulation, the optimal probability
distribution of additive noise is investigated. Also, sufficient
conditions under which the performance of a detector can or
cannot be improved via additive noise are derived. In addition,
simple hypothesis-testing problems are studied in more detail,
and additional improvability conditions that are specific to simple
hypotheses are obtained. Furthermore, the optimal probability
distribution of the additive noise is shown to include at most
M mass points in a simple M -ary hypothesis-testing problem
under certain conditions. Then, global optimization, analytical
and convex relaxation approaches are considered to obtain
the optimal noise distribution. Finally, detection examples are
presented to investigate the theoretical results.

Index Terms— Noise enhanced detection, restricted Bayes,
stochastic resonance, N -ary hypothesis-testing, composite hy-
potheses.

I. INTRODUCTION

Although noise commonly degrades performance of a sys-
tem, outputs of some nonlinear systems can be improved by
adding noise to their inputs or by increasing the noise level in
the system via a mechanism called stochastic resonance (SR)
[1]-[14]. SR is said to be observed when increases in noise
levels cause an increase in a metric of the quality of signal
transmission or detection performance. This counterintuitive
effect is mainly due to system nonlinearities and/or some
parameters being suboptimal [14]. Improvements that can be
obtained via SR can be in various forms, such as an increase
in output signal-to-noise ratio (SNR) [1], [4], [5] or mutual
information [6]-[11], [15], [16]. The first study of SR was
performed in [1] to investigate the periodic recurrence of ice
gases. In that work, the presence of noise was taken into
account in order to explain a natural phenomenon. Since then,
SR has been investigated for numerous nonlinear systems,
such as optical, electronic, magnetic, and neuronal systems
[3]. Also, it has been extensively studied for biological systems
[17], [18].

From a signal processing perspective, SR can be viewed as
noise benefits in a signal processing system, or, alternatively,
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noise enhanced signal processing [13], [14]. Specifically, in de-
tection theory, SR can be considered for performance improve-
ments of some suboptimal detectors by adding independent
noise to their observations, or by increasing the noise level
in the observations. One of the first studies of SR for signal
detection is reported in [19], which deals with signal extraction
from background noise. After that study, some works in the
physics literature also investigate SR for detection purposes
[15], [16], [20]-[22]. In the signal processing community, SR
is regarded as a mechanism that can be used to improve the
performance of a suboptimal detector according to the Bayes,
minimax, or Neyman-Pearson criteria [12], [13], [23]-[37].
In fact, noise enhancements can also be observed in optimal
detectors, as studied in [13] and [37]. Various scenarios are
investigated in [37] for optimal Bayes, minimax and Neyman-
Pearson detectors, which shows that performance of optimal
detectors can be improved (locally) by raising the noise level in
some cases. In addition, randomization between two anti-podal
signal pairs and the corresponding maximum a posteriori
probability (MAP) decision rules is studied in [13], and it
is shown that power randomization can result in significant
performance improvement.

In the Neyman-Pearson framework, the aim is to increase
the probability of detection under a constraint on the probabil-
ity of false alarm [12], [13], [24], [26]. In [24], an example is
presented to illustrate the effects of additive noise on the detec-
tion performance for the problem of detecting a constant signal
in Gaussian mixture noise. In [12], a theoretical framework
for investigating the effects of additive noise on suboptimal
detectors is established according to the Neyman-Pearson
criterion. Sufficient conditions under which performance of
a detector can or cannot be improved via additive noise are
derived, and it is proven that optimal additive noise can be
generated by a randomization of at most two discrete signals,
which is an important result since it greatly simplifies the
calculation of the optimal noise probability density function
(p.d.f.). An optimization theoretic framework is provided in
[13] for the same problem, which also proves the two mass
point structure of the optimal additive noise p.d.f., and, in
addition, shows that an optimal noise distribution may not
exist in certain scenarios.

The study in [12] is extended to variable detectors in [25],
and similar observations as in the case of fixed detectors are
made. Also, the theoretical framework in [12] is applied to
sequential detection and parameter estimation problems in [38]
and [39], respectively. In [38], a binary sequential detection
problem is considered, and additive noise that reduces at least
one of the expected sample sizes for the sequential detection
system is obtained. In [39], improvability of estimation perfor-
mance via additive noise is illustrated under certain conditions
for various estimation criteria, and the form of the optimal
noise p.d.f. is obtained for each criterion. The effects of noise
are investigated also for detection of weak sinusoidal signals



and for locally optimal detectors. In [33] and [34], detection
of a weak sinusoidal signal is considered, and improvements
on detection performance are investigated. In addition, [35]
studies the optimization of noise and detector parameters of
locally optimal detectors for the detection of a small amplitude
sinusoid in non-Gaussian noise.

In [23], the effects of additive noise are investigated accord-
ing to the Bayes criterion under uniform cost assignment. It
is shown that the optimal noise that minimizes the probability
of decision error has a constant value, and a Gaussian mix-
ture example is presented to illustrate the improvability of a
suboptimal detector via adding constant “noise”. On the other
hand, [25] and [29] consider the minimax criterion, which
aims to minimize the maximum of the conditional risks [40],
and they investigate the effects of additive noise on suboptimal
detectors. It is shown in [29] that the optimal additive noise
can be represented, under mild conditions, by a randomization
of at most M signal levels for an M-ary hypothesis testing
problem in the minimax framework.

Although both the Bayes and minimax criteria have been
considered for noise enhanced hypothesis-testing [23], [25],
[29], no studies have considered the restricted Bayes criterion
[41]. In the Bayesian framework, the prior information is
precisely known, whereas it is not available in the minimax
framework [40]. However, having prior information with some
uncertainty is the most common situation, and the restricted
Bayes criterion is well-suited in that case [41], [42]. In the
restricted Bayesian framework, the aim is to minimize the
Bayes risk under a constraint on the individual conditional
risks [41]. Depending on the value of the constraint, the re-
stricted Bayes criterion covers the Bayes and minimax criteria
as special cases [42]. In general, it is challenging to obtain the
optimal decision rule under the restricted Bayes criterion [42]-
[46]. In [42], a number of theorems are presented to obtain the
optimal decision rule by modifying Wald’s minimax theory
[47]. However, the application of those theorems requires
certain conditions to hold and commonly intensive computa-
tions. Therefore, [42] states that the widespread application
of the optimal detectors according to the restricted Bayes
criterion would require numerical methods in combination
with theoretical results derived in [42].

Although it is challenging to obtain the optimal detector
according to the restricted Bayes criterion, this criterion can
be quite advantageous in practical applications compared to
the Bayes and minimax criteria, as studied in [42]. Therefore,
in this paper, the aim is to consider suboptimal detectors
and to investigate how their performance can be improved
via additive independent noise in the restricted Bayesian
framework. In other words, one motivation is to improve
performance of suboptimal detectors via additive noise and
to provide reasonable performance with low computational
complexity. Another motivation is the theoretical interest to
investigate the effects of noise on suboptimal detectors and
to obtain sufficient conditions under which performance of
detectors can or cannot be improved via additive noise in the
restricted Bayesian framework.

In this paper, the effects of additive independent noise
on the performance of suboptimal detectors are investigated
according to the restricted Bayes criterion. A generic M -ary
composite hypothesis-testing problem is considered, and suffi-
cient conditions under which a suboptimal detector can or can-
not be improved are derived. In addition, various approaches
to obtaining the optimal solution are presented. For simple

hypothesis-testing problems, additional improvability condi-
tions that are simple to evaluate are proposed, and it is shown
that optimal additive noise can be represented by a p.d.f. with
at most M mass points. Furthermore, optimization theoretic
approaches to obtaining the optimal noise p.d.f. are discussed;
both global optimization techniques and approximate solutions
based on convex relaxation are considered. Also, an analytical
approach is proposed to obtain the optimal noise p.d.f. under
certain conditions. Finally, detection examples are provided to
investigate the theoretical results and to illustrate the practical
importance of noise enhancement.

The remainder of the paper is organized as follows. Sec-
tion II studies composite hypothesis-testing problems, and
provides a generic formulation of the problem. In addition,
improvability and nonimprovability conditions are presented
and an approximate solution of the optimal noise problem
is discussed. Then, Section III considers simple hypothesis-
testing problems and provides additional improvability con-
ditions. Also, the discrete structure of the optimal noise
probability distribution is specified. Then, detection examples
are presented to illustrate the theoretical results in Section I'V.
Finally, concluding remarks are made in Section V.

II. NOISE ENHANCED M-ARY COMPOSITE
HYPOTHESIS-TESTING

A. Problem Formulation and Motivation

Consider the following M-ary composite hypothesis-testing
problem:

H - pp(x) ,0€h;, i=01,....,M—1, (1)
where pj (+) represents the p.d.f. of observation X for a given
value of parameter, © = @, and 6 belongs to parameter
set A; under hypotheses H;. The observation (measurement),
x, is a vector with K components; ie., X € RE . and
Ao, A1, ..., Ap—1 form a partition of the parameter space
A. The prior distribution of © is denoted by w(#), and it is
assumed that w(6) is known with some uncertainty [41], [42].
For example, it can be a p.d.f. estimate based on previous
decisions.

A generic decision rule (detector) is considered, which can
be expressed as

op(x)=1i, if xel;, 2)

for ¢ = 0,1,...,M — 1, where I'g,I'y,..
partition of the observation space I'.

In some cases, addition of noise to observations can improve
the performance of a suboptimal detector. By adding noise n
to the original observation x, the noise modified observation
is formed as y = x + n, where n has a p.d.f. denoted by
pn(+), and is independent of x.! As in [12] and in Section
II of [13], it is assumed that the detector in (2) is fixed, and
that the only means for improving the performance of the
detector is to optimize the additive noise n. In other words,
the aim is to find the best pn(-) according to the restricted

., I'pr—1 form a

TAs discussed in [12] and [24], additional improvements in detector
performance can be obtained by adding noise that depends on the original
background noise and/or that has a p.d.f. depending on which hypothesis is
true. However, adding such a dependent noise is not commonly possible in
practice since the related prior information is usually not available [12].



Bayes criterion [41]; namely, to minimize the Bayes risk under
certain constraints on the conditional risks, as specified below.

min

min | Ry (@)uo)ds

bject t y(0) < 3
subject to IgleagcRe((;S) <o, (3)

where o represents the upper limit on the conditional risks,
[y Ry (p)w(0) dd = E{RY(4)} = r¥(¢) is the Bayes risk,
and R} (¢) denotes the conditional risk of ¢ for a given value
of # for the noise modified observation y. More specifically,
R} (¢) is defined as the average cost of decision rule ¢ for a
given 6,

RY(¢) = E{C[6(Y),0] | © = 0} = / Cloy). 6] p¥ (v) dy
4

where p} (-) is the p.d.f. of the noise modified observation for
a given value of © = 6, and C[i, 6] is the cost of selecting H;
when © = 6, for 6 € A [40].

In the restricted Bayes formulation in (3), any undesired
effects due to the uncertainty in the prior distribution can
be controlled via parameter «, which can be considered as
an upper bound on the Bayes risk [42]. Specifically, as the
amount of uncertainty in the prior information increases, a
smaller (more restrictive) value of « is employed. In that
way, the restricted Bayes formulation provides a generalization
of the Bayesian and the minimax approaches [41]. In the
Bayesian framework, the prior distribution of the parameter
is perfectly known, whereas it is completely unknown in
the minimax framework. On the other hand, the restricted
Bayesian framework considers some amount of uncertainty
in the prior distribution and converges to the Bayesian and
minimax formulations as special cases depending on the value
of o in (3) [42], [41]. Therefore, the study of noise enhanced
hypothesis-testing in this paper covers the previous works on
noise enhanced hypothesis-testing according to the Bayesian
and minimax criteria as special cases [23], [25], [29].

Two main motivations for studying the effects of additive
noise on the detector performance are as follows. First, optimal
detectors according to the restricted Bayes criterion are diffi-
cult to obtain, or require intense computations [42]. Therefore,
in some cases, a suboptimal detector with additive noise
can provide acceptable performance with low computational
complexity. Second, it is of theoretical interest to investigate
the improvements that can be achieved via additive noise [29].

In order to provide an explicit formulation of the optimiza-
tion problem in (3), which indicates the dependence of R} (¢)
on the p.d.f. of the additive noise explicitly, R} (¢) in (4) is
manipulated as follows:?

Ry = [ [ Clo. oy - won(n dndy 5
= [ ) [ [ Clo). 056~ mydy | an ©
RE T

- /}R _pn(n) Fyn) ™)
=E{F(N)} ®)

2Note that the independence of X and N are used to obtain (5) from (4).

where
Fy(n) £ / Cloly), 0] pX(y — ) dy . ©)

Note that Fy(n) defines the conditional risk given 6 for a
constant value of additive noise, N = n. Therefore, forn = 0,
Fp(0) = R%(¢) is obtained; that is, Fp(0) is equal to the
conditional risk of the decision rule given 6 for the original
observation x.
From (8), the optimization problem in (3) can be formulated
as follows:
min

min [ B{F(N)}u(6) do

subject to max E{Fy(N)} <« . (10)
€
If a new function F'(n) is defined as in the following expres-
sion,
F(n) = / Fy(m)w(0)do (1)
A
the optimization problem in (10) can be reformulated in the
following simple form:
min E{F(N)} ,
()
subject to ?aKE{Fg(N)} <a. (12)
€
From (9) and (11), it is noted that F'(0) = r*(¢). Namely,
F(0) is equal to the Bayes risk for the original observation
x; that is, the Bayes risk in the absence of additive noise.

B. Improvability and Nonimprovability Conditions

In general, it is quite complex to obtain a solution of the
optimization problem in (12) as it requires a search over all
possible noise p.d.f.s. Therefore, it is useful to determine,
without solving the optimization problem, whether additive
noise can improve the performance of the original system.
In the restricted Bayesian framework, a detector is called
improvable, if there exists a noise p.d.f. such that E{F(N)} <
(¢) = £(0) and maxRy(¢) = maxE{Fy(N)} < a (cf.

(12)). Otherwise, the detector is called nonimprovable.

First, the following nonimprovability condition is obtained
based on the properties of Fjp in (9) and F' in (11).

Theorem 1: Assume that there exits 0* € A such that
Fp«(n) < « implies F(n) > F(0) for all n € S, where S,
is a convex set’ consisting of all possible values of additive
noise n. If Fy«(n) and F(n) are convex functions over Sy,
then the detector is nonimprovable.

Proof: The proof employs an approach that is similar to
the proof of Proposition 1 in [26]. Due to the convexity of
Fy+(-), the conditional risk in (8) can be bounded, via Jensen’s
inequality, as

RY.(¢) = E{F-(N)} > Fp- (E{N}) . (13)

As R}.(¢) < «a is a necessary condition for improvability,
(13) implies that Fp« (E{IN}) < o must be satisfied. Since
E{N} € S,, Fy- (E{N}) < a means F (E{N}) > F(0) due
to the assumption in the proposition. Hence,

V(¢) = E{F(N)} = F(E{N}) = F(0) , (14

385, can be modeled as convex because convex combination of individual
noise components can be obtained via randomization [48].



where the first inequality results from the convexity of F.
Then, from (13) and (14), it is concluded that RY.(¢) < «
implies mY(¢) > F(0) = r*(¢). Therefore, the detector is
nonimprovable. [J

The conditions in Theorem 1 can be used to determine when
the detector performance cannot be improved via additive
noise, which prevents unnecessary efforts for trying to solve
the optimization problem in (12). However, it should also
be noted that Theorem 1 provides only sufficient conditions;
hence, the detector can still be nonimprovable although the
conditions in the theorem are not satisfied.

In order to provide an example application of Theorem 1,
consider a Gaussian location testing problem [40], in which the
observation has a Gaussian p.d.f. with mean 0u and variance
o2, denoted by N(0u,0?), where u and o are known values.
Hypotheses Hy and H; correspond to § = 0 and 6 = 1,
respectively (that is, Ag = {0} and A; = {1}). In addition,
consider a decision rule that selects H; if y > 0.54 and
Ho otherwise. Let S, = (—0.5u,0.51) represent the set of
additive noise values for possible performance improvement.
For uniform cost assignment (UCA) [40], (9) can be used to
obtain Fy(n) as follows:

/ Clo 0]pg ( —n)dy (15)

/ oy —n)dy (16)
e e Z‘) 0.5 —n

dy = e I 17

0.5u \/%U = ( o > a7

where Q(x) = \/% L.r e~t"/2d¢ denotes the Q-function, and
Cli,j] = 1 for i # j and C[i,j] = 0 for ¢ = j are used
in (15) due to the UCA. Similarly, Fl( ) can be obtained
as Fi(n) = 9514m) - For equal priors, F(n) in (11) is
obtained as F(n) = 0. 5(F0( )+ F1(n)); that is,

F(n) = 0.5Q (05”0”) 4050 (05’2“1) .a8)

Let a be set to @ (0.5u/0), which determines the upper bound
on the conditional risks. Regarding the assumption in Theorem
1, it can be shown for #* = 0 that Fy~(n) < a implies F'(n) >
F(0) = Q(0.5u/0) for all n € Sy,. This follows from the facts
that Fy(n) < a = Q(0.5u/0) requires that n € (—0.5u, 0]
and that F'(n) in (18) satisfies F'(n) > Q(0.51/0) = « for

€ (—0.5u,0] due to the convexity of Q(z/o) for x > 0.
In addition, it can be shown that both Fy(n) and Fj(n) are
convex functions over S,, which implies that F'(n) is also
convex over Sy. Then, Theorem 1 implies that the detector is
nonimprovable for this example. Therefore, there is no need
to tackle the optimization problem in (12) in this case, since

pX¥*(n) = d(n) is concluded directly from the theorem.

Next, sufficient conditions under which the detector perfor-
mance can be improved via additive noise are obtained. To
that aim, it is first assumed that F'(x) and Fy(x) VO € A
are second-order continuously differentiable around x = 0.
In addition, the following functions are defined for notational

convenience:
K
0Fp(x
RCDOEDIE ;ﬂf L (19)
i=1 v
K
F(x
M (x Zzla 7 (20)
K K
) 0°Fy(x
i , 21
;;Zﬂ 81‘;61:1 D
22
ZZzl l@xl&fcz : (22)

=1 =1

where z; and z; represent the ith components of x and z,
respectively. Then, the following theorem provides sufficient
conditions for improvability based on the function definitions
above.

Theorem 2: Let 0 = 0* be the unique maximizer of Fy(0)
and oo = Fy+(0). Then, the detector is improvable

o If there exists a K-dimensional vector z such that

(1)(x z) (1) (x,2) > 0 is satisfied at x = 0; or,
o if there exists a K-dimensional vector z such
that fV(x,z) > 0, fe(i)(x,z) < 0, and
@ (x,z)féi)(x,z) > féf) (x,2)fV(x,2) are satisfied
atx=0.

Proof: Please see Appendix A.

In order to better understand the conditions in Theorem 2,
it is first noted from (9) that F,(0) represents the conditional
risk given 6 in the absence of additive noise, R (¢). Therefore,
0* in the theorem corresponds to the value of 6 for which
the original conditional risk R}(¢) is maximum and that
maximum value is assumed to be equal to the upper limit a.
In other words, it is assumed that, in the absence of additive
noise, the original detector already achieves the upper limit on
the conditional risks for the modified observations specified
in (3). Then, the results in the theorem imply that, under the
stated conditions, it is possible to obtain a noise p.d.f. with
multiple mass points around n = 0, which can reduce the
Bayes risk under the constraint on the conditional risks.

In order to present alternative improvability conditions to
those in Theorem 2, we extend the conditions that are de-
veloped for simple binary hypothesis-testing problems in the
Neyman-Pearson framework in [12] to our problem in (12).
To that aim, we first define a new function H (t) as

H(t) £ inf {F

which specifies the minimum Bayes risk for a given value of
the maximum conditional risk considering constant values of
additive noise.

From (23), it is observed that if there exists ¢y < « such
that H(ty) < F(0), then the system is improvable, because
under such a condition there exists a noise component ng
such that F(ng) < F(0) and max Fy(ng) < «, meaning

. K
n)|rglea[z(F9(n)ft, nelR } ,  (23)

that the detector performance can be improved by adding a
constant ny to the observation. However, improvability of a
detector via constant noise is not very common in practice.
Therefore, the following improvability condition is obtained
for more practical scenarios.

Theorem 3: Let the maximum value of the conditional risks
in the absence of additive noise be defined as & = max R} (9)



and & < «. If H(t) in (23) is second-order continuously
differentiable around t = & and satisfies H' (&) < 0, then
the detector is improvable.

Proof: Please see Appendix B.

Similar to Theorem 2, Theorem 3 provides sufficient condi-
tions that guarantee the improvability of a detector according
to the restricted Bayes criterion. Note that H (¢) in Theorem
3 is always a single-variable function irrespective of the
dimension of the observation vector, which facilitates simple
evaluation of the conditions in the theorem. However, the
main challenge can be to obtain an expression for H(t) in
(23) in certain scenarios. On the other hand, Theorem 2 deals
with Fy(-) and F(-) directly, without defining an auxiliary
function like H(t). Therefore, implementation of Theorem 2
can be more efficient in some cases. However, the functions
in Theorem 2 are always K-dimensional, which can make
the evaluation of its conditions more complicated than that in
Theorem 3 in some other cases. In Section IV, comparisons of
the improvability results based on direct evaluations of Fy(-)
and F'(-), and those based on H(t) are provided.

C. On the Optimal Additive Noise

In general, the optimization problem in (12) is a non-convex
problem and has very high computational complexity since
the optimization needs to be performed over functions. In
Section III, it is shown that (12) simplifies significantly in
the case of simple hypothesis-testing problems. However, in
the composite case, the solution is quite difficult to obtain in
general. Therefore, a p.d.f. approximation technique [49] can
be employed in this section in order to obtain an approximate
solution of the problem.

Let the optimal noise p.d.f. be approximated by

L
= vith(n—m;),
i=1
L

where v; > 0, .7, v; = 1, and 1;(-) is a window function
with77D,-()>Oanndf@ZJZ Jdx =1, fori=1,...,L. In
addition, let ¢; denote a scaling parameter for the zth Window
function. The p.d.f. approximation technique in (24) is referred
to as Parzen window density estimation, which has the property
of mean-square convergence to the true p.d.f. under certain
conditions [50]. From (24), the optimization problem in (12)
can be expressed as

(24)

L
win S vifa ()
{thm(i}i:l i=1
L
subject to max Z: Vifon(si) < a,

where fn, (<) f F(n —
[ Fo(n)y;(n — nz)dn

In (25), the optimization is performed over all the param-
eters of the window functions in (24). Therefore, the perfor-
mance of the approximation technique is determined mainly
by the the number of window functions, L. As L increases,
the approximate solution can get closer to the optimal solution
for the additive noise p.d.f. Therefore, in general, an improved
detector performance can be expected for larger values of L.

(25)

n;)dn and fon,(s) =

4As in [12], it is possible to perform the optimization over single-variable
functions by considering mapping of the noise n via F(n) or Fp(n).

Although (25) is significantly simpler than (12), it is still not
a convex optimization problem in general. Therefore, global
optimization techniques, such as particle-swarm optimization
(PSO) [51]-[53], genetic algorithms and differential evolution
[54], can be used to calculate the optimal solution [29], [49].
In Section IV, the PSO algorithm is used to obtain the optimal
noise p.d.f.s for the numerical examples.

Although the calculation of the optimal noise p.d.f. requires
significant effort as discussed above, some of its properties
can be obtained without solving the optimization problem
in (12). To that aim, let Fi,;, represent the minimum value
of H(t) in (23); that is, Fn = mtin H(t). In addition,

suppose that this minimum is attained at ¢ = t,,.> Then,
one immediate observation is that if ¢, is less than or equal
to the conditional risk limit «, then the noise component
n,, that results in max Fp(ny,) = ty is the optimal noise

component; that is, the optimal noise is a constant in that
scenario, pN(x) = 6(x —ny,) . On the other hand, if ¢, > «
then it can be shown that the optimal solution of (12) satisfies
max R} (¢) = a (Appendix C).

III. NOISE ENHANCED SIMPLE HYPOTHESIS-TESTING

In this section, noise enhanced detection is studied in the
restricted Bayesian framework for simple hypothesis-testing
problems. In simple hypothesis-testing problems, each hypoth-
esis corresponds to a single probability distribution [40]. In
other words, the generic composite hypothesis-testing problem
in (1) reduces to a simple hypothesis-testing problem if each
A; consists of a single element.

Since the simple hypothesis-testing problem is a special case
of the composite one, the results in Section II are also valid
for this section. However, by using the special structure of
simple hypotheses, we obtain additional results in this section
that are not valid for composite hypothesis-testing problems.
It should be noted that both composite and simple hypothesis-
testing problems are used to model various practical detection
examples [40], [55]; hence, specific results can be useful in
different applications.

A. Problem Formulation

The problem can be formulated as in Section II-A by
defining A; = {6;} for i = 0,1,...,M — 1 in (1). In
addition, instead of the prior p.d.f. w(0), the prior probabilities
of the hypotheses can be defined by mg,my,...,ma/—1 With
2/0_1 m; = 1. Then, the optimal additive noise problem in
(3) becomes

M-1
min miRY (¢
pn () ; ( )

subject to RY(¢) < a,

max
i€{0,1,...,M—1}
where S M 1 RY (¢) £ 1Y (¢) is the Bayes risk and RY (¢)
is the conditional risk of ¢ given H; for the noise modified
observation y, which is given by

(26)

M—-1

=) CuPY(Ty)
=0

SIf there are multiple ¢ values that result in the minimum value Fl,;,,, then
the minimum of those values can be considered.

27



with PY(T';) denoting the probability that y € I'; when H;
is the true hypothesis, and Cj; defining the cost of deciding
‘H; when H; is true. As in Section II-A, the constraint o
sets an upper limit on the conditional risks, and its value is
determined depending on the amount of uncertainty in the
prior probabilities.

In order to investigate the optimal solution of (26), an
alternative expression for R} (¢) is obtained first. Since the
additive noise n is independent of the observation x, P} (T';)
becomes

P?(Tj)Z/Fjp?/(y)dy:/Fj AKPN(n)pf(y—n)dndy,

(28)

where pX(-) and pY (-) represent the p.d.f.s of the original
observation and the noise modified observation, respectively,
when hypothesis H; is true. Then, (27) can be expressed, from
(28), as

=

1—1

Cji/ pN(n)/ p;(y —n)dydn
RK r

0 J

Ry(¢) =

<.
I

M-—1
= C;i E{Fi;(N)} = E{Fi(N)} , (29)
=0
with
Fij(n) £ / pr(y —n)dy , (30)
Ly
M—1
£ %" CjiFy(n) 31)
§=0

Based on the relation in (29), the optimization problem in
(26) can be reformulated as

M—-1

mln Z mE{F;(N)} ,

N (

subject to max

E{F;(N
i€{0,1,....M—1} {7

B<a. (32

If a new auxiliary function is defined as F(n) £

waolﬂz F;(n), (32) becomes

;gl(r}) E{F(N)} ,

subject to

E
1€{0,1,...,M—1} {

FIN)}<a.
Note that under UCA; that is, when C;; = 1 for j # 4, and
C;i =0 for j =i, F;(N) becomes equal to 1 — Fj;(N).

It should be noted from the definitions in (30) and (31) that
F;(0) corresponds to the conditional risk given H,; for the
original observation x, R¥(¢). Therefore, F'(0) defines the
original Bayes risk, 7*(¢) .

(33)

B. Optimal Additive Noise

The optimization problem in (33) seems quite difficult to
solve in general as it requires a search over all possible
noise p.d.f.s. However, in the following, it is shown that an
optimal additive noise p.d.f. can be represented by a discrete
probability distribution with at most M mass points in most
practical cases. To that aim, suppose that all possible additive
noise values satisfy @ < n < b for any finite a and b; that

is, n; € [a;,b;] for j = 1,..., K, which is a reasonable
assumption since additive noise cannot have infinitely large
amplitudes in practice. Then, the following theorem states the
discrete nature of the optimal additive noise.

Theorem 4: [f F;(-) in (32) are continuous functions, then
the p.d.f. of an optimal additive noise can be expressed as

N(m) =M N 60— 1), where Y10 N =1 and A > 0

forl=1,2,... M.

Proof: The proof employs a similar approach to those used
for the related results in [12], [29] and [49]. First, the following
set is defined:

U= {(ug,u1,...,upr—1) : u; = F;(n),
1=0,1,....M —1, for a<n=<b}. (34)
In addition, V' is defined as the convex hull of U [56]. Since
F;(-) are continuous functions, U is a bounded and closed
subset of RM  Hence, U is a compact set. Therefore, its convex

hull V is a closed subset of RM [29]. Next, set W is defined
as

W:{(wo,wh..., w; = E{F;(n)},

i=0,1,...,M —1, Vpn(n), ajnjb}, (35)

w]bffl) :

where pn(n) is the p.d.f. of the additive noise.

As V is the convex hull of U, each element of V' can be
expressed as v = ZlNLl /\l (Fo(nl) Fl(nl) F]\/[ 1(1’11))
where Zl A =1,and \; > 0 VI. On the other hand, each
v is also an element of W as it can be obtained for pn(n) =
Zfiﬁ A 6(n —ny). Hence, V- C W [29]. In addition, since
for any vector random variable @ taking values in set €2, its
expected value, E{@®}, is in the convex hull of 2 [57], (34) and
(35) implies that W is in the convex hull V' of U; thatis, V' O
W.Since VC W and V O W, it means that W =V [29].
Therefore, according to Carathéodory’s theorem [58], [59], any
pointin V' (or, W) can be expressed as the convex combination
of at most (M +1) points in U as the dimension of U is smaller
than or equal to M. Since the aim is to minimize the average
of the conditional risks, the optimal solution corresponds to the
boundary of W. As W (or, V) is a closed set as mentioned at
the beginning of the proof, it contains its own boundary [29].
Since any point at the boundary of W can be expressed as
the convex combination of at most M elements in U [58], an
optimal noise p.d.f. can be represented by a discrete random
variable with M mass points as stated in the theorem. [J

From Theorem 4, the optimization problem in (33) can be
simplified as

min E MNF(ny)
{Alanl}z 1oy—1

max

bject t M E;(
subjec OLEOl LM — 1}Zl ()

M
=1, N=0, I=1...,M. (36)

The optimization in (36) is considerably simpler than that in
(33) since the former is over a set of variables instead of
functions. However, (36) can still be a nonconvex optimization
problem in general; hence, global optimization techniques,
such as PSO [51] and differential evolution [54] may be
needed.



In order to provide a convex relaxation [60] of the optimiza-
tion problem in (36) and to obtain an approximate solution in
polynomial time, one can assume that additive noise n can take
only finitely many known values specified by n;, ..., ny [29].
This scenario, for example, corresponds to digital systems
in which the signals can take only finitely many different
levels. Then, the aim becomes the determination of the weights
A1, ..., Ap of those possible noise values. In that case, (33)
can be formulated as

L
min Y NF(Ry)

{:\1}1:1 =1
L ~
bject t NFE; () < a
subject to ie{O,{I}.E.l,)?Wfl} ; 1Fi(hy) < «
L ~ ~
=1, >0, I=1,..L, (37)
1=1

which is a linearly constrained linear programming (LCLP)
problem; hence, can be solved in polynomial time [60]. It
should be noted that as the optimization is performed over
more noise values (as L increases), the solution gets closer to
the optimal solution of (33).

As an alternative approach, an analytical solution similar
to that in [12] can also be proposed for obtaining the optimal
additive noise. First, consider the optimization problem in (32)
for M = 2; i.e., the binary case. If functions Fy(n) and F;(n)
are monotone, then t( and ¢; can be defined as to = Fy(n) and
t; = Fi(n). Otherwise, let tg and ¢; be defined as follows:

to(t) £ inf { Fy(n) ‘ Fi(n)=t, ne RK} )

t1(t) £ inf {Fi(n) | Fo(n) =t , ne R} . (38)

In general, there can exist multiple values of F)(n) corre-
sponding to a given value of Fj(n). However, the definitions of
to and ¢; in (38) make sure that only the best (minimum) value
of Fi(n) corresponding to a given Fy(n) is considered, and
vice versa. Therefore, ¢, can be expressed as t; = g(t(), where
g(to) is a monotone function of ¢y and is defined on the range
of to, which is denoted by [to min, t0,max] With ¢ min = mintg
and to max = maxty. We call the set of ¢y for which g(¢o)
and tg satisfy the constraints (cf. (32)) as the feasible domain.
Then, let a new function B be defined as follows:

B(to) £ moto + mig(to) -

If B(ty) takes its global minimum value in the feasible

domain, then the optimal Bayes risk is equal to that minimum

value and the optimal additive noise can be represented by

a constant value. For example, if ¢ = arg nrtlin B(tg), then
0

(39)

the optimal additive noise p.d.f. can be expressed as pn(n) =
§(n—ny), where ny satisfies Fp(ng) = 5. On the other hand,
if B(to) achieves its global minimum value outside the feasible
domain, then an analytic solution for the optimal additive noise
p-d.f. can be obtained as explained in the following. At the end
of Section II-C, it was stated that the maximum value of the
optimal conditional risks must be equal to the constraint level
« for the case considered here. This implies that the optimal
(to, t1) pair is equal to one of the following: («, 3) or (7, a),
where 3 and ~ are such that g(a)) = 8 and g(y) = . It should

O1f there are multiple such ng’s, then the one that minimizes F; (ng) should
be chosen.

be noted that if g(¢p) is a decreasing function and ~ is larger
than ¢, then the feasible domain is an empty set implying that
there is no solution satisfying the constraint.

Since ¢(to) is a monotone function and the maximum of
the optimal conditional risks must be equal to «, the feasible
domain must be in the form of an interval, say [a,b], and the
value of ¢y corresponding to the optimal solution must be equal
to either a or b. In the following derivations, it is assumed that
the value of ¢y corresponding to the optimal solution is b, and
B(to) takes its global minimum value for ¢, > b. However,
it should be noted that these assumptions do not reduce the
generality of the results. In other words, the derivations based
on the other possible assumptions yield the same result.

Similar to [12], the following auxiliary function is defined:

Z(to, k) £ B(to) + kto , (40)

where k € R. It is observed that Z is an increasing function of
k. Let the range of ty be partitioned into Z; = [t¢ min, b) and
Zo = [b, to,max]- In addition, two new functions are defined as
follows:

’Ul(k) £ min Z(to,k) = Z(t()l(k),k) s

to€Zr

Ug(k‘) £ min Z(to,k) = Z(toz(k‘),k) 5

to€Z>

(41)

where to1(k) is the value of ¢y € Z; that minimizes Z for
a given k, and similarly, to2(k) is value of tyg € Z, that
minimizes Z for a given k.

From (40) and (41), it is obtained for k = 0 that v5(0) =
min B(tyg) < v1(0) = B(f01(k)). On the other hand, as k —
00, 7)1(/{) = B(t(),min) + ktO,min < Ug(k) = B(b) + kb.
Therefore, there must exist a kK = kg, where 0 < kg < oo,
such that

v = U1(l€0) = Z(tm(ko), ko) = ’Ug(ko) = Z(tOQ(kQ), k’o) .
(42)

Consider the division of the range of ¢( into two disjoint
sets A and {t()l (k‘o),tog(ko)} such that {t()l(k‘o),tog(ko)} U
A = [to,min, to,max]- Then, any additive noise p.d.f. can be
expressed in the following form:

Pn,to (to) = A16(to — to1(ko)) + A2d(to — toz(ko))
4+ Za(to)pn,t, (to)

where Z4(to) is an indicator function such that Z4(tp) = 1
if to € A, Za(tg) = 0 otherwise [12]. By definition, A\; +
Ao + f 4 Pnto(to) dto = 1 should be satisfied. In addition, the
expectation of Z in (40) over ¢y can be bounded as follows:

(43)

E{Z(to, k‘o)} = MU+ Aov + / Z(to, kO)pn,tg (to) dto s
A

=v+ /A [Z(to, ko) = vlpn.t, (to) dto ,
- (44)

where the first expression is obtained from (42) and (43), and
the final inequality is obtained from the fact that Z (¢, ko) > v
for tg € A (cf. (41) and (42)). This lower bound is achieved
for pn,i, (to) = Aid(to — to1(ko)) + A20(to — toz2(ko)), with
A1 + A2 = 1. Hence, py 4, (to) = 0 for to € A.

From (39) and (40), the Bayes risk 7¥(¢) can be expressed
as r(¢) = E{B(to)} = E{Z(to,ko)} — koE{to}. Since
to1(ko) < b and tp2(ko) > b, one can achieve E{tq} = b
by using a noise component with p.d.f. pn ¢, (to) = A\1d(to —



t()l(kio)) + /\26(t0 — tog(kjo)), where A1 + Ay = 1 with
appropriate values for A; and Ao. Thus, the optimal additive
noise pdf is Pn.to (to) = )\15(t07t01(ko))‘F)\z(S(toftog(k'o)),
where )\1 + )\2 =1 and )\1t01(k0) + )\gtog(ko) = b, and the
optimal Bayes risk is given by 3 (¢) = E{B(to)} = v—kob.

Since Z(tg, ko) has (local) minimum values at tg = to1 (ko)
and tog = to2(ko), if B(to) is continuously differentiable, then
07 (to1(ko), ko)/Oto = 0Z(to2(ko), ko)/Oto = 0. Then, (40)
implies the following equalities:

dB(to1(ko)) _ dB(toz(ko))
= = —kg . 45
dto dto 0 (“43)
From (42), we also have the following relation:
B(tor (ko)) — Bltoa(ko)) _ ke . 46)

to1 (ko) — to2(ko)
Therefore, (45) and (46) can be used to obtain the following
result:

B(to1(ko)) — B(toz2(ko))

_ dB(toi1(ko))
to1(ko) — toz(ko)

_ dB(tes(ko))
dto ’

dto

(47)

From the equalities in (47), one can find to1 (ko) and 2 (ko),
and the corresponding mass points n; and no that satisfy
t()l(ko) = F()(l’ll) and tog(ko) = F()(Ilg).7

After obtaining n; and ns as described above, the corre-
sponding weights A; and Ay calculated from the following
equations: Ay + A2 = 1 and Aito1(ko) + Aatoa(ko) = .
Due to the fact that the maximum of the optimal conditional
risks must be «, b must be equal to the constraint level o or
must satisfy g(b) = a. These two cases should be checked
separately and then the one corresponding to the optimal
solution should be determined. In other words, the weight
pairs corresponding to tg = « and t; = g(tg) = « should
be calculated separately, and then the one that results in better
performance should be selected. An alternative approach to
determine b is to find where B(tg) takes its global minimum
value. If B(tg) takes its global minimum value for ¢y > «,
then b must be equal to «; otherwise, b must be found from
g(b) = a. After finding b, the optimal weight pair can easily
be obtained from A; + A2 = 1 and Aq¢01 (ko) + Aatoz (ko) = .

The analytic approach described above for the binary case
can also be extended to the M-ary case for M > 2. However,
in that case, only the mass points, ny,...,nys, can be found
analytically. The weights, A;,..., Ay, should be found via
a numerical approach. Such a semi-analytical solution can
still provide significant computational complexity reduction
in some cases since the weights, which are not determined
analytically, are easier to search for than the mass points, as
the weights are always scalar whereas the mass points can also
be multidimensional. The analytical approach to obtaining the
mass points in the M-ary case is a simple extension of that
in the binary case. Mainly, a function ¢,;_; should be defined
as ty—1 £ g(t(), AN ,tM,Q) = inf{F]w,l(l’l) | Fo(n) =
to,..., Far_o(n) = tpy_o,n € RE}, function B in (39)
should be generalized as
Blto,...,ta—2) = moto + -+ + mar—19(to, - . -, tar—2), an
Z should be modified as Z(to,...,trpr—2,k1y.. ., kyp—1) =
B(to,...,tp—2) + kito + -+ + kap—1tar—2. The resulting
equations provide a generalization of those in (47), the details
of which are not presented here due to the space limitations.

1f there are multiple such n’s (n2’s), then the one that minimizes F (ny)
(F1(n2)) should be chosen.

C. Improvability and Nonimprovability Conditions

In this section, various sufficient conditions are derived in
order to determine when the performance of a detector can or
cannot be improved via additive independent noise according
to the restricted Bayes criterion.

For the nonimprovability conditions, Theorem 1 in Section
II-B already provides a quite explicit statement to evaluate
the nonimprovability. Therefore, it is also practical for simple
hypothesis-testing problems, as observed in the example after
Theorem 1. In accordance with the notation in this section,
Theorem 1 can be restated for simple hypothesis-testing prob-
lems as follows. Assume that there exits i € {0,1,..., M —1}
such that Fi(n) < « implies F(n) > F(0) for all n € S,
where S, is a convex set consisting of all possible values of
additive noise n. If F;(n) and F(n) are convex functions over
Sy, then the detector is nonimprovable.

Regarding the improvability conditions, in addition to Theo-
rem 2 and Theorem 3 in Section II-B, new sufficient conditions
that are specific to simple hypothesis-testing problems are
provided in the following. To that aim, it is first assumed that
Fi(x)fori=0,1,...,M—1and F(x), defined in Section III-
A, are second-order continuously differentiable around x = 0.
In addition, similar to (19)-(22), the following functions are
defined.

K
(1) a OF;(x)
fi (x,z>ﬁ;zi T (48)
K
OF (x)
1 A
f”(x,Z)—;zi o (49)
K K
0*F (x)
P2 23N T (50)
J — ox;0x;
K K
82F (x)
(2) A
P (x,2) ;;zl Fordes (51)

for j = 0,1,...,M — 1, where x; and z; represent the ith
components of x and z, respectively.

Note that the result in Theorem 2 can also be used for
simple hypothesis-testing problems when there exists a unique
maximizer ¢ = ¢* of the original conditional risks, F;(0) =
R¥(¢). In the following, more generic improvability condi-
tions, which cover the cases with multiple maximizers of F;(0)
as well, are obtained for simple hypothesis-testing problems.
Let S, denote the set of indices for which F;(0) achieves the
maximum value of «, and let S, represent the set of indices
with F;(0) < «; that is,

So={ie{0,1,...,M -1} | F;(0) =a} ,
Sa={i€{0,1,...,.M -1} | F;(0) < a} .
In addition, let S, US, = {0,1,...,M — 1}, meaning that
F;(0) = R¥(¢) < o for i = 0,1,...,M — 1. Consider the
functions in (48)-(51), and define set F,, (n = 1, 2) as the set
that consists of f(")(x,z) and fi(") (x,z) for i € S, ; that is,

Fa= {1 (x,2), 10 (x,2) for i € 5.}

(52)
(53)

(54)

for n = 1, 2. Note that F,, has |S,| + 1 elements, where |S,|
represents the number of elements in S,. In addition, F, ()
will be used to refer to the jth element of F,, . It should be

noted that F,,(1) = f™(x,2z) and F,(j) = éz)(jfl)(x’z)



for j = .+ |Sal + 1, where Su(j — 1) is the (j — 1)th
element of S,. Finally, the following sets are introduced to
define the set of indices j for which Fi(j) is zero, negative
or positive:

S:={e{l,2...,[Sl+1} | 21(G) =0} ,  (55)
Sp={ie{l,2,...,[Sal + 1} | F1(5) <0} ,  (56)
Sp={ic{li2,..,[Sal + 1} [ F() >0} . (57)

Based on the definitions in (48)-(57), the following theorem
provides sufficient conditions for improvability.

Theorem S: For simple hypothesis-testing problems, a de-
tector is improvable according to the restricted Bayes criterion
if there exists a K -dimensional vector z such that the following
two conditions are satisfied at x =0

1) F(G)<0,VYjes,.

2) One of the following is satisfied:

¢ |S,|=00r|S,|=0.

e |S,| is a positive even number,

I =o-> max F(j)

n JESY

min Fa(4)

I =o.

1€S,US, \{j} 1€85,US-\ {7}
(58)
e |S,| is an odd number, |S,| > 0, and
min F5(j) I »o-> max F(j) I =o.
IS 1€8,0U8:\{j} o 1€8,US.\{J}

59)

Proof: Please see Appendix D.

Theorem 5 states that whenever the two conditions in the
theorem are satisfied, it can be concluded that the detection
performance can be improved via additive independent noise.
It should be noted that after defining the sets in (52)-(57), it is
straightforward to check the conditions stated in the theorem.
An example application of Theorem 5 is provided in Section
IV, where its practicality and effectiveness are observed.

Finally, another improvability condition is derived as a
corollary of Theorem 5.

Corollary 1: Assume that F(x) and F;(x), i =

0,1,...,M — 1, are second-order continuously differentiable

around x = 0 and that max  F;(0) < «. Let f
i€{0,1,...,M—1}

denote the gradient of F(x) at x = 0. Then, the detector

is improvable

o iff £0; or,

e if F(x) is not convex around x = 0.

Proof: Please see Appendix E.

Although Corollary 1 provides simpler improvability
conditions than those in Theorem 5, the assumption of

max  F;(0) < o makes it less practical. In other
i€{0,1,....M—1}

words, Corollary 1 assumes that, in the absence of additive
noise, the maximum of the original conditional risks is strictly
smaller than the upper limit, «. Since it is usually possible
to increase the maximum of the conditional risks to reduce
the Bayes risk, the scenario in Corollary 1 considers a more
trivial case than that in Theorem 5.

IV. NUMERICAL RESULTS

In this section, a binary hypothesis-testing problem is stud-
ied first in order to provide a practical example of the results
presented in the previous sections. The hypotheses are defined
as

Ho : z=wv, versus Hy : z=A+v, (60)

where x € R, A > 0 is a known scalar value, and v is
symmetric Gaussian mixture noise with the following p.d.f.

N,
w) =Y wii(r — ) 1)
i=1
where w; >0 fort=1,..., N, Zf\;”{wl =1, and
1 —z2
i(x) = ex , 62
la) = o oxn (553 ) (62)

fori = 1,...,N,,. Due to the symmetry assumption, p; =
—[N,, —i+1,» W; = WN, —i+1 and o; = op, —j+1 for i =
1,..., | Nm/2]. In addition, the detector is described by

(1, y>A)2
ww—{o, =

where y = x+n, with n representing the additive independent
noise term. The aim is to obtain the optimal p.d.f. for the
additive noise based on the optimization problem in (26).

Under the assumption of UCA, (60)-(63) can be used to
calculate Fy(x) and Fi(z) from (30) and (31) as

o AJ2 —x — py
:iz:;wi@ ((72'

uz)

o <A/2+:1:+ui)

(63)

Fl(x)zz:wq;Q o

i=1
where Q(z) = (1/V2m) [°
function.

The symmetric Gaussian mixture noise specified above is
observed in many practical scenarios [61]-[63]. One important
scenario is multiuser wireless communications, in which the
desired signal is corrupted by interference from other users as
well as by zero-mean Gaussian background noise [64]. In other
words, the signal detection example in (60) with symmetric
Gaussian mixture noise finds various practical applications.

Since the problem in (60) models a signal detection problem
in the presence of noise, we consider two common scenarios in
the following simulations. In the first one, it is assumed that
the noise-only hypothesis Hg has a higher prior probability
than the signal-plus-noise hypothesis 71. An example of this
scenario is the signal acquisition problem, in which a number
of correlation outputs are compared against a threshold to
determine the timing/phase of the signal [65]. In the second
scenario, equal prior probabilities are assumed for the hy-
potheses, which can be well-suited for binary communications
systems that transmit no signal for bit 0 and a signal for
bit 1 (i.e., on-off keying) [66]. For the first scenario, it is
assumed that the prior probabilities are known, with some
uncertainty, to be equal to 79 = 0.9 and 7; = 0.1, which is
called the unequal priors case in the following. On the other
hand, mg = m; = 0.5 is considered for the equal priors case.
As mentioned in Section II-A, the restricted Bayes criterion
mitigates the undesired effects due to the uncertainty in prior
probabilities via parameter av, which sets an upper limit on the
conditional risks. In the numerical results, symmetric Gaussian
mixture noise with N,,, = 4 is considered, where the mean
values of the Gaussian components in the mixture noise in (61)
are specified as [0.033 0.52 —0.52 —0.033] with corresponding
weights of [0.35 0.15 0.15 0.35]. In addition, for all the cases,
the variances of the Gaussian components in the mixture noise

(64)

e=*/2dt denotes the Q-
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Fig. 1. Bayes risks of original and noise modified detectors versus o in

cases of equal priors and unequal priors for o = 0.08 and A = 1.
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Fig. 2. Bayes risks of original and noise modified detectors versus o in
cases of equal priors and unequal priors for o = 0.12 and A = 1.

are assumed to be the same; i.e.,, 0;, = o fori =1,..., N,
in (62).

For the detection problem described above, the optimal
additive noise can be represented by a probability distribution
with at most two mass points according to Theorem 4.
Therefore, the optimal additive noise p.d.f. can be calculated
as the solution of the optimization problem in (36) for M = 2.
In this section, the PSO algorithm is employed to obtain the
optimal solution, since it is based on simple iterations with low
computational complexity and has been successfully applied
to numerous problems in various fields [67]-[70] (please refer
to [51]-[53] for detailed descriptions of the PSO algorithm).8

Figs. 1, 2 and 3 illustrate the Bayes risks for the noise
modified and the original (i.e., in the absence of additive
noise) detectors for various values of o in the cases of equal
and unequal priors for « = 0.08, « = 0.12, a« = 0.4,
respectively, where A = 1 is used.” From the figures, it is
observed that as o decreases, the improvement obtained via
additive noise increases. This is mainly due to the fact that

8In the implementation of the PSO algorithm, we employ 50 particles and
1000 iterations. Also, the other parameters are set to ¢; = c2 = 2.05 and
x = 0.72984, and the inertia weight w is changed from 1.2 to 0.1 linearly
with the iteration number. Please refer to [51] for the details of the PSO
algorithm and the definitions of the parameters.

9Due to the symmetry of the Gaussian mixture noise, the conditional risks
in the absence of noise, Fp(0) and F (0), are equal. Therefore, the original
Bayes risks are the same for both the equal and the unequal priors cases.
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Fig. 3. Bayes risks of original and noise modified detectors versus o in
cases of equal priors and unequal priors for « = 0.4 and A = 1.

TABLE 1
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF o FOR
a=0.08AND A =1.

w0 = 0.5/m = 0.9
o A n1i no
0 0.4719/0.5333 -0.1057 /-0.2492 0.0901 /0.0352
0.03 | 0.4881/0.5333 -0.2420 / -0.1995 0.2416 / 0.2982
0.06 | 0.4858/0.5332 -0.2360 / -0.2351 0.2360 / 0.2370
0.09 | 0.4997/0.5251 -0.2189 /-0.2189 0.2189/0.2189
0.117 | 0.5011 /0.5029 -0.1847 / -0.1847 0.1847 / 0.1847

noise enhancements commonly occur when observations have
multimodal p.d.f.s [12], and the multimodal structure is more
pronounced for small ¢’s. In addition, the figures indicate that
there is always more improvement in the unequal priors case
than that in the equal priors case, which is expected since there
is more room for noise enhancement in the unequal priors case
due to the asymmetry between the weights of the conditional
risks in determining the Bayes risk. Another important point
to note from the figures is that the feasible ranges of o values
are different for different values of «. In other words, for each
«, the constraint on the maximum conditional risks (cf. (26))
cannot be satisfied after a specific value of o. This is expected
since as o (which determines the average noise power) exceeds
a certain value, it becomes impossible to keep the conditional
risks below the given limit . Therefore, Figs. 1, 2 and 3 are
plotted only up to those specific o values. From the figures, it
is observed that those maximum o values are 0.117, 0.31 and
1.93 for o = 0.08, o = 0.12 and « = 0.4, respectively.

In order to investigate the results in Figs. 1, 2 and 3 further,
Tables I, II and III show the optimal additive noise p.d.f.s
for various values of o in the cases of equal and unequal
priors for a = 0.08, @ = 0.12 and o = 0.4 respectively,
where A = 1. From Theorem 4, it is known that the optimal
additive noise in this example can be represented by a discrete
probability distribution with at most two mass points, which
can be described as py(z) = Ad(z —n1)+ (1 —A) d(x —na).
It is observed from the tables that the optimal additive noise
p.d.f. has two mass points for certain values of o, whereas
it has a single mass point for other o’s. Also, in the case of
equal priors for « = 0.12 and o = 0.4, the optimal noise
p.d.f.s contain only one mass point at the origin for some
values of o, which implies that the detector is nonimprovable
in those scenarios. However, there is always improvement for
the unequal priors case, which can be also verified from Figs.



TABLE 11
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF ¢ FOR
a=0.12AND A = 1.

w0 = 0.5 /79 =0.9

o A n1 n2

0 0.2553 /0.8 -0.2849 /-0.4063 0.0421 /0.0598
0.08 | 0.4436/0.2028 -0.2266 / 0.2266 0.2266 / -0.2266
0.15 0.7492 / 1 0.0944 /-0.0959 -0.0944 / —
0.23 1/1 0/-0.0693 —/—
0.31 1/1 0 /-0.0067 —/—

TABLE III

OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF o FOR
a=04AND A=1.

7m0 =0.5/7m = 0.9

o A ni no
0 0.6518 /0.1170 -0.3578 /-0.0283 -0.2941 /-0.3879
0.5 1/1 0/-0.3549 ——
1 1/1 0/-0.2366 —/—
1.5 1/1 0/-0.1131 —/—
1.93 1/1 0/-0.0057 —/—
1, 2 and 3.

Fig. 4 illustrates the Bayes risks for the original and the
noise modified detectors for various values of A in the cases
of equal and unequal priors for o = 0.08 and o = 0.05.
It is noted that the original conditional risks are above the
specified limit a = 0.08 for A < 1.03.'° However, after
the addition of optimal noise, the noise modified detectors
result in conditional risks that are below the limit, which is
expected since the optimal noise p.d.f.s are obtained from
the solution of the constrained optimization problem in (26).
Another observation from Fig. 4 is that, in the equal priors
case, the improvement decreases as A increases, and there
is no improvement after a certain value of A. However, for
the unequal priors case, improvement can be observed over
a wider range of A values, which is expected due to the the
same reasons argued for Figs. 1-3.

Fig. 5 illustrates the improvement ratio, defined as the ratio
of the Bayes risks in the absence and presence of additive
noise, versus « for the cases of equal and unequal priors for
0 =0.01, 0 =0.05 and 0 = 0.1, where A = 1 is used. In the
unequal priors case, as « increases, an increase is observed

10For the original detector, the conditional risks are equal; hence, R'g (o) =

RT(¢) = r®(¢).
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Fig. 4. Bayes risks of original and noise modified detectors versus A in

cases of equal priors and unequal priors for @ = 0.08 and ¢ = 0.05.
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Fig. 5. Improvement ratio versus « in the cases of equal priors and unequal
priors for o = 0.01, 0 = 0.05 and o = 0.1, where A = 1.

in the improvement ratio up to a certain value of «, and
then the improvement ratio becomes constant. Those critical
« values specify the boundaries between the restricted Bayes
and the (unrestricted) Bayes criteria. When « gets larger than
those values, the constraint in (26) is no longer active; hence,
the problem reduces to the Bayesian framework. Therefore,
further increases in e do not cause any additional performance
improvements. Similarly, as the value of « decreases, the
restricted Bayes criterion converges to the minimax criterion
[29]. The restricted Bayes criterion achieves its minimum
improvement ratio when it becomes equivalent to the minimax
criterion, and achieves its maximum improvement ratio when
it is equal to the Bayes criterion. In the case of equal priors,
the improvement ratio is constant with respect to o, meaning
that the improvement for the minimax criterion equals to that
for the Bayes criterion. Another observation from the figure is
that an increase in o reduces the improvement ratio, and for the
same values of o, there is more improvement in the unequal
priors case. Finally, it should be noted that various values of
« in Fig. 5 correspond to different amounts of uncertainty in
the prior information [42]. As the prior information gets more
accurate, a larger value of « is selected; hence, the constraint
on the conditional risks becomes less strict, meaning that the
restricted Bayes criterion converges to the Bayes criterion after
a certain value of «. On the other hand, as the amount of
uncertainty increases, a smaller value of « is selected, and the
restricted Bayes criterion converges to the minimax criterion
when a becomes equal to the minimax risk [40], [42].

Next, the improvability conditions in Theorem 5 are in-
vestigated for the detection example. To that aim, it is first
observed that the original conditional risks Fy(0) and F}(0)
are equal to each other for any value of o due to the symmetry
of the Gaussian mixture noise (cf. (64)). Therefore, F'(0) =
moFo(0) + w1 F1(0) = Fu(0) = F1(0). In addition, suppose
that the limit on the conditional risks, «, is set to the original
conditional risks for each value of o, which implies that
S, ={0,1} in (52). Also, the first order derivatives of Fy(z)
and Fiy(x) at x = 0 can be calculated from (64) as

L ERa)

2
20;

N,
’ ’ wi
Fi0) = —F0) =3 e (-

(65)

Similarly, the second order derivatives of Fyy(x) and Fi(z) at



x = 0 are obtained as
N,

" y w; — — )?

202
(66)

For the unequal priors case, the first and second order deriva-
tives of F'(z) = moFo(x)+m1 F1(x) at x = 0 can be expressed
as F'(0) = 0.8F, (0) and F"'(0) = F, (0). From (65), it is
noted that F, (0) > 0 and F, (0) < 0; hence, F'(0) > 0 as
well. Then, from (48)-(51), set F,, in (54) can be expressed,
at x = 0, as

F1 = {0.82F, (0), 2F, (0), —zF, (0)} ,
Fa = {22F, (0), 22F, (0), 22 Fy (0)} . (67)

Therefore, (55)-(57) imply that, at z = 0, S, = 0, S,, = {3}
and S, = {1,2} for = > 0and S, = 0, S, = {1,2}, and
S, = {3} for z < 0.!" Since S, = 0, the first condition in
Theorem 5 is automatically satisfied. For z > 0, |S,| = 1
and |Sp| = 2; hence, the third bullet of the second condition
implies that

min{F2(1)F1(2)F1(3) , F2(2) F1 (1) F1(3) }

> Fo(3)F1(1)F1(2) (68)

is required for improvability. For z < 0, |S,,| = 2 and |S,| =
1; hence, the second bullet of the second condition becomes
active, which can be shown to yield the same condition as in
(68). From (67), the improvability condition in (68) can be
expressed more explicitly as

min {—Z4F(;/(0) (FO’ (0))2 , —0.824F (0) (FO’(O))Z}

. , 2
> 0.824F, (0) (FO (0)) : (69)
which is satisfied when F, (0) < 0. Therefore, the
detector is improvable whenever the expression in (66)
is negative. For the equal priors case, F; and F5 in
(67) become Fy = {0,zF,(0),—zF,(0)} and F, =
{z2F, (0), 22F, (0), 22F, (0)}, respectively. Therefore, the
first improvability condition in Theorem 5 requires that
F(;/(O) < 0, whereas the third bullet of the second condition
requires that F2(2)F1(3) > F2(3)F1(2) for z > 0 and
Fa(3)F1(2) > Fa(2)F1(3) for z < 0. However, it can
be shown that the conditions in the third bullet are always
satisfied when F(;/(O) < 0. Therefore, the same improvability
condition is obtained for the equal priors case, as well. Fig.
6 illustrates F(/)/ (0) versus o for various values of A, where
o represents the standard deviation of the Gaussian mixture
noise components (o; = o, Vi in (62)). It is observed that
the detector performance can be improved for A = 1 if
o € [0.005,0.1597], for A = 0.9 if ¢ € [0.01,0.1686],
and for A = 0.8 if o € [0.02,0.161]. On the other hand,
the calculations show that the detector is actually improvable
for A =1if ¢ < 0.16, for A = 0.9 if ¢ < 0.17, and
for A = 0.8 if ¢ < 0.161. Hence, the results reveal that
the proposed improvability conditions are sufficient but not
necessary, and that they are quite effective in determining the

Note that S, = {1, 2,3} for z = 0, in which case the first condition in
Theorem 5 cannot satisfied since o = {0, 0,0}. Therefore, z = 0 is not
considered in obtaining improvability conditions.

sl
S -8t
w
10l
12l

14+

-16}

_18 ] L ;
10" 10° 107 10" 10° 10" 10°
g

Fig. 6. The second order derivative of Fp(z) at = 0 versus o for various
values of A. Both Theorem 5 and Theorem 3 imply for the detection example

in this section that the detector is improvable whenever F(;/(O) is negative.
The limit on the conditional risks, «, is set to the original conditional risks
for each value of o. The graph for A = 1 is scaled by 0.1 to make view of
the figure more convenient (since only the signs of the graphs are important).

range of parameters for which the detector performance can
be improved.'?

Next, the improvability conditions based on Theorem 3
are considered. For the binary hypothesis-testing
example in this section, H(t) in (23) becomes H(t) =
inf {moFo(n) + m F1(n) | max{Fy(n),F1(n)} =t, n € R}.
From (64), it can be shown that Fyy(n) and F} (n) are monotone
increasing and decreasing functions, respectively. In addition,
due to the symmetry of the Gaussian mixture noise,
Fi(n) = Fy(—n), Vn. Therefore, without loss of generality,
H(t) can be expressed as H(t) = mot + mF) (Fy '(t)).
Then, the second derivative of H(t) can be obtained as

1"

H'(t) =
F(FH(0) = B (g O)Fy (Fg (0)/Fy (Fg (1)
(Fy (Fy (1))

™

(70)

In order to evaluate the condition in Theorem 5, it is first
observed that ¢ = & = max{Fy(0), F1(0)} = Fy(0), since
Fy(0) = Fy(0) (cf. (64)). Then, H (@) < 0 implies that
F}(0) — F{ (0)Fy (0)/F, (0) < 0 for any ;. Since Fy (0) =
Fy (0) from (66), and F;, (0) > 0 and F (0) < 0 from (65),
that improvability condition reduces to Fj, (0) < 0, which is
the same condition obtained from Theorem 5. Therefore, for
this specific example, the improvability conditions in Theorem
3 and Theorem 5 are equivalent (cf. Fig. 6). However, it should
be noted that the two conditions are not equivalent in general,
and the calculation of H(t) can be difficult in the absence of
monotonicity properties related to Fy and F}.

Finally, another example is studied in order to investigate
the theoretical results on a 4-ary hypothesis-testing problem
in the presence of observation noise that is a mixture of non-
Gaussian components. The hypotheses Ho, H1, Ho and Hs

1’ .
In fact, Fy (0) can be shown to be negative even for smaller o values
than specified above; however, very small negative values are computed as
zero due to the accuracy limitations.
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are defined as

—3\/2—&—1},
\/Z—l—v,

where x € R, A > 0 is a known scalar value, and v is
zero-mean observation noise that is a mixture of Rayleigh

Hl . x:—\/ﬁ—i—v,
Hy + z=3VA+v,

Ho : x
Ho

L=

(71)

distributed components; that is, py (z) = Zf\i”{ w; i (x— ;) ,
where w; >0 fori=1,..., N,,, Zfilwl =1, and
T iz) >0
O i CORNEE , @
0, x <0
fori=1,..., Np,. In the numerical results, the same variance

is considered for all the Rayleigh components, meaning that
o; = o, Vi. In addition, the parameters are selected as N,, =
4, 1 =02, s =1, pus = —20\/§—0.2, Uy = —20\/§—1,
wy = ws = 0.3 and wy = w4 = 0.2.13 In addition, the detector
is described by

0, y<-2VA
1, —2/A<y<o0
2, 0<y<2/A
3, 2V/A<y

where y = x+n, with n representing the additive independent
noise term.

For equal prior probabilities and UCA, Fig. 7 illustrates the
Bayes risk versus 0 when A =1 and a = 0.4. It is observed
that the additive noise can significantly improve the detector
performance (equivalently, it reduces the average probability
of error of a communications system) for small values of o.
In addition, for the scenario in Fig. 7, Table IV illustrates
the optimal additive noise p.d.f.s for various values of o. In
accordance with Theorem 4, the optimal noise can have up to
four non-zero mass points in this problem. Furthermore, for
o = 0.05, Fig. 8 plots the Bayes risk versus A for the original
and noise modified detectors. A significant improvement is
observed for A € [0.5,1].

o(y) = (73)

131t should be noted that the dependence of the means on o is necessary in
order to keep the noise zero-mean, since the Rayleigh distribution is specified
by a single parameter, o.

TABLE IV
OPTIMAL ADDITIVE NOISE P.D.F.S FOR VARIOUS VALUES OF o FOR
a=0.4AND A = 1.

o2 /\1 )\2 )\3 /\4
0.05 | 0.1654 0.1218 0.3552  0.3576
0.15 | 0.2232  0.7768 0 0
0.25 1 0 0 0
o ni no n3 n4
0.05 | -0.4916 0.2175 0.2652  -0.5331
0.15 | -0.4288  0.3661 — —
0.25 | -0.2819 — — —
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Fig. 8. Bayes risks of original and noise modified detectors versus A for
a = 0.4 and o = 0.05.

V. CONCLUDING REMARKS

In this paper, noise enhanced hypothesis-testing has been
studied in the restricted Bayesian framework. First, the most
generic formulation of the problem has been considered based
on M-ary composite hypothesis-testing, and sufficient condi-
tions for improvability and nonimprovability of detection via
additive independent noise have been derived. In addition,
an approximate formulation of the optimal noise p.d.f. has
been presented. Then, simple hypothesis-testing problems have
been studied and additional improvability conditions that are
specific to simple hypotheses have been obtained. Also, the
optimal noise p.d.f. has been shown to include at most M
mass points for M-ary simple hypothesis-testing problems
under certain conditions. Then, various approaches to solving
for the optimal noise p.d.f. have been considered, including
global optimization techniques, such as the PSO, and a convex
relaxation technique. Finally, two detection examples have
been studied to illustrate the practicality of the theoretical
results.

APPENDIX
A. Proof of Theorem 2

A detector is improvable if there exists a noise p.d.f. pn(n)
that satisfies E{F(N)} < F(0) and Igleaﬁ(E{Fg(N)} < q,
which can be expressed as [p. pn(n)F(n)dn < F(0)
and [y pn(n) Fy(n)dn < a, VO € A. For a noise p.d.f.
having L infinitesimally small noise components, pn(n) =
Zle Aj 0(n — €;), these conditions become

L
Z >‘j F(Ej) <
j=1

L
F(0), Y N\ Fole;) <a, VoA (74)

j=1



Since the €;’s are infinitesimally small, F(e;) and Fpy(e;)
can be approximated by using the Taylor series expansion as
F(0) + €/f + 0.5¢] He; and Fy(0) + €] fs + 0.5¢] Hoe;,
respectlvely, where IEI and f (Hy and fy) are the Hessian and
the gradient of F'(x) (Fy(x)) at x = 0, respectively. Therefore,
(74) requires that

L

Z)\ €l He; +2ZAJ eff <o,

7j=1
Z/\Jejﬂgej—l—QZ)\je fs <2(a— Fp(0)) , VO €A .

(75)

Let ¢ = p;z for j = 1,2,...,L, where p; for j =
1,2,..., L are infinitesimally small real numbers, and z is
a K -dimensional real vector. Then, based on the function def-
initions in (19)-(22), the conditions in (75) can be simplified,
after some manipulation, as

(F92) +cfV(x2))
(520 2) + e 1) (x.2)

<0, (76)

x=0
2(a—Fp(0 ))
Z] 1 JPJ

(77)

L L
where ¢ £ 2350 p;/ POPPY 3.
Since o = Fy+(0) and o > en}&); Fy(0), the right-hand-
A0
side of (77) goes to infinity for # # 6*. Hence, we should
consider only the § = 6* case. Thus, (76) and (77) can be
expressed as

(5 2) + e D x,2)
( 5 (x,2) + cfé?(x,z))

It is noted that c can take any real value by definition via
selection of appropriate \; and infinitesimally small p; values
for © =1,2,..., L. Therefore, for the first part of the theorem,
under the condition of f(})(x,z)f(l)(x,z) > 0atx =0,
which states that the second term in (78) has the same sign
as the second term in (79), there always exists c that satisfies
the improvability conditions in (78) and (79). For the second
part of the theorem, since f(M)(x,z) > 0 and féi)(x,z) <0
at x = 0, (78) and (79) can also be expressed as

(192t x,2) + e D x,2) 5 (x.2)

<0,

x=0

<0.

x=0

(78)

(79)

>0,
x=0
(80)

<0.
x=0
(1)

Under the condition of f®(x,z)f{"(x,2) >
éf)(x,z)f(l)(x,z) at x = 0, which states that the
first term in (80) is larger than the first term in (81), there

always exists c that satisfies the improvability conditions in
(80) and (81).

(77 2 f Vi, 2) + e £ (x,2) O (x.2) )

B. Proof of Theorem 3

Since H" (&) < 0 and H(t) in (23) is second-order
continuously differentiable around ¢ = &, there exist € > 0,

n; and n, such that max Fp(ny) =a+eand max Fy(ny) =
& — €. Then, it is proven in the following that an additive
noise component with pn(n) = 0.56(x—n;)+0.50(x —ngz)
improves the detector performance under the conditional risk
constraint. First, the maximum value of the conditional risks
in the presence of additive noise is shown not to exceed «:

max E{Fp(N)} <E {renea[ii FQ(N)}
—05(G+e)+ 056G —€)=a<a (82)

Then, the decrease in the Bayes risk is proven as follows.
Due to the assumptions in the theorem, H () is concave in an
interval around ¢ = @&. Since E{F(N)} can attain the value of
0.5 H(a+e€)+0.5 H(&a—e), which is always smaller than H (&)
due to concavity, it is concluded that E{F(N)} < H(&). As
H(a) < F(0) by definition of H(t) in (23), E{F(N)} <
F(0) is satisfied; hence, the detector is improvable.

C. Maximum Conditional Risk Achieved by Optimal Noise
Consider the case in which ¢, = arg mtin H(t) > a. In

order to prove that “rgla/i( R} (¢) = « for the optimal noise”

€
by contradiction, first assume that the optimal solution of (12)
is given by px(x) with 3 = max RY(¢) < a. As in the proof
€
of Theorem 4 in [12], we define another noise N with the
following p.d.f.:

— tm_
o)+ 2 ).

pn(n) = (83)
where ny, is the noise component that results in the minimum
Bayes risk; that is, F(n,,) = Fuin, and ¢y, is the maximum
value of the conditional risks when noise n,, is employed;
that is, t,, = max Fyp(ny).

€
For the noise p.d.f. in (83), the Bayes risk and conditional
risks can be calculated as

() = BN} = £ Pl + 22505 (0).
(84)

RY(6) = E(F(N)) = 2= Fofma) + 2= R (6)
(85)

for all # € A. Since F(ny,) < r¥(¢), (84) implies 1Y (¢) <
79 (¢). On the other hand, as Fy(n,,) < tm, and R} (¢) < 3,
RY(4) < a is obtained. Therefore, N' cannot be an optimal
solution, which implies a contradiction. In other words, any
noise p.d.f. that satisfies max R} (¢) < o cannot be optimal.

D. Proof of Theorem 5

Theorem 4 states that the optimal additive noise can be
represented by a discrete probability distribution with at most
M mass points. Therefore, a detector is improvable if there
exists a noise p.d.f. pn(n) = Zf\il A1 0(n — ny) that satisfies
E{F(N)} < F(0) and o max 1}E F;(N)} < «, which

i -

can be expressed as

M
N F F(0), A
2 N <>iqﬁ®mlﬁil
(86)



As in the proof of Theorem 2 in Appendix A, consider
the improvability conditions in (86) with infinitesimally small
noise components, n; = €, = p;z for l = 1,2,..., M, where
pi’s are infinitesimally small real numbers, and z is a K-
dimensional real vector. Then, similar manipulations to those
in Appendix A (cf. (75)-(77)) can be performed to obtain

(1@ x2) +cfDix,2)| <0, 87)

2 (a — F;(0))
%, 2) + ¢ fV(x,2) 2T (88)

( ) x=0 Zjle Aj P?
for = 0,1,...,M — 1, where ¢ £

22] 1 JPJ/Z] 1 Jpj

Since F;(0) < a, Vi € S,, the right-hand-side of (88) goes
to infinity for ¢ € S,. Hence, one can consider ¢ € S, only.
Thus, (87) and (88) can be expressed as

(1@ 06ez) +efV(x2)
<0, Vies,

(fi(z)(x7 z) + cfi(l)(x, z)) x:

Based on the definition in (54), (89) and (90) can be restated
as

(F()+eR()

It is noted that c¢ can take any real value by selecting
appropriate \; and infinitesimally small p; values for i =
0,1,...,M — 1. From (55), it is concluded that in order for
the conditions in (91) to hold,

.7:2 ‘70<0

<0,

x=0

(89)

(90)

oD

<0 for j=1,2,...,

x=0

|Sal+1.

92)

must be satisfied Vj € S,, which is the first condition in
Theorem 5.
In addition to (92), one of the following conditions should
be satisfied for the improvability conditions in (91) to hold:
e When |S,,| =0 or |S,| = 0, as stated in the first part of
the second condition in Theorem 5, all the second terms
in (91) (namely, F1(1),...,F1(|Sa| + 1)) are either all
non-negative or all non-positive. Therefore, there always
exists a c that satisfies the improvability conditions in
(91) when the first condition in Theorem 5 (cf. (92)) is
satisfied.
o When |S,,| is a positive even number and |S,| > 0, (91)
can be expressed, after some manipulation, as

Fa(4) S <0, foralljeSs,, (93)
(fg(j) H fl( H .7:1 ) o <0,
1€S,US,\ {5} 1€S,US, -
(94)
for all j € S, and
(20 II A@+e I AO)|_ >0,
1leS,US\{5} leS,US, -
95)

for all j € &,. Note that (94) and (95) are obtained

by multiplying (91) by 11 F1(l), which is a
€S US\{Jj}

positive (negative) quantity when j € S, (j € S,,) since

|Sy.| is even. The condition in (93) is satisfied due to

the first condition in Theorem 5. In addition, under the
condition in (58), there always exists a c that satisfies the
improvability conditions in (94) and (95).

e When |S,| is an odd number and |S,| > 0, (91) can
be expressed by three conditions as in (93)-(95) with the
only difference being that the signs of the inequalities in
(94) and (95) are switched. In that case, the first condition
(cf. (93)) is satisfied due to the first condition in Theorem
5. Also, under the condition in (59), there always exists
a c that satisfies the second and third conditions.

E. Proof of Corollary 1

Consider the proof of Theorem 5 above. Since o >

max  F;(0), the right-hand-side of (88) becomes in-
i€{0,1,...,M—1}

finity for any 4. Therefore, we can consider the condition in
(87) only; that is,

(1P x2) +efMix.2)

In terms of the gradient f and the Hessian H of F(x) at
x = 0, (96) becomes z"Hz + cz’f < 0. Since ¢ can
take any real value by definition (cf. Appendix D) and z can
be chosen arbitrarily small, the improvability condition can
always be satisfied if f # 0. On the other hand, if f = 0,
then the improvability condition becomes z” Hz < 0. If F'(x)
is not convex around x = 0, H is not positive semidefinite.
Therefore, there exists z such that zZHz < 0 is satisfied;
hence, the detector is improvable.

<0.
x=0

(96)
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